Skip to main content
Top
Published in: Molecular Cancer 1/2014

Open Access 01-12-2014 | Research

Function of RasGRP3 in the formation and progression of human breast cancer

Authors: Zsuzsanna Nagy, Ilona Kovács, Miklós Török, Dezső Tóth, György Vereb, Krisztina Buzás, István Juhász, Peter M Blumberg, Tamás Bíró, Gabriella Czifra

Published in: Molecular Cancer | Issue 1/2014

Login to get access

Abstract

Introduction

Ras guanine nucleotide exchange factors (RasGEFs) mediate the activation of the Ras signaling pathway that is over activated in many human cancers. The RasGRP3, an activator of H-Ras and R-Ras protein exerts oncogenic effects and the overexpression of the protein is observed in numerous malignant cancer types. Here, we investigated the putative alteration of expression and potential function of RasGRP3 in the formation and progression of human breast cancer.

Methods

The RasGRP3 and phosphoRasGRP3 expressions were examined in human invasive ductal adenocarcinoma derived samples and cell lines (BT-474, JIMT-1, MCF7, SK-BR-3, MDA-MB-453, T-47D) both in mRNA (Q-PCR) and protein (Western blot; immunohistochemistry) levels. To explore the biological function of the protein, RasGRP3 knockdown cultures were established. To assess the role of RasGRP3 in the viability of cells, annexin-V/PI staining and MitoProbe™ DilC1 (5) assay were performed. To clarify the function of the protein in cell proliferation and in the development of chemotherapeutic resistance, CyQuant assay was performed. To observe the RasGRP3 function in tumor formation, the Severe combined immunodeficiency (SCID) mouse model was used. To investigate the role of the protein in Ras-related signaling Q-PCR and Western blot experiments were performed.

Results

RasGRP3 expression was elevated in human breast tumor tissue samples as well as in multiple human breast cancer cell lines. Down-regulation of RasGRP3 expression in breast cancer cells decreased cell proliferation, induced apoptosis in MCF7 cells, and sensitized T-47D cells to the action of drugs Tamoxifen and trastuzumab (Herceptin). Gene silencing of RasGRP3 reduced tumor formation in mouse xenografts as well. Inhibition of RasGRP3 expression also reduced Akt, ERK1/2 and estrogen receptor alpha phosphorylation downstream from IGF-I insulin like growth factor-I (IGF-I) or epidermal growth factor (EGF) stimulation confirming the functional role of RasGRP3 in the altered behavior of these cells.

Conclusions

Taken together, our results suggest that the Ras activator RasGRP3 may have a role in the pathological behavior of breast cancer cells and may constitute a therapeutic target for human breast cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Vetter IR, Wittinghofer A: The guanine nucleotide-binding switch in three dimensions. Science. 2001, 294: 1299-1304. 10.1126/science.1062023CrossRefPubMed Vetter IR, Wittinghofer A: The guanine nucleotide-binding switch in three dimensions. Science. 2001, 294: 1299-1304. 10.1126/science.1062023CrossRefPubMed
2.
go back to reference Boguski MS, McCormick F: Proteins regulating Ras and its relatives. Nature. 1993, 366: 643-654. 10.1038/366643a0CrossRefPubMed Boguski MS, McCormick F: Proteins regulating Ras and its relatives. Nature. 1993, 366: 643-654. 10.1038/366643a0CrossRefPubMed
3.
go back to reference Ehrhardt A, Ehrhardt GR, Guo X, Schrader JW: Ras and relatives -job sharing and networking keep an old family together. Exp Hematol. 2002, 30: 1089-1106. 10.1016/S0301-472X(02)00904-9CrossRefPubMed Ehrhardt A, Ehrhardt GR, Guo X, Schrader JW: Ras and relatives -job sharing and networking keep an old family together. Exp Hematol. 2002, 30: 1089-1106. 10.1016/S0301-472X(02)00904-9CrossRefPubMed
4.
go back to reference Ebinu JO, Bottorff DA, Chan EY, Stang SL, Dunn RJ, Stone JC: RasGRP, a Ras guanyl nucleotide-releasing protein with calcium- and diacylglycerol-binding motifs. Science. 1998, 280: 1082-1086. 10.1126/science.280.5366.1082CrossRefPubMed Ebinu JO, Bottorff DA, Chan EY, Stang SL, Dunn RJ, Stone JC: RasGRP, a Ras guanyl nucleotide-releasing protein with calcium- and diacylglycerol-binding motifs. Science. 1998, 280: 1082-1086. 10.1126/science.280.5366.1082CrossRefPubMed
5.
go back to reference Lorenzo PS, Beheshti M, Pettit GR, Stone JC, Blumberg PM: The guanine nucleotide exchange factor RasGRP is a high –affinity target for diacylglycerol and phorbol esters. Mol Pharmacol. 2000, 57: 840-846.PubMed Lorenzo PS, Beheshti M, Pettit GR, Stone JC, Blumberg PM: The guanine nucleotide exchange factor RasGRP is a high –affinity target for diacylglycerol and phorbol esters. Mol Pharmacol. 2000, 57: 840-846.PubMed
6.
go back to reference Lorenzo PS, Kung JW, Bottorff DA, Garfield SH, Stone JC, Blumberg PM: Phorbol esters modulate the Ras exchange factor RasGRP3. Cancer Res. 2001, 61: 943-949.PubMed Lorenzo PS, Kung JW, Bottorff DA, Garfield SH, Stone JC, Blumberg PM: Phorbol esters modulate the Ras exchange factor RasGRP3. Cancer Res. 2001, 61: 943-949.PubMed
7.
go back to reference Oh-hora M, Johmura S, Hashimoto A, Hikida M, Kurosaki T: Requirement for Ras guanine nucleotide releasing protein 3 in coupling phospholipase C-gamma2 to Ras in B cell receptor signaling. J Exp Med. 2003, 198: 1841-1851. 10.1084/jem.20031547PubMedCentralCrossRefPubMed Oh-hora M, Johmura S, Hashimoto A, Hikida M, Kurosaki T: Requirement for Ras guanine nucleotide releasing protein 3 in coupling phospholipase C-gamma2 to Ras in B cell receptor signaling. J Exp Med. 2003, 198: 1841-1851. 10.1084/jem.20031547PubMedCentralCrossRefPubMed
8.
go back to reference Stope MB, Vom Dorp F, Szatkowski D, Böhm A, Keiper M, Nolte J, Oude Weernink PA, Rosskopf D, Evellin S, Jakobs KH, Schmidt M: Rap2B-dependent stimulation of phospholipase C-epsilon by epidermal growth factor receptor mediated by c-Src phosphorylation of RasGRP3. Mol Cel Biol. 2004, 24: 4664-4676. 10.1128/MCB.24.11.4664-4676.2004.CrossRef Stope MB, Vom Dorp F, Szatkowski D, Böhm A, Keiper M, Nolte J, Oude Weernink PA, Rosskopf D, Evellin S, Jakobs KH, Schmidt M: Rap2B-dependent stimulation of phospholipase C-epsilon by epidermal growth factor receptor mediated by c-Src phosphorylation of RasGRP3. Mol Cel Biol. 2004, 24: 4664-4676. 10.1128/MCB.24.11.4664-4676.2004.CrossRef
9.
go back to reference Yamashita S, Mochizuki N, Ohba Y, Tobiume M, Okada Y, Sawa H, Nagashima K, Matsuda M: CalDAG-GEFIII activation of Ras, R-ras, and Rap1. J Biol Chem. 2000, 275: 25488-25493. 10.1074/jbc.M003414200CrossRefPubMed Yamashita S, Mochizuki N, Ohba Y, Tobiume M, Okada Y, Sawa H, Nagashima K, Matsuda M: CalDAG-GEFIII activation of Ras, R-ras, and Rap1. J Biol Chem. 2000, 275: 25488-25493. 10.1074/jbc.M003414200CrossRefPubMed
10.
go back to reference Suzuki T, Shen H, Akagi K, Morse HC, Malley JD, Naiman DQ, Jenkins NA, Copeland NG: New genes involved in cancer identified by retroviral tagging. Nat Genet. 2002, 32: 166-174. 10.1038/ng949CrossRefPubMed Suzuki T, Shen H, Akagi K, Morse HC, Malley JD, Naiman DQ, Jenkins NA, Copeland NG: New genes involved in cancer identified by retroviral tagging. Nat Genet. 2002, 32: 166-174. 10.1038/ng949CrossRefPubMed
11.
go back to reference Teixeira C, Stang SL, Zheng Y, Beswick NS, Stone JC: Integration of DAG signaling systems mediated by PKC-dependent phosphorylation of RasGRP3. Blood. 2003, 102: 1414-1420. 10.1182/blood-2002-11-3621CrossRefPubMed Teixeira C, Stang SL, Zheng Y, Beswick NS, Stone JC: Integration of DAG signaling systems mediated by PKC-dependent phosphorylation of RasGRP3. Blood. 2003, 102: 1414-1420. 10.1182/blood-2002-11-3621CrossRefPubMed
12.
go back to reference Yang D, Kedei N, Li L, Tao J, Velasquez JF, Michalowski AM, Tóth BI, Marincsák R, Varga A, Bíró T, Yuspa SH, Blumberg PM: RasGRP3 contributes to formation and maintenance of the prostate cancer phenotype. Cancer Res. 2010, 70: 7905-7917. 10.1158/0008-5472.CAN-09-4729PubMedCentralCrossRefPubMed Yang D, Kedei N, Li L, Tao J, Velasquez JF, Michalowski AM, Tóth BI, Marincsák R, Varga A, Bíró T, Yuspa SH, Blumberg PM: RasGRP3 contributes to formation and maintenance of the prostate cancer phenotype. Cancer Res. 2010, 70: 7905-7917. 10.1158/0008-5472.CAN-09-4729PubMedCentralCrossRefPubMed
13.
go back to reference Yang D, Tao J, Li L, Kedei N, Tóth ZE, Czap A, Velasquez JF, Mihova D, Michalowski AM, Yuspa SH, Blumberg PM: RasGRP3, a Ras activator, contributes to signaling and the tumorigenic phenotype in human melanoma. Oncogene. 2011, 30: 4590-4600. 10.1038/onc.2011.166PubMedCentralCrossRefPubMed Yang D, Tao J, Li L, Kedei N, Tóth ZE, Czap A, Velasquez JF, Mihova D, Michalowski AM, Yuspa SH, Blumberg PM: RasGRP3, a Ras activator, contributes to signaling and the tumorigenic phenotype in human melanoma. Oncogene. 2011, 30: 4590-4600. 10.1038/onc.2011.166PubMedCentralCrossRefPubMed
14.
go back to reference Eckert LB, Repasky GA, Ulkü AS, McFall A, Zhou H, Sartor CI, Der CJ: Involvement of Ras activation in human breast cancer cell signaling, invasion, and anoikis. Cancer Res. 2004, 64: 4585-4592. 10.1158/0008-5472.CAN-04-0396CrossRefPubMed Eckert LB, Repasky GA, Ulkü AS, McFall A, Zhou H, Sartor CI, Der CJ: Involvement of Ras activation in human breast cancer cell signaling, invasion, and anoikis. Cancer Res. 2004, 64: 4585-4592. 10.1158/0008-5472.CAN-04-0396CrossRefPubMed
15.
go back to reference Kennecke H, Yerushalmi R, Woods R, Cheang MC, Voduc D, Speers CH, Nielsen TO, Gelmon K: Metastatic behavior of breast cancer subtypes. J Clin Oncol. 2010, 28: 3271-3277. 10.1200/JCO.2009.25.9820CrossRefPubMed Kennecke H, Yerushalmi R, Woods R, Cheang MC, Voduc D, Speers CH, Nielsen TO, Gelmon K: Metastatic behavior of breast cancer subtypes. J Clin Oncol. 2010, 28: 3271-3277. 10.1200/JCO.2009.25.9820CrossRefPubMed
17.
go back to reference Zamzami N, Marchetti P, Castedo M, Zanin C, Vayssière JL, Petit PX, Kroemer G: Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J Exp Med. 1995, 181 (5): 1661-1672. 10.1084/jem.181.5.1661CrossRefPubMed Zamzami N, Marchetti P, Castedo M, Zanin C, Vayssière JL, Petit PX, Kroemer G: Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J Exp Med. 1995, 181 (5): 1661-1672. 10.1084/jem.181.5.1661CrossRefPubMed
18.
go back to reference Clark AS, West K, Streicher S, Dennis PA: Constitutive and inducible Akt activity promotes resistance to chemotherapy, trastuzumab, or tamoxifen in breast cancer cells. Mol Cancer Ther. 2002, 1 (9): 707-717.PubMed Clark AS, West K, Streicher S, Dennis PA: Constitutive and inducible Akt activity promotes resistance to chemotherapy, trastuzumab, or tamoxifen in breast cancer cells. Mol Cancer Ther. 2002, 1 (9): 707-717.PubMed
19.
go back to reference Wang CX, Koay DC, Edwards A, Lu Z, Mor G, Ocal IT, Digiovanna MP: In vitro and in vivo effects of combination of Trastuzumab (Herceptin) and Tamoxifen in breast cancer. Breast Cancer Res Treat. 2005, 92 (3): 251-263. 10.1007/s10549-005-3375-zCrossRefPubMed Wang CX, Koay DC, Edwards A, Lu Z, Mor G, Ocal IT, Digiovanna MP: In vitro and in vivo effects of combination of Trastuzumab (Herceptin) and Tamoxifen in breast cancer. Breast Cancer Res Treat. 2005, 92 (3): 251-263. 10.1007/s10549-005-3375-zCrossRefPubMed
20.
go back to reference Nahta R, Yuan LX, Zhang B, Kobayashi R, Esteva FJ: Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Res. 2005, 65 (23): 11118-11128. 10.1158/0008-5472.CAN-04-3841CrossRefPubMed Nahta R, Yuan LX, Zhang B, Kobayashi R, Esteva FJ: Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Res. 2005, 65 (23): 11118-11128. 10.1158/0008-5472.CAN-04-3841CrossRefPubMed
21.
go back to reference Zielinski R, Przytycki PF, Zheng J, Zhang D, Przytycka TM, Capala J: The crosstalk between EGF, IGF, and Insulin cell signaling pathways–computational and experimental analysis. BMC Syst Biol. 2009, 3: 88- 10.1186/1752-0509-3-88PubMedCentralCrossRefPubMed Zielinski R, Przytycki PF, Zheng J, Zhang D, Przytycka TM, Capala J: The crosstalk between EGF, IGF, and Insulin cell signaling pathways–computational and experimental analysis. BMC Syst Biol. 2009, 3: 88- 10.1186/1752-0509-3-88PubMedCentralCrossRefPubMed
22.
go back to reference Lin CY, Ström A, Vega VB, Kong SL, Yeo AL, Thomsen JS, Chan WC, Doray B, Bangarusamy DK, Ramasamy A, Vergara LA, Tang S, Chong A, Bajic VB, Miller LD, Gustafsson JA, Liu ET: Discovery of estrogen receptor alpha target genes and response elements in breast tumor cells. Genome Biol. 2004, 5 (9): R66- 10.1186/gb-2004-5-9-r66PubMedCentralCrossRefPubMed Lin CY, Ström A, Vega VB, Kong SL, Yeo AL, Thomsen JS, Chan WC, Doray B, Bangarusamy DK, Ramasamy A, Vergara LA, Tang S, Chong A, Bajic VB, Miller LD, Gustafsson JA, Liu ET: Discovery of estrogen receptor alpha target genes and response elements in breast tumor cells. Genome Biol. 2004, 5 (9): R66- 10.1186/gb-2004-5-9-r66PubMedCentralCrossRefPubMed
23.
go back to reference Bos JL: Ras oncogenes in human cancer: a review. Cancer Res. 1989, 49: 4682-4689.PubMed Bos JL: Ras oncogenes in human cancer: a review. Cancer Res. 1989, 49: 4682-4689.PubMed
24.
go back to reference Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE: Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature. 2002, 418: 934- 10.1038/418934aCrossRefPubMed Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE: Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature. 2002, 418: 934- 10.1038/418934aCrossRefPubMed
25.
go back to reference Magee T, Marshall C: New insights into the interaction of Ras with the plasma membrane. Cell. 1999, 98 (1): 9-12. 10.1016/S0092-8674(00)80601-7CrossRefPubMed Magee T, Marshall C: New insights into the interaction of Ras with the plasma membrane. Cell. 1999, 98 (1): 9-12. 10.1016/S0092-8674(00)80601-7CrossRefPubMed
26.
go back to reference Chen RH, Corbalan-Garcia S, Bar-Sagi D: The role of the PH domain in the signal-dependent membrane targeting of Sos. EMBO J. 1997, 16 (6): 1351-1359. 10.1093/emboj/16.6.1351PubMedCentralCrossRefPubMed Chen RH, Corbalan-Garcia S, Bar-Sagi D: The role of the PH domain in the signal-dependent membrane targeting of Sos. EMBO J. 1997, 16 (6): 1351-1359. 10.1093/emboj/16.6.1351PubMedCentralCrossRefPubMed
27.
go back to reference Fam NP, Fan WT, Wang Z, Zhang LJ, Chen H, Moran MF: Cloning and characterization of Ras-GRF2, a novel guanine nucleotide exchange factor for Ras. Mol Cell Biol. 1997, 17 (3): 1396-1406.PubMedCentralCrossRefPubMed Fam NP, Fan WT, Wang Z, Zhang LJ, Chen H, Moran MF: Cloning and characterization of Ras-GRF2, a novel guanine nucleotide exchange factor for Ras. Mol Cell Biol. 1997, 17 (3): 1396-1406.PubMedCentralCrossRefPubMed
28.
go back to reference Wurzer G, Mosgoeller W, Chabicovsky M, Cerni C, Wesierska-Gadek J: Nuclear Ras: unexpected subcellular distribution of oncogenic forms. J Cell Biochem Suppl. 2001, 36: 1-11.CrossRefPubMed Wurzer G, Mosgoeller W, Chabicovsky M, Cerni C, Wesierska-Gadek J: Nuclear Ras: unexpected subcellular distribution of oncogenic forms. J Cell Biochem Suppl. 2001, 36: 1-11.CrossRefPubMed
29.
go back to reference Mitra RS, Zhang Z, Henson BS, Kurnit DM, Carey TE, D'Silva NJ: Rap1A and rap1B ras-family proteins are prominently expressed in the nucleus of squamous carcinomas: nuclear translocation of GTP-bound active form. Oncogene. 2003, 22 (40): 6243-6256. 10.1038/sj.onc.1206534CrossRefPubMed Mitra RS, Zhang Z, Henson BS, Kurnit DM, Carey TE, D'Silva NJ: Rap1A and rap1B ras-family proteins are prominently expressed in the nucleus of squamous carcinomas: nuclear translocation of GTP-bound active form. Oncogene. 2003, 22 (40): 6243-6256. 10.1038/sj.onc.1206534CrossRefPubMed
30.
go back to reference Schechtman D, Mochly-Rosen D: Adaptor proteins in protein kinase C-mediated signal transduction. Oncogene. 2001, 20 (44): 6339-6347. 10.1038/sj.onc.1204778CrossRefPubMed Schechtman D, Mochly-Rosen D: Adaptor proteins in protein kinase C-mediated signal transduction. Oncogene. 2001, 20 (44): 6339-6347. 10.1038/sj.onc.1204778CrossRefPubMed
31.
go back to reference Okamura SM, Oki-Idouchi CE, Lorenzo PS: The exchange factor and diacylglycerol receptor RasGRP3 interacts with dynein light chain 1 through its C-terminal domain. J Biol Chem. 2006, 281 (47): 36132-36139. 10.1074/jbc.M605093200CrossRefPubMed Okamura SM, Oki-Idouchi CE, Lorenzo PS: The exchange factor and diacylglycerol receptor RasGRP3 interacts with dynein light chain 1 through its C-terminal domain. J Biol Chem. 2006, 281 (47): 36132-36139. 10.1074/jbc.M605093200CrossRefPubMed
32.
go back to reference Hirokawa N, Noda Y, Okada Y: Kinesin and dynein superfamily proteins in organelle transport and cell division. Curr Opin Cell Biol. 1998, 10 (1): 60-73. 10.1016/S0955-0674(98)80087-2CrossRefPubMed Hirokawa N, Noda Y, Okada Y: Kinesin and dynein superfamily proteins in organelle transport and cell division. Curr Opin Cell Biol. 1998, 10 (1): 60-73. 10.1016/S0955-0674(98)80087-2CrossRefPubMed
33.
go back to reference Lo KW, Kan HM, Chan LN, Xu WG, Wang KP, Wu Z, Sheng M, Zhang M: The 8-kDa dynein light chain binds to p53-binding protein 1 and mediates DNA damage-induced p53nuclear accumulation. J Biol Chem. 2005, 280 (9): 8172-8179. 10.1074/jbc.M411408200CrossRefPubMed Lo KW, Kan HM, Chan LN, Xu WG, Wang KP, Wu Z, Sheng M, Zhang M: The 8-kDa dynein light chain binds to p53-binding protein 1 and mediates DNA damage-induced p53nuclear accumulation. J Biol Chem. 2005, 280 (9): 8172-8179. 10.1074/jbc.M411408200CrossRefPubMed
34.
go back to reference Ninomiya K, Ishimoto T, Taguchi T: Subcellular localization of PMES-2 proteins regulated by their two cytoskeleton-associated domains. Cell Mol Neurobiol. 2005, 25 (5): 899-911. 10.1007/s10571-005-4955-5CrossRefPubMed Ninomiya K, Ishimoto T, Taguchi T: Subcellular localization of PMES-2 proteins regulated by their two cytoskeleton-associated domains. Cell Mol Neurobiol. 2005, 25 (5): 899-911. 10.1007/s10571-005-4955-5CrossRefPubMed
35.
go back to reference Rayala SK, den Hollander P, Balasenthil S, Yang Z, Broaddus RR, Kumar R: Functional regulation of oestrogen receptor pathway by the dynein light chain 1. EMBO Rep. 2005, 6 (6): 538-544. 10.1038/sj.embor.7400417PubMedCentralCrossRefPubMed Rayala SK, den Hollander P, Balasenthil S, Yang Z, Broaddus RR, Kumar R: Functional regulation of oestrogen receptor pathway by the dynein light chain 1. EMBO Rep. 2005, 6 (6): 538-544. 10.1038/sj.embor.7400417PubMedCentralCrossRefPubMed
36.
go back to reference Kaiser FJ, Tavassoli K, Van den Bemd GJ, Chang GT, Horsthemke B, Möröy T, Lüdecke HJ: Nuclear interaction of the dynein light chain LC8a with the TRPS1 transcription factor suppresses the transcriptional repression activity of TRPS1. Hum Mol Genet. 2003, 12 (11): 1349-1358. 10.1093/hmg/ddg145CrossRefPubMed Kaiser FJ, Tavassoli K, Van den Bemd GJ, Chang GT, Horsthemke B, Möröy T, Lüdecke HJ: Nuclear interaction of the dynein light chain LC8a with the TRPS1 transcription factor suppresses the transcriptional repression activity of TRPS1. Hum Mol Genet. 2003, 12 (11): 1349-1358. 10.1093/hmg/ddg145CrossRefPubMed
37.
go back to reference Vadlamudi RK, Bagheri-Yarmand R, Yang Z, Balasenthil S, Nguyen D, Sahin AA, den Hollander P, Kumar R: Dynein light chain 1, a p21-activated kinase 1-interacting substrate, promotes cancerous phenotypes. Cancer Cell. 2004, 5 (6): 575-585. 10.1016/j.ccr.2004.05.022CrossRefPubMed Vadlamudi RK, Bagheri-Yarmand R, Yang Z, Balasenthil S, Nguyen D, Sahin AA, den Hollander P, Kumar R: Dynein light chain 1, a p21-activated kinase 1-interacting substrate, promotes cancerous phenotypes. Cancer Cell. 2004, 5 (6): 575-585. 10.1016/j.ccr.2004.05.022CrossRefPubMed
38.
go back to reference Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME: Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997, 91 (2): 231-241. 10.1016/S0092-8674(00)80405-5CrossRefPubMed Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME: Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997, 91 (2): 231-241. 10.1016/S0092-8674(00)80405-5CrossRefPubMed
39.
go back to reference Yuan ZQ, Sun M, Feldman RI, Wang G, Ma X, Jiang C, Coppola D, Nicosia SV, Cheng JQ: Frequent activation of AKT2 and induction of apoptosis by inhibition of phosphoinositide-3-OH kinase/Akt pathway in human ovarian cancer. Oncogene. 2000, 19 (19): 2324-2330. 10.1038/sj.onc.1203598CrossRefPubMed Yuan ZQ, Sun M, Feldman RI, Wang G, Ma X, Jiang C, Coppola D, Nicosia SV, Cheng JQ: Frequent activation of AKT2 and induction of apoptosis by inhibition of phosphoinositide-3-OH kinase/Akt pathway in human ovarian cancer. Oncogene. 2000, 19 (19): 2324-2330. 10.1038/sj.onc.1203598CrossRefPubMed
40.
go back to reference Page C, Huang M, Jin X, Cho K, Lilja J, Reynolds RK, Lin J: Elevated phosphorylation of AKT and Stat3 in prostate, breast, and cervical cancer cells. Int J Oncol. 2000, 17 (1): 23-28.PubMed Page C, Huang M, Jin X, Cho K, Lilja J, Reynolds RK, Lin J: Elevated phosphorylation of AKT and Stat3 in prostate, breast, and cervical cancer cells. Int J Oncol. 2000, 17 (1): 23-28.PubMed
41.
go back to reference Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lønning PE, Børresen-Dale AL, Brown PO, Botstein D: Molecular portraits of human breast tumours. Nature. 2000, 406: 747-752. 10.1038/35021093CrossRefPubMed Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lønning PE, Børresen-Dale AL, Brown PO, Botstein D: Molecular portraits of human breast tumours. Nature. 2000, 406: 747-752. 10.1038/35021093CrossRefPubMed
42.
go back to reference Jacquemier J, Ginestier C, Rougemont J, Bardou VJ, Charafe-Jauffret E, Geneix J, Adélaïde J, Koki A, Houvenaeghel G, Hassoun J, Maraninchi D, Viens P, Birnbaum D, Bertucci F: Protein expression profiling identifies subclasses of breast cancer and predicts prognosis. Cancer Res. 2005, 65: 767-779.PubMed Jacquemier J, Ginestier C, Rougemont J, Bardou VJ, Charafe-Jauffret E, Geneix J, Adélaïde J, Koki A, Houvenaeghel G, Hassoun J, Maraninchi D, Viens P, Birnbaum D, Bertucci F: Protein expression profiling identifies subclasses of breast cancer and predicts prognosis. Cancer Res. 2005, 65: 767-779.PubMed
43.
go back to reference Badve S, Nakshatri H: Oestrogen-receptor-positive breast cancer: towards bridging histopathological and molecular classifications. J Clin Pathol. 2009, 62: 6-12. 10.1136/jcp.2008.059899CrossRefPubMed Badve S, Nakshatri H: Oestrogen-receptor-positive breast cancer: towards bridging histopathological and molecular classifications. J Clin Pathol. 2009, 62: 6-12. 10.1136/jcp.2008.059899CrossRefPubMed
44.
go back to reference Aiba Y, Oh-hora M, Kiyonaka S, Kimura Y, Hijikata A, Mori Y, Kurosaki T: Activation of RasGRP3 by phosphorylation of Thr-133 is required for B cell receptor-mediated Ras activation. Proc Natl Acad Sci U S A. 2004, 101: 16612-16617. 10.1073/pnas.0407468101PubMedCentralCrossRefPubMed Aiba Y, Oh-hora M, Kiyonaka S, Kimura Y, Hijikata A, Mori Y, Kurosaki T: Activation of RasGRP3 by phosphorylation of Thr-133 is required for B cell receptor-mediated Ras activation. Proc Natl Acad Sci U S A. 2004, 101: 16612-16617. 10.1073/pnas.0407468101PubMedCentralCrossRefPubMed
45.
go back to reference Zheng Y, Liu H, Coughlin J, Zheng J, Li L, Stone JC: Phosphorylation of RasGRP3 on threonine 133 provides a mechanistic link between PKC and RAS signaling systems in B cells. Blood. 2005, 105: 3648-3654. 10.1182/blood-2004-10-3916CrossRefPubMed Zheng Y, Liu H, Coughlin J, Zheng J, Li L, Stone JC: Phosphorylation of RasGRP3 on threonine 133 provides a mechanistic link between PKC and RAS signaling systems in B cells. Blood. 2005, 105: 3648-3654. 10.1182/blood-2004-10-3916CrossRefPubMed
46.
47.
go back to reference Papa V, Pezzino V, Costantino A, Belfiore A, Giuffrida D, Frittitta L, Vannelli GB, Brand R, Goldfine ID, Vigneri R: Elevated insulin receptor content in human breast cancer. J Clinl Inv. 1990, 86: 1503-1510. 10.1172/JCI114868.CrossRef Papa V, Pezzino V, Costantino A, Belfiore A, Giuffrida D, Frittitta L, Vannelli GB, Brand R, Goldfine ID, Vigneri R: Elevated insulin receptor content in human breast cancer. J Clinl Inv. 1990, 86: 1503-1510. 10.1172/JCI114868.CrossRef
48.
go back to reference Papa V, Gliozzo B, Clark GM, McGuire WL, Moore D, Fujita-Yamaguchi Y, Vigneri R, Goldfine ID, Pezzino V: Insulin-like growth factor-I receptors are overexpressed and predict a low risk in human breast cancer. Cancer Res. 1993, 53: 3736-3740.PubMed Papa V, Gliozzo B, Clark GM, McGuire WL, Moore D, Fujita-Yamaguchi Y, Vigneri R, Goldfine ID, Pezzino V: Insulin-like growth factor-I receptors are overexpressed and predict a low risk in human breast cancer. Cancer Res. 1993, 53: 3736-3740.PubMed
49.
go back to reference Milazzo G, Giorgino F, Damante G, Sung C, Stampfer MR, Vigneri R, Goldfine ID, Belfiore A: Insulin receptor expression and function in human breast cancer cell lines. Cancer Res. 1997, 52: 3924-3930. Milazzo G, Giorgino F, Damante G, Sung C, Stampfer MR, Vigneri R, Goldfine ID, Belfiore A: Insulin receptor expression and function in human breast cancer cell lines. Cancer Res. 1997, 52: 3924-3930.
50.
go back to reference Yee D: The insulin-like growth factors and breast cancer –revisited. Breast Cancer Res Treat. 1998, 47: 197-199. 10.1023/A:1005938615798CrossRefPubMed Yee D: The insulin-like growth factors and breast cancer –revisited. Breast Cancer Res Treat. 1998, 47: 197-199. 10.1023/A:1005938615798CrossRefPubMed
51.
go back to reference Karey KP, Sirbasku DA: Differential responsiveness of human breast cancer cell lines MCF-7 and T47D to growth factors and 17 beta-estradiol. Cancer Res. 1988, 48: 4083-4092.PubMed Karey KP, Sirbasku DA: Differential responsiveness of human breast cancer cell lines MCF-7 and T47D to growth factors and 17 beta-estradiol. Cancer Res. 1988, 48: 4083-4092.PubMed
52.
go back to reference Pekonen F, Partanen S, Makinen T, Rutanen EM: Receptors for epidermal growth factor and insulin-like growth factor I and their relation to steroid receptors in human breast cancer. Cancer Res. 1988, 48: 1343-1347.PubMed Pekonen F, Partanen S, Makinen T, Rutanen EM: Receptors for epidermal growth factor and insulin-like growth factor I and their relation to steroid receptors in human breast cancer. Cancer Res. 1988, 48: 1343-1347.PubMed
53.
go back to reference Dufourny B, Alblas J, van Teeffelen HA: Mitogenic signaling of insulin-like growth factor I in MCF-7 human breast cancer cells requires phosphatidylinositol 3-kinase and is independent of mitogen-activated protein kinase. J Biol Chem. 1997, 272: 31163-31171. 10.1074/jbc.272.49.31163CrossRefPubMed Dufourny B, Alblas J, van Teeffelen HA: Mitogenic signaling of insulin-like growth factor I in MCF-7 human breast cancer cells requires phosphatidylinositol 3-kinase and is independent of mitogen-activated protein kinase. J Biol Chem. 1997, 272: 31163-31171. 10.1074/jbc.272.49.31163CrossRefPubMed
54.
go back to reference Dunn SE, Ehrlich M, Sharp NJ: A dominant negative mutant of the insulin-like growth factor-I receptor inhibits the adhesion, invasion, and metastasis of breast cancer. Cancer Res. 1998, 58: 3353-3361.PubMed Dunn SE, Ehrlich M, Sharp NJ: A dominant negative mutant of the insulin-like growth factor-I receptor inhibits the adhesion, invasion, and metastasis of breast cancer. Cancer Res. 1998, 58: 3353-3361.PubMed
55.
go back to reference Gooch JL, Van Den Berg CL, Yee D: Insulin-like growth factor (IGF)-I rescues breast cancer cells from chemotherapy-induced cell death–proliferative and anti-apoptotic effects. Breast Cancer Res Treat. 1999, 56: 1-10.CrossRefPubMed Gooch JL, Van Den Berg CL, Yee D: Insulin-like growth factor (IGF)-I rescues breast cancer cells from chemotherapy-induced cell death–proliferative and anti-apoptotic effects. Breast Cancer Res Treat. 1999, 56: 1-10.CrossRefPubMed
56.
go back to reference Downward J: Targeting RAS, signaling pathways in cancer therapy. Nat Rev Cancer. 2003, 3: 11-22. 10.1038/nrc969CrossRefPubMed Downward J: Targeting RAS, signaling pathways in cancer therapy. Nat Rev Cancer. 2003, 3: 11-22. 10.1038/nrc969CrossRefPubMed
57.
go back to reference Roberts PJ, Der CJ: Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene. 2007, 26: 3291-3310.CrossRefPubMed Roberts PJ, Der CJ: Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene. 2007, 26: 3291-3310.CrossRefPubMed
58.
go back to reference Clarke R, Leonessa F, Welch JN, Skaar TC: Cellular and moleculat pharmacology of antiestrogen action and resistance. Pharmacol Rev. 2001, 53: 25-71.PubMed Clarke R, Leonessa F, Welch JN, Skaar TC: Cellular and moleculat pharmacology of antiestrogen action and resistance. Pharmacol Rev. 2001, 53: 25-71.PubMed
59.
go back to reference Ali S, Coombes RC: Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev. 2002, 2: 101-112. 10.1038/nrc721.CrossRef Ali S, Coombes RC: Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev. 2002, 2: 101-112. 10.1038/nrc721.CrossRef
60.
go back to reference Jensen E, Jordan V: The estrogen receptor: a model for molecular medicine. Clin Cancer Res. 2003, 9: 1980-1989.PubMed Jensen E, Jordan V: The estrogen receptor: a model for molecular medicine. Clin Cancer Res. 2003, 9: 1980-1989.PubMed
61.
go back to reference Musgove EA, Sutherland RL: Biological determinants of endocrine resistance in breast cancer. Nat Rev. 2009, 9: 631-643. 10.1038/nrc2713.CrossRef Musgove EA, Sutherland RL: Biological determinants of endocrine resistance in breast cancer. Nat Rev. 2009, 9: 631-643. 10.1038/nrc2713.CrossRef
62.
go back to reference Schiff R, Massarweh S, Shou J, Bharwani L, Mohsin S, Osborne C: Cross-talk between estrogen receptor and growth factor pathways as a molecular target for overcoming endocrine resistance. Clin Cancer Res. 2004, 10: 331S-336S. 10.1158/1078-0432.CCR-031212CrossRefPubMed Schiff R, Massarweh S, Shou J, Bharwani L, Mohsin S, Osborne C: Cross-talk between estrogen receptor and growth factor pathways as a molecular target for overcoming endocrine resistance. Clin Cancer Res. 2004, 10: 331S-336S. 10.1158/1078-0432.CCR-031212CrossRefPubMed
63.
go back to reference Shou J, Massarweh S, Osborne CK, Wakeling AE, Ali S, Weiss H, Schiff R: Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst. 2004, 96: 926-935. 10.1093/jnci/djh166CrossRefPubMed Shou J, Massarweh S, Osborne CK, Wakeling AE, Ali S, Weiss H, Schiff R: Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst. 2004, 96: 926-935. 10.1093/jnci/djh166CrossRefPubMed
64.
go back to reference Arpino G, Wiechmann L, Osborne CK, Schiff R: Crosstalk between the estrogen receptor and the HER tyrosine kinase receptor family: molecular mechanism and clinical implications for endocrine therapy resistance. Endocr Rev. 2008, 29: 217-233. 10.1210/er.2006-0045PubMedCentralCrossRefPubMed Arpino G, Wiechmann L, Osborne CK, Schiff R: Crosstalk between the estrogen receptor and the HER tyrosine kinase receptor family: molecular mechanism and clinical implications for endocrine therapy resistance. Endocr Rev. 2008, 29: 217-233. 10.1210/er.2006-0045PubMedCentralCrossRefPubMed
65.
go back to reference Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H, Masushige S, Gotoh Y, Nishida E, Kawashima H, Metzger D, Chambon P: Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science. 1995, 270: 1491-1494. 10.1126/science.270.5241.1491CrossRefPubMed Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H, Masushige S, Gotoh Y, Nishida E, Kawashima H, Metzger D, Chambon P: Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science. 1995, 270: 1491-1494. 10.1126/science.270.5241.1491CrossRefPubMed
66.
go back to reference Kok M, Holm-Wigerup C, Hauptmann M, Michalides R, Stål O, Linn S, Landberg G: Estrogen receptor-alpha phosphorylation at serine-118 and tamoxifen response in breast cancer. J Natl Cancer Inst. 2009, 101: 1725-1729. 10.1093/jnci/djp412CrossRefPubMed Kok M, Holm-Wigerup C, Hauptmann M, Michalides R, Stål O, Linn S, Landberg G: Estrogen receptor-alpha phosphorylation at serine-118 and tamoxifen response in breast cancer. J Natl Cancer Inst. 2009, 101: 1725-1729. 10.1093/jnci/djp412CrossRefPubMed
67.
go back to reference Wright C, Nicholson S, Angus B, Sainsbury JR, Farndon J, Cairns J, Harris AL, Horne CH: Relationship betwwen c-erbB-2 protein product expression and response to endocrine therapy in advanced breast cancer. Br J Cancer. 1992, 65: 118-121. 10.1038/bjc.1992.22PubMedCentralCrossRefPubMed Wright C, Nicholson S, Angus B, Sainsbury JR, Farndon J, Cairns J, Harris AL, Horne CH: Relationship betwwen c-erbB-2 protein product expression and response to endocrine therapy in advanced breast cancer. Br J Cancer. 1992, 65: 118-121. 10.1038/bjc.1992.22PubMedCentralCrossRefPubMed
68.
go back to reference Pietras RJ, Arboleda J, Reese DM, Wongvipat N, Pegram MD, Ramos L, Gorman CM, Parker MG, Sliwkowski MX, Slamon DJ: HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone independent growth in human breast cancer cells. Oncogene. 1995, 10: 2435-2446.PubMed Pietras RJ, Arboleda J, Reese DM, Wongvipat N, Pegram MD, Ramos L, Gorman CM, Parker MG, Sliwkowski MX, Slamon DJ: HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone independent growth in human breast cancer cells. Oncogene. 1995, 10: 2435-2446.PubMed
69.
go back to reference Knowlden JM, Hutcheson IR, Jones HE, Madden T, Gee JM, Harper ME, Barrow D, Wakeling AE, Nicholson RI: Elevated levels of epidermal growth factor receptor/c-erbB2 heterodimers mediate an autocrine growth regulatory pathway in tamoxifen-resistant MCF-7 cells. Endocrinology. 2003, 144: 1032-1044. 10.1210/en.2002-220620CrossRefPubMed Knowlden JM, Hutcheson IR, Jones HE, Madden T, Gee JM, Harper ME, Barrow D, Wakeling AE, Nicholson RI: Elevated levels of epidermal growth factor receptor/c-erbB2 heterodimers mediate an autocrine growth regulatory pathway in tamoxifen-resistant MCF-7 cells. Endocrinology. 2003, 144: 1032-1044. 10.1210/en.2002-220620CrossRefPubMed
70.
go back to reference Lu Y, Zi X, Zhao Y, Mascarenhas D, Pollak M: Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J Natl Cancer Inst. 2001, 93 (24): 1852-1857. 10.1093/jnci/93.24.1852CrossRefPubMed Lu Y, Zi X, Zhao Y, Mascarenhas D, Pollak M: Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J Natl Cancer Inst. 2001, 93 (24): 1852-1857. 10.1093/jnci/93.24.1852CrossRefPubMed
71.
go back to reference Jerome L, Alami N, Belanger S, Page V, Yu Q, Paterson J, Shiry L, Pegram M, Leyland-Jones B: Recombinant human insulin-like growth factor binding protein 3 inhibits growth of human epidermal growth factor receptor-2–overexpressing breast tumors and potentiates Herceptin activity in vivo. J Natl Cancer Inst. 2001, 93 (24): 1852-1857. 10.1093/jnci/93.24.1852CrossRef Jerome L, Alami N, Belanger S, Page V, Yu Q, Paterson J, Shiry L, Pegram M, Leyland-Jones B: Recombinant human insulin-like growth factor binding protein 3 inhibits growth of human epidermal growth factor receptor-2–overexpressing breast tumors and potentiates Herceptin activity in vivo. J Natl Cancer Inst. 2001, 93 (24): 1852-1857. 10.1093/jnci/93.24.1852CrossRef
72.
go back to reference Bodó E, Bíró T, Telek A, Czifra G, Griger Z, Tóth BI, Mescalchin A, Ito T, Bettermann A, Kovács L, Paus R: A hot new twist to hair biology: involvement of vanilloid receptor-1 (VR1/TRPV1) signaling in human hair growth control. Am J Pathol. 2005, 166: 985-998. 10.1016/S0002-9440(10)62320-6PubMedCentralCrossRefPubMed Bodó E, Bíró T, Telek A, Czifra G, Griger Z, Tóth BI, Mescalchin A, Ito T, Bettermann A, Kovács L, Paus R: A hot new twist to hair biology: involvement of vanilloid receptor-1 (VR1/TRPV1) signaling in human hair growth control. Am J Pathol. 2005, 166: 985-998. 10.1016/S0002-9440(10)62320-6PubMedCentralCrossRefPubMed
73.
go back to reference Ramot Y, Bíró T, Tiede S, Tóth BI, Langan EA, Sugawara K, Foitzik K, Ingber A, Goffin V, Langbein L, Paus R: Prolactin-a novel neuroendocrine regulator of human keratin expression in situ. FASEB J. 2010, 24: 1768-1779. 10.1096/fj.09-146415CrossRefPubMed Ramot Y, Bíró T, Tiede S, Tóth BI, Langan EA, Sugawara K, Foitzik K, Ingber A, Goffin V, Langbein L, Paus R: Prolactin-a novel neuroendocrine regulator of human keratin expression in situ. FASEB J. 2010, 24: 1768-1779. 10.1096/fj.09-146415CrossRefPubMed
Metadata
Title
Function of RasGRP3 in the formation and progression of human breast cancer
Authors
Zsuzsanna Nagy
Ilona Kovács
Miklós Török
Dezső Tóth
György Vereb
Krisztina Buzás
István Juhász
Peter M Blumberg
Tamás Bíró
Gabriella Czifra
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2014
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-13-96

Other articles of this Issue 1/2014

Molecular Cancer 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine