Skip to main content
Top
Published in: Molecular Cancer 1/2010

Open Access 01-12-2010 | Research

MiTF links Erk1/2 kinase and p21CIP1/WAF1 activation after UVC radiation in normal human melanocytes and melanoma cells

Authors: Feng Liu, Amarinder Singh, Zhen Yang, Angela Garcia, Yu Kong, Frank L Meyskens Jr

Published in: Molecular Cancer | Issue 1/2010

Login to get access

Abstract

As a survival factor for melanocytes lineage cells, MiTF plays multiple roles in development and melanomagenesis. What role MiTF plays in the DNA damage response is currently unknown. In this report we observed that MiTF was phosphorylated at serine 73 after UVC radiation, which was followed by proteasome-mediated degradation. Unlike after c-Kit stimulation, inhibiting p90RSK-1 did not abolish the band shift of MiTF protein, nor did it abolish the UVC-mediated MiTF degradation, suggesting that phosphorylation on serine 73 by Erk1/2 is a key event after UVC. Furthermore, the MiTF-S73A mutant (Serine 73 changed to Alanine via site-directed mutagenesis) was unable to degrade and was continuously expressed after UVC exposure. Compared to A375 melanoma cells expressing wild-type MiTF (MiTF-WT), cells expressing MiTF-S73A mutant showed less p21WAF1/CIP1 accumulation and a delayed p21WAF1/CIP1 recovery after UVC. Consequently, cells expressing MiTF-WT showed a temporary G1 arrest after UVC, but cells expressing MiTF-S73A mutant or lack of MiTF expression did not. Finally, cell lines with high levels of MiTF expression showed higher resistance to UVC-induced cell death than those with low-level MiTF. These data suggest that MiTF mediates a survival signal linking Erk1/2 activation and p21WAF1/CIP1 regulation via phosphorylation on serine 73, which facilitates cell cycle arrest. In addition, our data also showed that exposure to different wavelengths of UV light elicited different signal pathways involving MiTF.
Appendix
Available only for authorised users
Literature
1.
go back to reference Widlund HR, Fisher DE: Microphthalamia-associated transcription factor: a critical regulator of pigment cell development and survival. Oncogene. 2003, 22 (20): 3035-41. 10.1038/sj.onc.1206443CrossRefPubMed Widlund HR, Fisher DE: Microphthalamia-associated transcription factor: a critical regulator of pigment cell development and survival. Oncogene. 2003, 22 (20): 3035-41. 10.1038/sj.onc.1206443CrossRefPubMed
2.
go back to reference Mitra D, Fisher DE: Transcriptional regulation in melanoma. Hematol Oncol Clin North Am. 2009, 23 (3): 447-65. viii, 10.1016/j.hoc.2009.03.003CrossRefPubMed Mitra D, Fisher DE: Transcriptional regulation in melanoma. Hematol Oncol Clin North Am. 2009, 23 (3): 447-65. viii, 10.1016/j.hoc.2009.03.003CrossRefPubMed
3.
go back to reference Garraway LA: Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature. 2005, 436 (7047): 117-22. 10.1038/nature03664CrossRefPubMed Garraway LA: Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature. 2005, 436 (7047): 117-22. 10.1038/nature03664CrossRefPubMed
4.
go back to reference Joo A: STAT3 and MITF cooperatively induce cellular transformation through upregulation of c-fos expression. Oncogene. 2004, 23 (3): 726-34. 10.1038/sj.onc.1207174CrossRefPubMed Joo A: STAT3 and MITF cooperatively induce cellular transformation through upregulation of c-fos expression. Oncogene. 2004, 23 (3): 726-34. 10.1038/sj.onc.1207174CrossRefPubMed
5.
go back to reference Wellbrock C, Marais R: Elevated expression of MITF counteracts B-RAF-stimulated melanocyte and melanoma cell proliferation. J Cell Biol. 2005, 170 (5): 703-8. 10.1083/jcb.200505059PubMedCentralCrossRefPubMed Wellbrock C, Marais R: Elevated expression of MITF counteracts B-RAF-stimulated melanocyte and melanoma cell proliferation. J Cell Biol. 2005, 170 (5): 703-8. 10.1083/jcb.200505059PubMedCentralCrossRefPubMed
6.
go back to reference Carreira S: Mitf cooperates with Rb1 and activates p21Cip1 expression to regulate cell cycle progression. Nature. 2005, 433 (7027): 764-9. 10.1038/nature03269CrossRefPubMed Carreira S: Mitf cooperates with Rb1 and activates p21Cip1 expression to regulate cell cycle progression. Nature. 2005, 433 (7027): 764-9. 10.1038/nature03269CrossRefPubMed
7.
go back to reference Loercher AE: MITF links differentiation with cell cycle arrest in melanocytes by transcriptional activation of INK4A. J Cell Biol. 2005, 168 (1): 35-40. 10.1083/jcb.200410115PubMedCentralCrossRefPubMed Loercher AE: MITF links differentiation with cell cycle arrest in melanocytes by transcriptional activation of INK4A. J Cell Biol. 2005, 168 (1): 35-40. 10.1083/jcb.200410115PubMedCentralCrossRefPubMed
8.
go back to reference Busca R: Hypoxia inducible factor 1a is a new target of microphthalmia-associated transcription factor (MITF) in melanoma cells. Med Sci (Paris). 2006, 22 (1): 10-3.CrossRef Busca R: Hypoxia inducible factor 1a is a new target of microphthalmia-associated transcription factor (MITF) in melanoma cells. Med Sci (Paris). 2006, 22 (1): 10-3.CrossRef
9.
go back to reference Du J: Critical role of CDK2 for melanoma growth linked to its melanocyte-specific transcriptional regulation by MITF. Cancer Cell. 2004, 6 (6): 565-76. 10.1016/j.ccr.2004.10.014CrossRefPubMed Du J: Critical role of CDK2 for melanoma growth linked to its melanocyte-specific transcriptional regulation by MITF. Cancer Cell. 2004, 6 (6): 565-76. 10.1016/j.ccr.2004.10.014CrossRefPubMed
10.
go back to reference McGill GG: Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell. 2002, 109 (6): 707-18. 10.1016/S0092-8674(02)00762-6CrossRefPubMed McGill GG: Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell. 2002, 109 (6): 707-18. 10.1016/S0092-8674(02)00762-6CrossRefPubMed
11.
go back to reference Dynek JN: Microphthalmia-associated transcription factor is a critical transcriptional regulator of melanoma inhibitor of apoptosis in melanomas. Cancer Res. 2008, 68 (9): 3124-32. 10.1158/0008-5472.CAN-07-6622CrossRefPubMed Dynek JN: Microphthalmia-associated transcription factor is a critical transcriptional regulator of melanoma inhibitor of apoptosis in melanomas. Cancer Res. 2008, 68 (9): 3124-32. 10.1158/0008-5472.CAN-07-6622CrossRefPubMed
12.
13.
go back to reference Liu F, Fu Y, Meyskens FL: MiTF regulates cellular response to reactive oxygen species through transcriptional regulation of APE-1/Ref-1. J Invest Dermatol. 2009, 129 (2): 422-31. 10.1038/jid.2008.255PubMedCentralCrossRefPubMed Liu F, Fu Y, Meyskens FL: MiTF regulates cellular response to reactive oxygen species through transcriptional regulation of APE-1/Ref-1. J Invest Dermatol. 2009, 129 (2): 422-31. 10.1038/jid.2008.255PubMedCentralCrossRefPubMed
14.
go back to reference Hornyak TJ: Mitf dosage as a primary determinant of melanocyte survival after ultraviolet irradiation. Pigment Cell Melanoma Res. 2009, 22 (3): 307-18. 10.1111/j.1755-148X.2009.00551.xCrossRefPubMed Hornyak TJ: Mitf dosage as a primary determinant of melanocyte survival after ultraviolet irradiation. Pigment Cell Melanoma Res. 2009, 22 (3): 307-18. 10.1111/j.1755-148X.2009.00551.xCrossRefPubMed
15.
go back to reference Omholt K: NRAS and BRAF mutations arise early during melanoma pathogenesis and are preserved throughout tumor progression. Clin Cancer Res. 2003, 9 (17): 6483-8.PubMed Omholt K: NRAS and BRAF mutations arise early during melanoma pathogenesis and are preserved throughout tumor progression. Clin Cancer Res. 2003, 9 (17): 6483-8.PubMed
16.
go back to reference Meier F: The RAS/RAF/MEK/ERK and PI3K/AKT signaling pathways present molecular targets for the effective treatment of advanced melanoma. Front Biosci. 2005, 10: 2986-3001. 10.2741/1755CrossRefPubMed Meier F: The RAS/RAF/MEK/ERK and PI3K/AKT signaling pathways present molecular targets for the effective treatment of advanced melanoma. Front Biosci. 2005, 10: 2986-3001. 10.2741/1755CrossRefPubMed
17.
go back to reference Molina DM, Grewal S, Bardwell L: Characterization of an ERK-binding domain in microphthalmia-associated transcription factor and differential inhibition of ERK2-mediated substrate phosphorylation. J Biol Chem. 2005, 280 (51): 42051-60. 10.1074/jbc.M510590200PubMedCentralCrossRefPubMed Molina DM, Grewal S, Bardwell L: Characterization of an ERK-binding domain in microphthalmia-associated transcription factor and differential inhibition of ERK2-mediated substrate phosphorylation. J Biol Chem. 2005, 280 (51): 42051-60. 10.1074/jbc.M510590200PubMedCentralCrossRefPubMed
18.
go back to reference Hemesath TJ: MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes. Nature. 1998, 391 (6664): 298-301. 10.1038/34681CrossRefPubMed Hemesath TJ: MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes. Nature. 1998, 391 (6664): 298-301. 10.1038/34681CrossRefPubMed
19.
go back to reference Wu M: c-Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi. Genes Dev. 2000, 14 (3): 301-12.PubMedCentralPubMed Wu M: c-Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi. Genes Dev. 2000, 14 (3): 301-12.PubMedCentralPubMed
20.
go back to reference Bauer GL: The role of MITF phosphorylation sites during coat color and eye development in mice analyzed by bacterial artificial chromosome transgene rescue. Genetics. 2009, 183 (2): 581-94. 10.1534/genetics.109.103945PubMedCentralCrossRefPubMed Bauer GL: The role of MITF phosphorylation sites during coat color and eye development in mice analyzed by bacterial artificial chromosome transgene rescue. Genetics. 2009, 183 (2): 581-94. 10.1534/genetics.109.103945PubMedCentralCrossRefPubMed
21.
go back to reference Bertolotto C, Ballotti R: Functional role of MITF phosphorylation. In vivo veritas?. Pigment Cell Melanoma Res. 2009, 22 (6): 703-4. 10.1111/j.1755-148X.2009.00623.xCrossRefPubMed Bertolotto C, Ballotti R: Functional role of MITF phosphorylation. In vivo veritas?. Pigment Cell Melanoma Res. 2009, 22 (6): 703-4. 10.1111/j.1755-148X.2009.00623.xCrossRefPubMed
22.
go back to reference Xu W: Regulation of microphthalmia-associated transcription factor MITF protein levels by association with the ubiquitin-conjugating enzyme hUBC9. Exp Cell Res. 2000, 255 (2): 135-43. 10.1006/excr.2000.4803CrossRefPubMed Xu W: Regulation of microphthalmia-associated transcription factor MITF protein levels by association with the ubiquitin-conjugating enzyme hUBC9. Exp Cell Res. 2000, 255 (2): 135-43. 10.1006/excr.2000.4803CrossRefPubMed
23.
24.
go back to reference Bendjennat M: UV irradiation triggers ubiquitin-dependent degradation of p21(WAF1) to promote DNA repair. Cell. 2003, 114 (5): 599-610. 10.1016/j.cell.2003.08.001CrossRefPubMed Bendjennat M: UV irradiation triggers ubiquitin-dependent degradation of p21(WAF1) to promote DNA repair. Cell. 2003, 114 (5): 599-610. 10.1016/j.cell.2003.08.001CrossRefPubMed
25.
go back to reference Molho-Pessach V, Lotem M: Ultraviolet radiation and cutaneous carcinogenesis. Curr Probl Dermatol. 2007, 35: 14-27. full_textCrossRefPubMed Molho-Pessach V, Lotem M: Ultraviolet radiation and cutaneous carcinogenesis. Curr Probl Dermatol. 2007, 35: 14-27. full_textCrossRefPubMed
26.
go back to reference Bode AM, Dong Z: Mitogen-activated protein kinase activation in UV-induced signal transduction. Sci STKE. 2003, 2003 (167): RE2- 10.1126/stke.2003.167.re2PubMed Bode AM, Dong Z: Mitogen-activated protein kinase activation in UV-induced signal transduction. Sci STKE. 2003, 2003 (167): RE2- 10.1126/stke.2003.167.re2PubMed
27.
go back to reference el-Deiry WS: WAF1, a potential mediator of p53 tumor suppression. Cell. 1993, 75 (4): 817-25. 10.1016/0092-8674(93)90500-PCrossRefPubMed el-Deiry WS: WAF1, a potential mediator of p53 tumor suppression. Cell. 1993, 75 (4): 817-25. 10.1016/0092-8674(93)90500-PCrossRefPubMed
28.
go back to reference Gartel AL, Radhakrishnan SK: Lost in transcription: p21 repression, mechanisms, and consequences. Cancer Res. 2005, 65 (10): 3980-5. 10.1158/0008-5472.CAN-04-3995CrossRefPubMed Gartel AL, Radhakrishnan SK: Lost in transcription: p21 repression, mechanisms, and consequences. Cancer Res. 2005, 65 (10): 3980-5. 10.1158/0008-5472.CAN-04-3995CrossRefPubMed
29.
go back to reference Prives C, Gottifredi V: The p21 and PCNA partnership: a new twist for an old plot. Cell Cycle. 2008, 7 (24): 3840-6.CrossRefPubMed Prives C, Gottifredi V: The p21 and PCNA partnership: a new twist for an old plot. Cell Cycle. 2008, 7 (24): 3840-6.CrossRefPubMed
30.
go back to reference Soria G: p21 differentially regulates DNA replication and DNA-repair-associated processes after UV irradiation. J Cell Sci. 2008, 121 (Pt 19): 3271-82. 10.1242/jcs.027730CrossRefPubMed Soria G: p21 differentially regulates DNA replication and DNA-repair-associated processes after UV irradiation. J Cell Sci. 2008, 121 (Pt 19): 3271-82. 10.1242/jcs.027730CrossRefPubMed
31.
go back to reference Soria G: P21Cip1/WAF1 downregulation is required for efficient PCNA ubiquitination after UV irradiation. Oncogene. 2006, 25 (20): 2829-38. 10.1038/sj.onc.1209315CrossRefPubMed Soria G: P21Cip1/WAF1 downregulation is required for efficient PCNA ubiquitination after UV irradiation. Oncogene. 2006, 25 (20): 2829-38. 10.1038/sj.onc.1209315CrossRefPubMed
32.
go back to reference Sgambato A: Multiple functions of p27(Kip1) and its alterations in tumor cells: a review. J Cell Physiol. 2000, 183 (1): 18-27. 10.1002/(SICI)1097-4652(200004)183:1<18::AID-JCP3>3.0.CO;2-SCrossRefPubMed Sgambato A: Multiple functions of p27(Kip1) and its alterations in tumor cells: a review. J Cell Physiol. 2000, 183 (1): 18-27. 10.1002/(SICI)1097-4652(200004)183:1<18::AID-JCP3>3.0.CO;2-SCrossRefPubMed
33.
go back to reference Zhang X: Identification of possible reactive oxygen species involved in ultraviolet radiation-induced oxidative DNA damage. Free Radic Biol Med. 1997, 23 (7): 980-5. 10.1016/S0891-5849(97)00126-3CrossRefPubMed Zhang X: Identification of possible reactive oxygen species involved in ultraviolet radiation-induced oxidative DNA damage. Free Radic Biol Med. 1997, 23 (7): 980-5. 10.1016/S0891-5849(97)00126-3CrossRefPubMed
34.
go back to reference Placzek M: Effect of ultraviolet (UV) A, UVB or ionizing radiation on the cell cycle of human melanoma cells. Br J Dermatol. 2007, 156 (5): 843-7. 10.1111/j.1365-2133.2007.07795.xCrossRefPubMed Placzek M: Effect of ultraviolet (UV) A, UVB or ionizing radiation on the cell cycle of human melanoma cells. Br J Dermatol. 2007, 156 (5): 843-7. 10.1111/j.1365-2133.2007.07795.xCrossRefPubMed
36.
go back to reference Yokoyama S, Salma N, Fisher DE: MITF pathway mutations in melanoma. Pigment Cell Melanoma Res. 2009, 22 (4): 376-7. 10.1111/j.1755-148X.2009.00599.xCrossRefPubMed Yokoyama S, Salma N, Fisher DE: MITF pathway mutations in melanoma. Pigment Cell Melanoma Res. 2009, 22 (4): 376-7. 10.1111/j.1755-148X.2009.00599.xCrossRefPubMed
37.
38.
go back to reference Jonsson G: Genomic profiling of malignant melanoma using tiling-resolution arrayCGH. Oncogene. 2007, 26 (32): 4738-48. 10.1038/sj.onc.1210252CrossRefPubMed Jonsson G: Genomic profiling of malignant melanoma using tiling-resolution arrayCGH. Oncogene. 2007, 26 (32): 4738-48. 10.1038/sj.onc.1210252CrossRefPubMed
39.
go back to reference Eisinger M, Marko O: Selective proliferation of normal human melanocytes in vitro in the presence of phorbol ester and cholera toxin. Proc Natl Acad Sci USA. 1982, 79 (6): 2018-22. 10.1073/pnas.79.6.2018PubMedCentralCrossRefPubMed Eisinger M, Marko O: Selective proliferation of normal human melanocytes in vitro in the presence of phorbol ester and cholera toxin. Proc Natl Acad Sci USA. 1982, 79 (6): 2018-22. 10.1073/pnas.79.6.2018PubMedCentralCrossRefPubMed
40.
go back to reference Liu F, Lee WH: CtIP activates its own and cyclin D1 promoters via the E2F/RB pathway during G1/S progression. Mol Cell Biol. 2006, 26 (8): 3124-34. 10.1128/MCB.26.8.3124-3134.2006PubMedCentralCrossRefPubMed Liu F, Lee WH: CtIP activates its own and cyclin D1 promoters via the E2F/RB pathway during G1/S progression. Mol Cell Biol. 2006, 26 (8): 3124-34. 10.1128/MCB.26.8.3124-3134.2006PubMedCentralCrossRefPubMed
Metadata
Title
MiTF links Erk1/2 kinase and p21CIP1/WAF1 activation after UVC radiation in normal human melanocytes and melanoma cells
Authors
Feng Liu
Amarinder Singh
Zhen Yang
Angela Garcia
Yu Kong
Frank L Meyskens Jr
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2010
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-9-214

Other articles of this Issue 1/2010

Molecular Cancer 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine