Skip to main content
Top
Published in: Molecular Cancer 1/2014

Open Access 01-12-2014 | Research

The DEK oncoprotein binds to highly and ubiquitously expressed genes with a dual role in their transcriptional regulation

Authors: Carl Sandén, Linnea Järvstråt, Andreas Lennartsson, Per Ludvik Brattås, Björn Nilsson, Urban Gullberg

Published in: Molecular Cancer | Issue 1/2014

Login to get access

Abstract

Background

The DEK gene is highly expressed in a wide range of cancer cells, and a recurrent translocation partner in acute myeloid leukemia. While DEK has been identified as one of the most abundant proteins in human chromatin, its function and binding properties are not fully understood.

Methods

We performed ChIP-seq analysis in the myeloid cell line U937 and coupled it with epigenetic and gene expression analysis to explore the genome-wide binding pattern of DEK and its role in gene regulation.

Results

We show that DEK preferentially binds to open chromatin, with a low degree of DNA methylation and scarce in the heterochromatin marker H3K9me3 but rich in the euchromatin marks H3K4me2/3, H3K27ac and H3K9ac. More specifically, DEK binding is predominantly located at the transcription start sites of highly transcribed genes and a comparative analysis with previously established transcription factor binding patterns shows a similarity with that of RNA polymerase II. Further bioinformatic analysis demonstrates that DEK mainly binds to genes that are ubiquitously expressed across tissues. The functional significance of DEK binding was demonstrated by knockdown of DEK by shRNA, resulting in both significant upregulation and downregulation of DEK-bound genes.

Conclusions

We find that DEK binds to transcription start sites with a dual role in activation and repression of highly and ubiquitously expressed genes.
Appendix
Available only for authorised users
Literature
1.
go back to reference Carro MS, Spiga FM, Quarto M, Di Ninni V, Volorio S, Alcalay M, Muller H: DEK Expression is controlled by E2F and deregulated in diverse tumor types. Cell Cycle. 2006, 5: 1202-1207. 10.4161/cc.5.11.2801CrossRefPubMed Carro MS, Spiga FM, Quarto M, Di Ninni V, Volorio S, Alcalay M, Muller H: DEK Expression is controlled by E2F and deregulated in diverse tumor types. Cell Cycle. 2006, 5: 1202-1207. 10.4161/cc.5.11.2801CrossRefPubMed
2.
go back to reference Khodadoust MS, Verhaegen M, Kappes F, Riveiro-Falkenbach E, Cigudosa JC, Kim DS, Chinnaiyan AM, Markovitz DM, Soengas MS: Melanoma proliferation and chemoresistance controlled by the DEK oncogene. Cancer Res. 2009, 69: 6405-6413. 10.1158/0008-5472.CAN-09-1063PubMedCentralCrossRefPubMed Khodadoust MS, Verhaegen M, Kappes F, Riveiro-Falkenbach E, Cigudosa JC, Kim DS, Chinnaiyan AM, Markovitz DM, Soengas MS: Melanoma proliferation and chemoresistance controlled by the DEK oncogene. Cancer Res. 2009, 69: 6405-6413. 10.1158/0008-5472.CAN-09-1063PubMedCentralCrossRefPubMed
3.
go back to reference Larramendy ML, Niini T, Elonen E, Nagy B, Ollila J, Vihinen M, Knuutila S: Overexpression of translocation-associated fusion genes of FGFRI, MYC, NPMI, and DEK, but absence of the translocations in acute myeloid leukemia. A microarray analysis. Haematologica. 2002, 87: 569-577.PubMed Larramendy ML, Niini T, Elonen E, Nagy B, Ollila J, Vihinen M, Knuutila S: Overexpression of translocation-associated fusion genes of FGFRI, MYC, NPMI, and DEK, but absence of the translocations in acute myeloid leukemia. A microarray analysis. Haematologica. 2002, 87: 569-577.PubMed
4.
go back to reference Han S, Xuan Y, Liu S, Zhang M, Jin D, Jin R, Lin Z: Clinicopathological significance of DEK overexpression in serous ovarian tumors. Pathol Int. 2009, 59: 443-447. 10.1111/j.1440-1827.2009.02392.xCrossRefPubMed Han S, Xuan Y, Liu S, Zhang M, Jin D, Jin R, Lin Z: Clinicopathological significance of DEK overexpression in serous ovarian tumors. Pathol Int. 2009, 59: 443-447. 10.1111/j.1440-1827.2009.02392.xCrossRefPubMed
5.
go back to reference Kappes F, Khodadoust MS, Yu L, Kim DS, Fullen DR, Markovitz DM, Ma L: DEK expression in melanocytic lesions. Hum Pathol. 2011, 42: 932-938. 10.1016/j.humpath.2010.10.022PubMedCentralCrossRefPubMed Kappes F, Khodadoust MS, Yu L, Kim DS, Fullen DR, Markovitz DM, Ma L: DEK expression in melanocytic lesions. Hum Pathol. 2011, 42: 932-938. 10.1016/j.humpath.2010.10.022PubMedCentralCrossRefPubMed
6.
go back to reference Shibata T, Kokubu A, Miyamoto M, Hosoda F, Gotoh M, Tsuta K, Asamura H, Matsuno Y, Kondo T, Imoto I, Inazawa J, Hirohashi S: DEK oncoprotein regulates transcriptional modifiers and sustains tumor initiation activity in high-grade neuroendocrine carcinoma of the lung. Oncogene. 2010, 29: 4671-4681. 10.1038/onc.2010.217CrossRefPubMed Shibata T, Kokubu A, Miyamoto M, Hosoda F, Gotoh M, Tsuta K, Asamura H, Matsuno Y, Kondo T, Imoto I, Inazawa J, Hirohashi S: DEK oncoprotein regulates transcriptional modifiers and sustains tumor initiation activity in high-grade neuroendocrine carcinoma of the lung. Oncogene. 2010, 29: 4671-4681. 10.1038/onc.2010.217CrossRefPubMed
7.
go back to reference Orlic M, Spencer CE, Wang L, Gallie BL: Expression analysis of 6p22 genomic gain in retinoblastoma. Gene Chromosome Canc. 2006, 45: 72-82. 10.1002/gcc.20263.CrossRef Orlic M, Spencer CE, Wang L, Gallie BL: Expression analysis of 6p22 genomic gain in retinoblastoma. Gene Chromosome Canc. 2006, 45: 72-82. 10.1002/gcc.20263.CrossRef
8.
go back to reference Sitwala KV, Adams K, Markovitz DM: YY1 and NF-Y binding sites regulate the transcriptional activity of the dek and dek-can promoter. Oncogene. 2002, 21: 8862-8870. 10.1038/sj.onc.1206041CrossRefPubMed Sitwala KV, Adams K, Markovitz DM: YY1 and NF-Y binding sites regulate the transcriptional activity of the dek and dek-can promoter. Oncogene. 2002, 21: 8862-8870. 10.1038/sj.onc.1206041CrossRefPubMed
9.
go back to reference Privette Vinnedge LM, Ho SM, Wikenheiser-Brokamp KA, Wells SI: The DEK oncogene is a target of steroid hormone receptor signaling in breast cancer. PLoS One. 2012, 7: e46985- 10.1371/journal.pone.0046985PubMedCentralCrossRefPubMed Privette Vinnedge LM, Ho SM, Wikenheiser-Brokamp KA, Wells SI: The DEK oncogene is a target of steroid hormone receptor signaling in breast cancer. PLoS One. 2012, 7: e46985- 10.1371/journal.pone.0046985PubMedCentralCrossRefPubMed
10.
go back to reference Oancea C, Ruster B, Henschler R, Puccetti E, Ruthardt M: The t(6;9) associated DEK/CAN fusion protein targets a population of long-term repopulating hematopoietic stem cells for leukemogenic transformation. Leukemia. 2010, 10: 1910-1919.CrossRef Oancea C, Ruster B, Henschler R, Puccetti E, Ruthardt M: The t(6;9) associated DEK/CAN fusion protein targets a population of long-term repopulating hematopoietic stem cells for leukemogenic transformation. Leukemia. 2010, 10: 1910-1919.CrossRef
11.
go back to reference Sanden C, Ageberg M, Petersson J, Lennartsson A, Gullberg U: Forced expression of the DEK-NUP214 fusion protein promotes proliferation dependent on upregulation of mTOR. BMC Cancer. 2013, 13: 440- 10.1186/1471-2407-13-440PubMedCentralCrossRefPubMed Sanden C, Ageberg M, Petersson J, Lennartsson A, Gullberg U: Forced expression of the DEK-NUP214 fusion protein promotes proliferation dependent on upregulation of mTOR. BMC Cancer. 2013, 13: 440- 10.1186/1471-2407-13-440PubMedCentralCrossRefPubMed
12.
go back to reference Privette Vinnedge LM, McClaine R, Wagh PK, Wikenheiser-Brokamp KA, Waltz SE, Wells SI: The human DEK oncogene stimulates beta-catenin signaling, invasion and mammosphere formation in breast cancer. Oncogene. 2011, 30: 2741-2752. 10.1038/onc.2011.2PubMedCentralCrossRefPubMed Privette Vinnedge LM, McClaine R, Wagh PK, Wikenheiser-Brokamp KA, Waltz SE, Wells SI: The human DEK oncogene stimulates beta-catenin signaling, invasion and mammosphere formation in breast cancer. Oncogene. 2011, 30: 2741-2752. 10.1038/onc.2011.2PubMedCentralCrossRefPubMed
13.
go back to reference Riveiro-Falkenbach E, Soengas MS: Control of tumorigenesis and chemoresistance by the DEK oncogene. Clin Cancer Res. 2010, 16: 2932-2938. 10.1158/1078-0432.CCR-09-2330PubMedCentralCrossRefPubMed Riveiro-Falkenbach E, Soengas MS: Control of tumorigenesis and chemoresistance by the DEK oncogene. Clin Cancer Res. 2010, 16: 2932-2938. 10.1158/1078-0432.CCR-09-2330PubMedCentralCrossRefPubMed
14.
go back to reference Wise-Draper TM, Allen HV, Thobe MN, Jones EE, Habash KB, Munger K, Wells SI: The human DEK proto-oncogene is a senescence inhibitor and an upregulated target of high-risk human papillomavirus E7. J Virol. 2005, 79: 14309-14317. 10.1128/JVI.79.22.14309-14317.2005PubMedCentralCrossRefPubMed Wise-Draper TM, Allen HV, Thobe MN, Jones EE, Habash KB, Munger K, Wells SI: The human DEK proto-oncogene is a senescence inhibitor and an upregulated target of high-risk human papillomavirus E7. J Virol. 2005, 79: 14309-14317. 10.1128/JVI.79.22.14309-14317.2005PubMedCentralCrossRefPubMed
15.
go back to reference Ageberg M, Gullberg U, Lindmark A: The involvement of cellular proliferation status in the expression of the human proto-oncogene DEK. Haematologica. 2006, 91: 268-269.PubMed Ageberg M, Gullberg U, Lindmark A: The involvement of cellular proliferation status in the expression of the human proto-oncogene DEK. Haematologica. 2006, 91: 268-269.PubMed
16.
go back to reference Wise-Draper TM, Morreale RJ, Morris TA, Mintz-Cole RA, Hoskins EE, Balsitis SJ, Husseinzadeh N, Witte DP, Wikenheiser-Brokamp KA, Lambert PF, Wells SI: DEK proto-oncogene expression interferes with the normal epithelial differentiation program. Am J Pathol. 2009, 174: 71-81. 10.2353/ajpath.2009.080330PubMedCentralCrossRefPubMed Wise-Draper TM, Morreale RJ, Morris TA, Mintz-Cole RA, Hoskins EE, Balsitis SJ, Husseinzadeh N, Witte DP, Wikenheiser-Brokamp KA, Lambert PF, Wells SI: DEK proto-oncogene expression interferes with the normal epithelial differentiation program. Am J Pathol. 2009, 174: 71-81. 10.2353/ajpath.2009.080330PubMedCentralCrossRefPubMed
17.
go back to reference Wise-Draper TM, Allen HV, Jones EE, Habash KB, Matsuo H, Wells SI: Apoptosis inhibition by the human DEK oncoprotein involves interference with p53 functions. Mol Cell Biol. 2006, 26: 7506-7519. 10.1128/MCB.00430-06PubMedCentralCrossRefPubMed Wise-Draper TM, Allen HV, Jones EE, Habash KB, Matsuo H, Wells SI: Apoptosis inhibition by the human DEK oncoprotein involves interference with p53 functions. Mol Cell Biol. 2006, 26: 7506-7519. 10.1128/MCB.00430-06PubMedCentralCrossRefPubMed
18.
go back to reference Kappes F, Fahrer J, Khodadoust MS, Tabbert A, Strasser C, Mor-Vaknin N, Moreno-Villanueva M, Burkle A, Markovitz DM, Ferrando-May E: DEK is a poly(ADP-ribose) acceptor in apoptosis and mediates resistance to genotoxic stress. Mol Cell Biol. 2008, 28: 3245-3257. 10.1128/MCB.01921-07PubMedCentralCrossRefPubMed Kappes F, Fahrer J, Khodadoust MS, Tabbert A, Strasser C, Mor-Vaknin N, Moreno-Villanueva M, Burkle A, Markovitz DM, Ferrando-May E: DEK is a poly(ADP-ribose) acceptor in apoptosis and mediates resistance to genotoxic stress. Mol Cell Biol. 2008, 28: 3245-3257. 10.1128/MCB.01921-07PubMedCentralCrossRefPubMed
19.
go back to reference Wise-Draper TM, Mintz-Cole RA, Morris TA, Simpson DS, Wikenheiser-Brokamp KA, Currier MA, Cripe TP, Grosveld GC, Wells SI: Overexpression of the cellular DEK protein promotes epithelial transformation in vitro and in vivo. Cancer Res. 2009, 69: 1792-1799. 10.1158/0008-5472.CAN-08-2304PubMedCentralCrossRefPubMed Wise-Draper TM, Mintz-Cole RA, Morris TA, Simpson DS, Wikenheiser-Brokamp KA, Currier MA, Cripe TP, Grosveld GC, Wells SI: Overexpression of the cellular DEK protein promotes epithelial transformation in vitro and in vivo. Cancer Res. 2009, 69: 1792-1799. 10.1158/0008-5472.CAN-08-2304PubMedCentralCrossRefPubMed
20.
go back to reference Sawatsubashi S, Murata T, Lim J, Fujiki R, Ito S, Suzuki E, Tanabe M, Zhao Y, Kimura S, Fujiyama S, Ueda T, Umetsu D, Ito T, Takeyama K, Kato S: A histone chaperone, DEK, transcriptionally coactivates a nuclear receptor. Genes Dev. 2010, 24: 159-170. 10.1101/gad.1857410PubMedCentralCrossRefPubMed Sawatsubashi S, Murata T, Lim J, Fujiki R, Ito S, Suzuki E, Tanabe M, Zhao Y, Kimura S, Fujiyama S, Ueda T, Umetsu D, Ito T, Takeyama K, Kato S: A histone chaperone, DEK, transcriptionally coactivates a nuclear receptor. Genes Dev. 2010, 24: 159-170. 10.1101/gad.1857410PubMedCentralCrossRefPubMed
21.
go back to reference Waldmann T, Eckerich C, Baack M, Gruss C: The ubiquitous chromatin protein DEK alters the structure of DNA by introducing positive supercoils. J Biol Chem. 2002, 277: 24988-24994. 10.1074/jbc.M204045200CrossRefPubMed Waldmann T, Eckerich C, Baack M, Gruss C: The ubiquitous chromatin protein DEK alters the structure of DNA by introducing positive supercoils. J Biol Chem. 2002, 277: 24988-24994. 10.1074/jbc.M204045200CrossRefPubMed
22.
go back to reference Kappes F, Waldmann T, Mathew V, Yu J, Zhang L, Khodadoust MS, Chinnaiyan AM, Luger K, Erhardt S, Schneider R, Markovitz DM: The DEK oncoprotein is a Su(var) that is essential to heterochromatin integrity. Genes Dev. 2011, 25: 673-678. 10.1101/gad.2036411PubMedCentralCrossRefPubMed Kappes F, Waldmann T, Mathew V, Yu J, Zhang L, Khodadoust MS, Chinnaiyan AM, Luger K, Erhardt S, Schneider R, Markovitz DM: The DEK oncoprotein is a Su(var) that is essential to heterochromatin integrity. Genes Dev. 2011, 25: 673-678. 10.1101/gad.2036411PubMedCentralCrossRefPubMed
23.
go back to reference Ko SI, Lee IS, Kim JY, Kim SM, Kim DW, Lee KS, Woo KM, Baek JH, Choo JK, Seo SB: Regulation of histone acetyltransferase activity of p300 and PCAF by proto-oncogene protein DEK. FEBS Lett. 2006, 580: 3217-3222. 10.1016/j.febslet.2006.04.081CrossRefPubMed Ko SI, Lee IS, Kim JY, Kim SM, Kim DW, Lee KS, Woo KM, Baek JH, Choo JK, Seo SB: Regulation of histone acetyltransferase activity of p300 and PCAF by proto-oncogene protein DEK. FEBS Lett. 2006, 580: 3217-3222. 10.1016/j.febslet.2006.04.081CrossRefPubMed
24.
go back to reference Hu HG, Scholten I, Gruss C, Knippers R: The distribution of the DEK protein in mammalian chromatin. Biochem Biophys Res Commun. 2007, 358: 1008-1014. 10.1016/j.bbrc.2007.05.019CrossRefPubMed Hu HG, Scholten I, Gruss C, Knippers R: The distribution of the DEK protein in mammalian chromatin. Biochem Biophys Res Commun. 2007, 358: 1008-1014. 10.1016/j.bbrc.2007.05.019CrossRefPubMed
25.
go back to reference Gamble MJ, Fisher RP: SET and PARP1 remove DEK from chromatin to permit access by the transcription machinery. Nat Struct Mol Biol. 2007, 14: 548-555. 10.1038/nsmb1248CrossRefPubMed Gamble MJ, Fisher RP: SET and PARP1 remove DEK from chromatin to permit access by the transcription machinery. Nat Struct Mol Biol. 2007, 14: 548-555. 10.1038/nsmb1248CrossRefPubMed
26.
go back to reference Hollenbach AD, McPherson CJ, Mientjes EJ, Iyengar R, Grosveld G: Daxx and histone deacetylase II associate with chromatin through an interaction with core histones and the chromatin-associated protein Dek. J Cell Sci. 2002, 115: 3319-3330.PubMed Hollenbach AD, McPherson CJ, Mientjes EJ, Iyengar R, Grosveld G: Daxx and histone deacetylase II associate with chromatin through an interaction with core histones and the chromatin-associated protein Dek. J Cell Sci. 2002, 115: 3319-3330.PubMed
27.
go back to reference Sammons M, Wan SS, Vogel NL, Mientjes EJ, Grosveld G, Ashburner BP: Negative regulation of the RelA/p65 transactivation function by the product of the DEK proto-oncogene. J Biol Chem. 2006, 281: 26802-26812. 10.1074/jbc.M600915200CrossRefPubMed Sammons M, Wan SS, Vogel NL, Mientjes EJ, Grosveld G, Ashburner BP: Negative regulation of the RelA/p65 transactivation function by the product of the DEK proto-oncogene. J Biol Chem. 2006, 281: 26802-26812. 10.1074/jbc.M600915200CrossRefPubMed
28.
go back to reference Campillos M, Garcia MA, Valdivieso F, Vazquez J: Transcriptional activation by AP-2alpha is modulated by the oncogene DEK. Nucleic Acids Res. 2003, 31: 1571-1575. 10.1093/nar/gkg247PubMedCentralCrossRefPubMed Campillos M, Garcia MA, Valdivieso F, Vazquez J: Transcriptional activation by AP-2alpha is modulated by the oncogene DEK. Nucleic Acids Res. 2003, 31: 1571-1575. 10.1093/nar/gkg247PubMedCentralCrossRefPubMed
29.
go back to reference Hu HG, Illges H, Gruss C, Knippers R: Distribution of the chromatin protein DEK distinguishes active and inactive CD21/CR2 gene in pre- and mature B lymphocytes. Int Immunol. 2005, 17: 789-796. 10.1093/intimm/dxh261CrossRefPubMed Hu HG, Illges H, Gruss C, Knippers R: Distribution of the chromatin protein DEK distinguishes active and inactive CD21/CR2 gene in pre- and mature B lymphocytes. Int Immunol. 2005, 17: 789-796. 10.1093/intimm/dxh261CrossRefPubMed
30.
go back to reference Koleva RI, Ficarro SB, Radomska HS, Carrasco-Alfonso MJ, Alberta JA, Webber JT, Luckey CJ, Marcucci G, Tenen DG, Marto JA: C/EBPalpha and DEK coordinately regulate myeloid differentiation. Blood. 2012, 119: 4878-4888. 10.1182/blood-2011-10-383083PubMedCentralCrossRefPubMed Koleva RI, Ficarro SB, Radomska HS, Carrasco-Alfonso MJ, Alberta JA, Webber JT, Luckey CJ, Marcucci G, Tenen DG, Marto JA: C/EBPalpha and DEK coordinately regulate myeloid differentiation. Blood. 2012, 119: 4878-4888. 10.1182/blood-2011-10-383083PubMedCentralCrossRefPubMed
31.
go back to reference Soares LM, Zanier K, Mackereth C, Sattler M, Valcarcel J: Intron removal requires proofreading of U2AF/3′ splice site recognition by DEK. Science. 2006, 312: 1961-1965. 10.1126/science.1128659CrossRefPubMed Soares LM, Zanier K, Mackereth C, Sattler M, Valcarcel J: Intron removal requires proofreading of U2AF/3′ splice site recognition by DEK. Science. 2006, 312: 1961-1965. 10.1126/science.1128659CrossRefPubMed
32.
go back to reference Forrest AR, Kawaji H, Rehli M, Baillie JK, de Hoon MJ, Lassmann T, Itoh M, Summers KM, Suzuki H, Daub CO, Kawai J, Heutink P, Hide W, Freeman TC, Lenhard B, Bajic VB, Taylor MS, Makeev VJ, Sandelin A, Hume DA, Carninci P, Hayashizaki Y, : A promoter-level mammalian expression atlas. Nature. 2014, 507: 462-470. 10.1038/nature13182CrossRefPubMed Forrest AR, Kawaji H, Rehli M, Baillie JK, de Hoon MJ, Lassmann T, Itoh M, Summers KM, Suzuki H, Daub CO, Kawai J, Heutink P, Hide W, Freeman TC, Lenhard B, Bajic VB, Taylor MS, Makeev VJ, Sandelin A, Hume DA, Carninci P, Hayashizaki Y, : A promoter-level mammalian expression atlas. Nature. 2014, 507: 462-470. 10.1038/nature13182CrossRefPubMed
33.
go back to reference Allan RS, Zueva E, Cammas F, Schreiber HA, Masson V, Belz GT, Roche D, Maison C, Quivy JP, Almouzni G, Amigorena S: An epigenetic silencing pathway controlling T helper 2 cell lineage commitment. Nature. 2012, 487: 249-253. 10.1038/nature11173CrossRefPubMed Allan RS, Zueva E, Cammas F, Schreiber HA, Masson V, Belz GT, Roche D, Maison C, Quivy JP, Almouzni G, Amigorena S: An epigenetic silencing pathway controlling T helper 2 cell lineage commitment. Nature. 2012, 487: 249-253. 10.1038/nature11173CrossRefPubMed
34.
go back to reference Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, Hanna J, Lodato MA, Frampton GM, Sharp PA, Boyer LA, Young RA, Jaenisch R: Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A. 2010, 107: 21931-21936. 10.1073/pnas.1016071107PubMedCentralCrossRefPubMed Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, Hanna J, Lodato MA, Frampton GM, Sharp PA, Boyer LA, Young RA, Jaenisch R: Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A. 2010, 107: 21931-21936. 10.1073/pnas.1016071107PubMedCentralCrossRefPubMed
35.
go back to reference Pekowska A, Benoukraf T, Ferrier P, Spicuglia S: A unique H3K4me2 profile marks tissue-specific gene regulation. Genome Res. 2010, 20: 1493-1502. 10.1101/gr.109389.110PubMedCentralCrossRefPubMed Pekowska A, Benoukraf T, Ferrier P, Spicuglia S: A unique H3K4me2 profile marks tissue-specific gene regulation. Genome Res. 2010, 20: 1493-1502. 10.1101/gr.109389.110PubMedCentralCrossRefPubMed
36.
go back to reference Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE, Emre NC, Schreiber SL, Mellor J, Kouzarides T: Active genes are tri-methylated at K4 of histone H3. Nature. 2002, 419: 407-411. 10.1038/nature01080CrossRefPubMed Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE, Emre NC, Schreiber SL, Mellor J, Kouzarides T: Active genes are tri-methylated at K4 of histone H3. Nature. 2002, 419: 407-411. 10.1038/nature01080CrossRefPubMed
37.
go back to reference Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K: High-resolution profiling of histone methylations in the human genome. Cell. 2007, 129: 823-837. 10.1016/j.cell.2007.05.009CrossRefPubMed Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K: High-resolution profiling of histone methylations in the human genome. Cell. 2007, 129: 823-837. 10.1016/j.cell.2007.05.009CrossRefPubMed
38.
go back to reference Privette Vinnedge LM, Kappes F, Nassar N, Wells SI: Stacking the DEK: from chromatin topology to cancer stem cells. Cell Cycle. 2013, 12: 51-66. 10.4161/cc.23121PubMedCentralCrossRefPubMed Privette Vinnedge LM, Kappes F, Nassar N, Wells SI: Stacking the DEK: from chromatin topology to cancer stem cells. Cell Cycle. 2013, 12: 51-66. 10.4161/cc.23121PubMedCentralCrossRefPubMed
39.
go back to reference Kohlmann A, Kipps TJ, Rassenti LZ, Downing JR, Shurtleff SA, Mills KI, Gilkes AF, Hofmann WK, Basso G, Dell’orto MC, Foa R, Chiaretti S, De Vos J, Rauhut S, Papenhausen PR, Hernandez JM, Lumbreras E, Yeoh AE, Koay ES, Li R, Liu WM, Williams PM, Wieczorek L, Haferlach T: An international standardization programme towards the application of gene expression profiling in routine leukaemia diagnostics: the Microarray Innovations in LEukemia study prephase. Br J Haematol. 2008, 142: 802-807. 10.1111/j.1365-2141.2008.07261.xPubMedCentralCrossRefPubMed Kohlmann A, Kipps TJ, Rassenti LZ, Downing JR, Shurtleff SA, Mills KI, Gilkes AF, Hofmann WK, Basso G, Dell’orto MC, Foa R, Chiaretti S, De Vos J, Rauhut S, Papenhausen PR, Hernandez JM, Lumbreras E, Yeoh AE, Koay ES, Li R, Liu WM, Williams PM, Wieczorek L, Haferlach T: An international standardization programme towards the application of gene expression profiling in routine leukaemia diagnostics: the Microarray Innovations in LEukemia study prephase. Br J Haematol. 2008, 142: 802-807. 10.1111/j.1365-2141.2008.07261.xPubMedCentralCrossRefPubMed
40.
go back to reference Lee MS, Garrard WT: Positive DNA supercoiling generates a chromatin conformation characteristic of highly active genes. Proc Natl Acad Sci USA. 1991, 88: 9675-9679. 10.1073/pnas.88.21.9675PubMedCentralCrossRefPubMed Lee MS, Garrard WT: Positive DNA supercoiling generates a chromatin conformation characteristic of highly active genes. Proc Natl Acad Sci USA. 1991, 88: 9675-9679. 10.1073/pnas.88.21.9675PubMedCentralCrossRefPubMed
41.
42.
go back to reference Fu GK, Grosveld G, Markovitz DM: DEK, an autoantigen involved in a chromosomal translocation in acute myelogenous leukemia, binds to the HIV-2 enhancer. Proc Natl Acad Sci U S A. 1997, 94: 1811-1815. 10.1073/pnas.94.5.1811PubMedCentralCrossRefPubMed Fu GK, Grosveld G, Markovitz DM: DEK, an autoantigen involved in a chromosomal translocation in acute myelogenous leukemia, binds to the HIV-2 enhancer. Proc Natl Acad Sci U S A. 1997, 94: 1811-1815. 10.1073/pnas.94.5.1811PubMedCentralCrossRefPubMed
43.
go back to reference Kappes F, Damoc C, Knippers R, Przybylski M, Pinna LA, Gruss C: Phosphorylation by protein kinase CK2 changes the DNA binding properties of the human chromatin protein DEK. Mol Cell Biol. 2004, 24: 6011-6020. 10.1128/MCB.24.13.6011-6020.2004PubMedCentralCrossRefPubMed Kappes F, Damoc C, Knippers R, Przybylski M, Pinna LA, Gruss C: Phosphorylation by protein kinase CK2 changes the DNA binding properties of the human chromatin protein DEK. Mol Cell Biol. 2004, 24: 6011-6020. 10.1128/MCB.24.13.6011-6020.2004PubMedCentralCrossRefPubMed
45.
go back to reference Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu XS: Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008, 9: R137- 10.1186/gb-2008-9-9-r137PubMedCentralCrossRefPubMed Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu XS: Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008, 9: R137- 10.1186/gb-2008-9-9-r137PubMedCentralCrossRefPubMed
46.
go back to reference Boeva V, Lermine A, Barette C, Guillouf C, Barillot E: Nebula–a web-server for advanced ChIP-seq data analysis. Bioinformatics. 2012, 28: 2517-2519. 10.1093/bioinformatics/bts463CrossRefPubMed Boeva V, Lermine A, Barette C, Guillouf C, Barillot E: Nebula–a web-server for advanced ChIP-seq data analysis. Bioinformatics. 2012, 28: 2517-2519. 10.1093/bioinformatics/bts463CrossRefPubMed
47.
go back to reference Nilsson B, Hakansson P, Johansson M, Nelander S, Fioretos T: Threshold-free high-power methods for the ontological analysis of genome-wide gene-expression studies. Genome Biol. 2007, 8: R74- 10.1186/gb-2007-8-5-r74PubMedCentralCrossRefPubMed Nilsson B, Hakansson P, Johansson M, Nelander S, Fioretos T: Threshold-free high-power methods for the ontological analysis of genome-wide gene-expression studies. Genome Biol. 2007, 8: R74- 10.1186/gb-2007-8-5-r74PubMedCentralCrossRefPubMed
48.
go back to reference Boyle EI, Weng S, Gollub J, Jin H, Botstein D, Cherry JM, Sherlock G: GO:TermFinder–open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics. 2004, 20: 3710-3715. 10.1093/bioinformatics/bth456PubMedCentralCrossRefPubMed Boyle EI, Weng S, Gollub J, Jin H, Botstein D, Cherry JM, Sherlock G: GO:TermFinder–open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics. 2004, 20: 3710-3715. 10.1093/bioinformatics/bth456PubMedCentralCrossRefPubMed
49.
go back to reference Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005, 102: 15545-15550. 10.1073/pnas.0506580102PubMedCentralCrossRefPubMed Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005, 102: 15545-15550. 10.1073/pnas.0506580102PubMedCentralCrossRefPubMed
50.
51.
52.
go back to reference Novershtern N, Subramanian A, Lawton LN, Mak RH, Haining WN, McConkey ME, Habib N, Yosef N, Chang CY, Shay T, Frampton GM, Drake AC, Leskov I, Nilsson B, Preffer F, Dombkowski D, Evans JW, Liefeld T, Smutko JS, Chen J, Friedman N, Young RA, Golub TR, Regev A, Ebert BL: Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell. 2011, 144: 296-309. 10.1016/j.cell.2011.01.004PubMedCentralCrossRefPubMed Novershtern N, Subramanian A, Lawton LN, Mak RH, Haining WN, McConkey ME, Habib N, Yosef N, Chang CY, Shay T, Frampton GM, Drake AC, Leskov I, Nilsson B, Preffer F, Dombkowski D, Evans JW, Liefeld T, Smutko JS, Chen J, Friedman N, Young RA, Golub TR, Regev A, Ebert BL: Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell. 2011, 144: 296-309. 10.1016/j.cell.2011.01.004PubMedCentralCrossRefPubMed
Metadata
Title
The DEK oncoprotein binds to highly and ubiquitously expressed genes with a dual role in their transcriptional regulation
Authors
Carl Sandén
Linnea Järvstråt
Andreas Lennartsson
Per Ludvik Brattås
Björn Nilsson
Urban Gullberg
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2014
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-13-215

Other articles of this Issue 1/2014

Molecular Cancer 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine