Skip to main content
Top
Published in: BMC Cancer 1/2013

Open Access 01-12-2013 | Research article

Forced expression of the DEK-NUP214 fusion protein promotes proliferation dependent on upregulation of mTOR

Authors: Carl Sandén, Malin Ageberg, Jessica Petersson, Andreas Lennartsson, Urban Gullberg

Published in: BMC Cancer | Issue 1/2013

Login to get access

Abstract

Background

The t(6;9)(p23;q34) chromosomal translocation is found in 1% of acute myeloid leukemia and encodes the fusion protein DEK-NUP214 (formerly DEK-CAN) with largely uncharacterized functions.

Methods

We expressed DEK-NUP214 in the myeloid cell lines U937 and PL-21 and studied the effects on cellular functions.

Results

In this study, we demonstrate that expression of DEK-NUP214 increases cellular proliferation. Western blot analysis revealed elevated levels of one of the key proteins regulating proliferation, the mechanistic target of rapamycin, mTOR. This conferred increased mTORC1 but not mTORC2 activity, as determined by the phosphorylation of their substrates, p70 S6 kinase and Akt. The functional importance of the mTOR upregulation was determined by assaying the downstream cellular processes; protein synthesis and glucose metabolism. A global translation assay revealed a substantial increase in the translation rate and a metabolic assay detected a shift from glycolysis to oxidative phosphorylation, as determined by a reduction in lactate production without a concomitant decrease in glucose consumption. Both these effects are in concordance with increased mTORC1 activity. Treatment with the mTORC1 inhibitor everolimus (RAD001) selectively reversed the DEK-NUP214-induced proliferation, demonstrating that the effect is mTOR-dependent.

Conclusions

Our study shows that the DEK-NUP214 fusion gene increases proliferation by upregulation of mTOR, suggesting that patients with leukemias carrying DEK-NUP214 may benefit from treatment with mTOR inhibitors.
Appendix
Available only for authorised users
Literature
1.
go back to reference Deschler B, Lubbert M: Acute myeloid leukemia: epidemiology and etiology. Cancer. 2006, 107 (9): 2099-2107. 10.1002/cncr.22233.CrossRefPubMed Deschler B, Lubbert M: Acute myeloid leukemia: epidemiology and etiology. Cancer. 2006, 107 (9): 2099-2107. 10.1002/cncr.22233.CrossRefPubMed
2.
go back to reference Slovak ML, Gundacker H, Bloomfield CD, Dewald G, Appelbaum FR, Larson RA, Tallman MS, Bennett JM, Stirewalt DL, Meshinchi S, et al: A retrospective study of 69 patients with t(6;9)(p23;q34) AML emphasizes the need for a prospective, multicenter initiative for rare ‘poor prognosis’ myeloid malignancies. Leukemia. 2006, 20 (7): 1295-1297. 10.1038/sj.leu.2404233.CrossRefPubMed Slovak ML, Gundacker H, Bloomfield CD, Dewald G, Appelbaum FR, Larson RA, Tallman MS, Bennett JM, Stirewalt DL, Meshinchi S, et al: A retrospective study of 69 patients with t(6;9)(p23;q34) AML emphasizes the need for a prospective, multicenter initiative for rare ‘poor prognosis’ myeloid malignancies. Leukemia. 2006, 20 (7): 1295-1297. 10.1038/sj.leu.2404233.CrossRefPubMed
3.
go back to reference von Lindern M, Fornerod M, van Baal S, Jaegle M, de Wit T, Buijs A, Grosveld G: The translocation (6;9), associated with a specific subtype of acute myeloid leukemia, results in the fusion of two genes, dek and can, and the expression of a chimeric, leukemia-specific dek-can mRNA. Mol Cell Biol. 1992, 12 (4): 1687-1697.CrossRefPubMedPubMedCentral von Lindern M, Fornerod M, van Baal S, Jaegle M, de Wit T, Buijs A, Grosveld G: The translocation (6;9), associated with a specific subtype of acute myeloid leukemia, results in the fusion of two genes, dek and can, and the expression of a chimeric, leukemia-specific dek-can mRNA. Mol Cell Biol. 1992, 12 (4): 1687-1697.CrossRefPubMedPubMedCentral
4.
go back to reference Ageberg M, Drott K, Olofsson T, Gullberg U, Lindmark A: Identification of a novel and myeloid specific role of the leukemia-associated fusion protein DEK-NUP214 leading to increased protein synthesis. Genes Chromosomes Cancer. 2008, 47 (4): 276-287. 10.1002/gcc.20531.CrossRefPubMed Ageberg M, Drott K, Olofsson T, Gullberg U, Lindmark A: Identification of a novel and myeloid specific role of the leukemia-associated fusion protein DEK-NUP214 leading to increased protein synthesis. Genes Chromosomes Cancer. 2008, 47 (4): 276-287. 10.1002/gcc.20531.CrossRefPubMed
5.
go back to reference Oancea C, Ruster B, Henschler R, Puccetti E, Ruthardt M: The t(6;9) associated DEK/CAN fusion protein targets a population of long-term repopulating hematopoietic stem cells for leukemogenic transformation. Leukemia. 2010, 24 (11): 1910-1919. 10.1038/leu.2010.180.CrossRefPubMed Oancea C, Ruster B, Henschler R, Puccetti E, Ruthardt M: The t(6;9) associated DEK/CAN fusion protein targets a population of long-term repopulating hematopoietic stem cells for leukemogenic transformation. Leukemia. 2010, 24 (11): 1910-1919. 10.1038/leu.2010.180.CrossRefPubMed
6.
go back to reference Thiede C, Steudel C, Mohr B, Schaich M, Schakel U, Platzbecker U, Wermke M, Bornhauser M, Ritter M, Neubauer A, et al: Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood. 2002, 99 (12): 4326-4335. 10.1182/blood.V99.12.4326.CrossRefPubMed Thiede C, Steudel C, Mohr B, Schaich M, Schakel U, Platzbecker U, Wermke M, Bornhauser M, Ritter M, Neubauer A, et al: Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood. 2002, 99 (12): 4326-4335. 10.1182/blood.V99.12.4326.CrossRefPubMed
7.
go back to reference Zheng R, Friedman AD, Levis M, Li L, Weir EG, Small D: Internal tandem duplication mutation of FLT3 blocks myeloid differentiation through suppression of C/EBPalpha expression. Blood. 2004, 103 (5): 1883-1890. 10.1182/blood-2003-06-1978.CrossRefPubMed Zheng R, Friedman AD, Levis M, Li L, Weir EG, Small D: Internal tandem duplication mutation of FLT3 blocks myeloid differentiation through suppression of C/EBPalpha expression. Blood. 2004, 103 (5): 1883-1890. 10.1182/blood-2003-06-1978.CrossRefPubMed
8.
go back to reference Boer J, Bonten-Surtel J, Grosveld G: Overexpression of the nucleoporin CAN/NUP214 induces growth arrest, nucleocytoplasmic transport defects, and apoptosis. Mol Cell Biol. 1998, 18 (3): 1236-1247.CrossRefPubMedPubMedCentral Boer J, Bonten-Surtel J, Grosveld G: Overexpression of the nucleoporin CAN/NUP214 induces growth arrest, nucleocytoplasmic transport defects, and apoptosis. Mol Cell Biol. 1998, 18 (3): 1236-1247.CrossRefPubMedPubMedCentral
9.
go back to reference Dowling RJ, Topisirovic I, Fonseca BD, Sonenberg N: Dissecting the role of mTOR: lessons from mTOR inhibitors. Biochim Biophys Acta. 2010, 1804 (3): 433-439. 10.1016/j.bbapap.2009.12.001.CrossRefPubMed Dowling RJ, Topisirovic I, Fonseca BD, Sonenberg N: Dissecting the role of mTOR: lessons from mTOR inhibitors. Biochim Biophys Acta. 2010, 1804 (3): 433-439. 10.1016/j.bbapap.2009.12.001.CrossRefPubMed
11.
go back to reference Hay N, Sonenberg N: Upstream and downstream of mTOR. Genes Dev. 2004, 18 (16): 1926-1945. 10.1101/gad.1212704.CrossRefPubMed Hay N, Sonenberg N: Upstream and downstream of mTOR. Genes Dev. 2004, 18 (16): 1926-1945. 10.1101/gad.1212704.CrossRefPubMed
12.
go back to reference Sonenberg N, Gingras AC: The mRNA 5’ cap-binding protein eIF4E and control of cell growth. Curr Opin Cell Biol. 1998, 10 (2): 268-275. 10.1016/S0955-0674(98)80150-6.CrossRefPubMed Sonenberg N, Gingras AC: The mRNA 5’ cap-binding protein eIF4E and control of cell growth. Curr Opin Cell Biol. 1998, 10 (2): 268-275. 10.1016/S0955-0674(98)80150-6.CrossRefPubMed
13.
go back to reference Waskiewicz AJ, Johnson JC, Penn B, Mahalingam M, Kimball SR, Cooper JA: Phosphorylation of the cap-binding protein eukaryotic translation initiation factor 4E by protein kinase Mnk1 in vivo. Mol Cell Biol. 1999, 19 (3): 1871-1880.CrossRefPubMedPubMedCentral Waskiewicz AJ, Johnson JC, Penn B, Mahalingam M, Kimball SR, Cooper JA: Phosphorylation of the cap-binding protein eukaryotic translation initiation factor 4E by protein kinase Mnk1 in vivo. Mol Cell Biol. 1999, 19 (3): 1871-1880.CrossRefPubMedPubMedCentral
14.
go back to reference Ramanathan A, Schreiber SL: Direct control of mitochondrial function by mTOR. Proc Natl Acad Sci U S A. 2009, 106 (52): 22229-22232. 10.1073/pnas.0912074106.CrossRefPubMedPubMedCentral Ramanathan A, Schreiber SL: Direct control of mitochondrial function by mTOR. Proc Natl Acad Sci U S A. 2009, 106 (52): 22229-22232. 10.1073/pnas.0912074106.CrossRefPubMedPubMedCentral
15.
go back to reference Schieke SM, Phillips D, McCoy JP, Aponte AM, Shen RF, Balaban RS, Finkel T: The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity. J Biol Chem. 2006, 281 (37): 27643-27652. 10.1074/jbc.M603536200.CrossRefPubMed Schieke SM, Phillips D, McCoy JP, Aponte AM, Shen RF, Balaban RS, Finkel T: The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity. J Biol Chem. 2006, 281 (37): 27643-27652. 10.1074/jbc.M603536200.CrossRefPubMed
16.
go back to reference Chiang GG, Abraham RT: Targeting the mTOR signaling network in cancer. Trends Mol Med. 2007, 13 (10): 433-442. 10.1016/j.molmed.2007.08.001.CrossRefPubMed Chiang GG, Abraham RT: Targeting the mTOR signaling network in cancer. Trends Mol Med. 2007, 13 (10): 433-442. 10.1016/j.molmed.2007.08.001.CrossRefPubMed
17.
go back to reference Coppin C: Everolimus: the first approved product for patients with advanced renal cell cancer after sunitinib and/or sorafenib. Biologics. 2010, 4: 91-101.PubMedPubMedCentral Coppin C: Everolimus: the first approved product for patients with advanced renal cell cancer after sunitinib and/or sorafenib. Biologics. 2010, 4: 91-101.PubMedPubMedCentral
18.
go back to reference Dowling RJ, Pollak M, Sonenberg N: Current status and challenges associated with targeting mTOR for cancer therapy. BioDrugs. 2009, 23 (2): 77-91. 10.2165/00063030-200923020-00002.CrossRefPubMed Dowling RJ, Pollak M, Sonenberg N: Current status and challenges associated with targeting mTOR for cancer therapy. BioDrugs. 2009, 23 (2): 77-91. 10.2165/00063030-200923020-00002.CrossRefPubMed
19.
go back to reference O’Reilly T, McSheehy PM: Biomarker development for the clinical activity of the mTOR inhibitor everolimus (RAD001): processes, limitations, and further proposals. Transl Oncol. 2010, 3 (2): 65-79.CrossRefPubMedPubMedCentral O’Reilly T, McSheehy PM: Biomarker development for the clinical activity of the mTOR inhibitor everolimus (RAD001): processes, limitations, and further proposals. Transl Oncol. 2010, 3 (2): 65-79.CrossRefPubMedPubMedCentral
20.
go back to reference Schmittgen TD, Livak KJ: Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008, 3 (6): 1101-1108. 10.1038/nprot.2008.73.CrossRefPubMed Schmittgen TD, Livak KJ: Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008, 3 (6): 1101-1108. 10.1038/nprot.2008.73.CrossRefPubMed
22.
go back to reference Hagner PR, Schneider A, Gartenhaus RB: Targeting the translational machinery as a novel treatment strategy for hematologic malignancies. Blood. 2010, 115 (11): 2127-2135. 10.1182/blood-2009-09-220020.CrossRefPubMedPubMedCentral Hagner PR, Schneider A, Gartenhaus RB: Targeting the translational machinery as a novel treatment strategy for hematologic malignancies. Blood. 2010, 115 (11): 2127-2135. 10.1182/blood-2009-09-220020.CrossRefPubMedPubMedCentral
23.
go back to reference Saito S, Nouno K, Shimizu R, Yamamoto M, Nagata K: Impairment of erythroid and megakaryocytic differentiation by a leukemia-associated and t(9;9)-derived fusion gene product, SET/TAF-Ibeta-CAN/Nup214. J Cell Physiol. 2008, 214 (2): 322-333. 10.1002/jcp.21199.CrossRefPubMed Saito S, Nouno K, Shimizu R, Yamamoto M, Nagata K: Impairment of erythroid and megakaryocytic differentiation by a leukemia-associated and t(9;9)-derived fusion gene product, SET/TAF-Ibeta-CAN/Nup214. J Cell Physiol. 2008, 214 (2): 322-333. 10.1002/jcp.21199.CrossRefPubMed
24.
go back to reference Chung KY, Morrone G, Schuringa JJ, Plasilova M, Shieh JH, Zhang Y, Zhou P, Moore MA: Enforced expression of NUP98-HOXA9 in human CD34(+) cells enhances stem cell proliferation. Cancer Res. 2006, 66 (24): 11781-11791. 10.1158/0008-5472.CAN-06-0706.CrossRefPubMed Chung KY, Morrone G, Schuringa JJ, Plasilova M, Shieh JH, Zhang Y, Zhou P, Moore MA: Enforced expression of NUP98-HOXA9 in human CD34(+) cells enhances stem cell proliferation. Cancer Res. 2006, 66 (24): 11781-11791. 10.1158/0008-5472.CAN-06-0706.CrossRefPubMed
25.
go back to reference Jankovic D, Gorello P, Liu T, Ehret S, La Starza R, Desjobert C, Baty F, Brutsche M, Jayaraman PS, Santoro A, et al: Leukemogenic mechanisms and targets of a NUP98/HHEX fusion in acute myeloid leukemia (AML). Blood. 2008, 111 (12): 5672-5682. 10.1182/blood-2007-09-108175.CrossRefPubMed Jankovic D, Gorello P, Liu T, Ehret S, La Starza R, Desjobert C, Baty F, Brutsche M, Jayaraman PS, Santoro A, et al: Leukemogenic mechanisms and targets of a NUP98/HHEX fusion in acute myeloid leukemia (AML). Blood. 2008, 111 (12): 5672-5682. 10.1182/blood-2007-09-108175.CrossRefPubMed
26.
go back to reference Takeda A, Goolsby C, Yaseen NR: NUP98-HOXA9 induces long-term proliferation and blocks differentiation of primary human CD34+ hematopoietic cells. Cancer Res. 2006, 66 (13): 6628-6637. 10.1158/0008-5472.CAN-06-0458.CrossRefPubMed Takeda A, Goolsby C, Yaseen NR: NUP98-HOXA9 induces long-term proliferation and blocks differentiation of primary human CD34+ hematopoietic cells. Cancer Res. 2006, 66 (13): 6628-6637. 10.1158/0008-5472.CAN-06-0458.CrossRefPubMed
27.
go back to reference Ostergaard M, Olesen LH, Hasle H, Kjeldsen E, Hokland P: WT1 gene expression: an excellent tool for monitoring minimal residual disease in 70% of acute myeloid leukaemia patients - results from a single-centre study. Br J Haematol. 2004, 125 (5): 590-600. 10.1111/j.1365-2141.2004.04952.x.CrossRefPubMed Ostergaard M, Olesen LH, Hasle H, Kjeldsen E, Hokland P: WT1 gene expression: an excellent tool for monitoring minimal residual disease in 70% of acute myeloid leukaemia patients - results from a single-centre study. Br J Haematol. 2004, 125 (5): 590-600. 10.1111/j.1365-2141.2004.04952.x.CrossRefPubMed
28.
go back to reference Fujishita T, Aoki K, Lane HA, Aoki M, Taketo MM: Inhibition of the mTORC1 pathway suppresses intestinal polyp formation and reduces mortality in ApcDelta716 mice. Proc Natl Acad Sci U S A. 2008, 105 (36): 13544-13549. 10.1073/pnas.0800041105.CrossRefPubMedPubMedCentral Fujishita T, Aoki K, Lane HA, Aoki M, Taketo MM: Inhibition of the mTORC1 pathway suppresses intestinal polyp formation and reduces mortality in ApcDelta716 mice. Proc Natl Acad Sci U S A. 2008, 105 (36): 13544-13549. 10.1073/pnas.0800041105.CrossRefPubMedPubMedCentral
29.
go back to reference Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM: mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 2002, 110 (2): 163-175. 10.1016/S0092-8674(02)00808-5.CrossRefPubMed Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM: mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 2002, 110 (2): 163-175. 10.1016/S0092-8674(02)00808-5.CrossRefPubMed
30.
go back to reference Balamurugan K, Wang JM, Tsai HH, Sharan S, Anver M, Leighty R, Sterneck E: The tumour suppressor C/EBPdelta inhibits FBXW7 expression and promotes mammary tumour metastasis. EMBO J. 2010, 29 (24): 4106-4117. 10.1038/emboj.2010.280.CrossRefPubMedPubMedCentral Balamurugan K, Wang JM, Tsai HH, Sharan S, Anver M, Leighty R, Sterneck E: The tumour suppressor C/EBPdelta inhibits FBXW7 expression and promotes mammary tumour metastasis. EMBO J. 2010, 29 (24): 4106-4117. 10.1038/emboj.2010.280.CrossRefPubMedPubMedCentral
31.
go back to reference Kaizuka T, Hara T, Oshiro N, Kikkawa U, Yonezawa K, Takehana K, Iemura S, Natsume T, Mizushima N: Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly. J Biol Chem. 2010, 285 (26): 20109-20116. 10.1074/jbc.M110.121699.CrossRefPubMedPubMedCentral Kaizuka T, Hara T, Oshiro N, Kikkawa U, Yonezawa K, Takehana K, Iemura S, Natsume T, Mizushima N: Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly. J Biol Chem. 2010, 285 (26): 20109-20116. 10.1074/jbc.M110.121699.CrossRefPubMedPubMedCentral
32.
go back to reference Holz MK, Blenis J: Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)-phosphorylating kinase. J Biol Chem. 2005, 280 (28): 26089-26093. 10.1074/jbc.M504045200.CrossRefPubMed Holz MK, Blenis J: Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)-phosphorylating kinase. J Biol Chem. 2005, 280 (28): 26089-26093. 10.1074/jbc.M504045200.CrossRefPubMed
33.
go back to reference Chiang GG, Abraham RT: Phosphorylation of mammalian target of rapamycin (mTOR) at Ser-2448 is mediated by p70S6 kinase. J Biol Chem. 2005, 280 (27): 25485-25490. 10.1074/jbc.M501707200.CrossRefPubMed Chiang GG, Abraham RT: Phosphorylation of mammalian target of rapamycin (mTOR) at Ser-2448 is mediated by p70S6 kinase. J Biol Chem. 2005, 280 (27): 25485-25490. 10.1074/jbc.M501707200.CrossRefPubMed
34.
go back to reference Silvera D, Formenti SC, Schneider RJ: Translational control in cancer. Nat Rev Cancer. 2010, 10 (4): 254-266. 10.1038/nrc2824.CrossRefPubMed Silvera D, Formenti SC, Schneider RJ: Translational control in cancer. Nat Rev Cancer. 2010, 10 (4): 254-266. 10.1038/nrc2824.CrossRefPubMed
35.
go back to reference Ferreira LM: Cancer metabolism: the Warburg effect today. Exp Mol Pathol. 2010, 89 (3): 372-380. 10.1016/j.yexmp.2010.08.006.CrossRefPubMed Ferreira LM: Cancer metabolism: the Warburg effect today. Exp Mol Pathol. 2010, 89 (3): 372-380. 10.1016/j.yexmp.2010.08.006.CrossRefPubMed
36.
go back to reference Smolkova K, Plecita-Hlavata L, Bellance N, Benard G, Rossignol R, Jezek P: Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells. Int J Biochem Cell Biol. 2011, 43 (7): 950-968. 10.1016/j.biocel.2010.05.003.CrossRefPubMed Smolkova K, Plecita-Hlavata L, Bellance N, Benard G, Rossignol R, Jezek P: Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells. Int J Biochem Cell Biol. 2011, 43 (7): 950-968. 10.1016/j.biocel.2010.05.003.CrossRefPubMed
Metadata
Title
Forced expression of the DEK-NUP214 fusion protein promotes proliferation dependent on upregulation of mTOR
Authors
Carl Sandén
Malin Ageberg
Jessica Petersson
Andreas Lennartsson
Urban Gullberg
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2013
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-13-440

Other articles of this Issue 1/2013

BMC Cancer 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine