Skip to main content
Top
Published in: Molecular Cancer 1/2013

Open Access 01-12-2013 | Research

Activation of Akt pathway by transcription-independent mechanisms of retinoic acid promotes survival and invasion in lung cancer cells

Authors: Alejandro García-Regalado, Miguel Vargas, Alejandro García-Carrancá, Elena Aréchaga-Ocampo, Claudia Haydée González-De la Rosa

Published in: Molecular Cancer | Issue 1/2013

Login to get access

Abstract

Background

All-trans retinoic acid (ATRA) is currently being used in clinical trials for cancer treatment. The use of ATRA is limited because some cancers, such as lung cancer, show resistance to treatment. However, little is known about the molecular mechanisms that regulate resistance to ATRA treatment. Akt is a kinase that plays a key role in cell survival and cell invasion. Akt is often activated in lung cancer, suggesting its participation in resistance to chemotherapy. In this study, we explored the hypothesis that activation of the Akt pathway promotes resistance to ATRA treatment at the inhibition of cell survival and invasion in lung cancer. We aimed to provide guidelines for the proper use of ATRA in clinical trials and to elucidate basic biological mechanisms of resistance.

Results

We performed experiments using the A549 human lung adenocarcinoma cell line. We found that ATRA treatment promotes PI3k-Akt pathway activation through transcription-independent mechanisms. Interestingly, ATRA treatment induces the translocation of RARα to the plasma membrane, where it colocalizes with Akt. Immunoprecipitation assays showed that ATRA promotes Akt activation mediated by RARα-Akt interaction. Activation of the PI3k-Akt pathway by ATRA promotes invasion through Rac-GTPase, whereas pretreatment with 15e (PI3k inhibitor) or over-expression of the inactive form of Akt blocks ATRA-induced invasion. We also found that treatment with ATRA induces cell survival, which is inhibited by 15e or over-expression of an inactive form of Akt, through a subsequent increase in the levels of the active form of caspase-3. Finally, we showed that over-expression of the active form of Akt significantly decreases expression levels of the tumor suppressors RARβ2 and p53. In contrast, over-expression of the inactive form of Akt restores RARβ2 expression in cells treated with ATRA, indicating that activation of the PI3k-Akt pathway inhibits the expression of ATRA target genes.

Conclusion

Our results demonstrate that rapid activation of Akt blocks transcription-dependent mechanism of ATRA, promotes invasion and cell survival and confers resistance to retinoic acid treatment in lung cancer cells. These findings provide an incentive for the design and clinical testing of treatment regimens that combine ATRA and PI3k inhibitors for lung cancer treatment.

Literature
  1. Brzezianska E, Dutkowska A, Antczak A: The significance of epigenetic alterations in lung carcinogenesis. Mol Biol Rep. 2013, 40: 309-325. 10.1007/s11033-012-2063-4PubMed CentralView ArticlePubMed
  2. Kim HSIH, Choi YS, Kim K, Shim YM, Kim J: Surgical resection of recurrent lung cancer in patients following curative resection. J Korean Med Sci. 2006, 21: 224-228. 10.3346/jkms.2006.21.2.224PubMed CentralView ArticlePubMed
  3. Hanna N, Shepherd FA, Fossella FV, Pereira JR, De Marinis F, von Pawel J, Gatzemeier U, Tsao TC, Pless M, Muller T, Lim HL, Desch C, Szondy K, Gervais R, Shaharyar Manegold C, Paul S, Paoletti P, Einhorn L, Bunn PA: Randomized phase III trial of pemetrexed versus docetaxel in patients with non-small-cell lung cancer previously treated with chemotherapy. J Clin Oncol. 2004, 22: 1589-1597. 10.1200/JCO.2004.08.163View ArticlePubMed
  4. Freemantle SJ, Spinella MJ, Dmitrovsky E: Retinoids in cancer therapy and chemoprevention: promise meets resistance. Oncogene. 2003, 22: 7305-7315. 10.1038/sj.onc.1206936View ArticlePubMed
  5. Nowak D, Stewart D, Koeffler HP: Differentiation therapy of leukemia: 3 decades of development. Blood. 2009, 113: 3655-3665. 10.1182/blood-2009-01-198911PubMed CentralView ArticlePubMed
  6. Hormi-Carver K, Feagins LA, Spechler SJ, Souza RF: All trans-retinoic acid induces apoptosis via p38 and caspase pathways in metaplastic Barrett’s cells. Am J Physiol Gastrointest Liver Physiol. 2007, 292: G18-G27.View ArticlePubMed
  7. Leelawat K, Ohuchida K, Mizumoto K, Mahidol C, Tanaka M: All-trans retinoic acid inhibits the cell proliferation but enhances the cell invasion through up-regulation of c-met in pancreatic cancer cells. Cancer Lett. 2005, 224: 303-310. 10.1016/j.canlet.2004.10.016View ArticlePubMed
  8. Tang XH, Gudas LJ: Retinoids, retinoic acid receptors, and cancer. Annu Rev Pathol. 2011, 6: 345-364. 10.1146/annurev-pathol-011110-130303View ArticlePubMed
  9. Pozzi S, Rossetti S, Bistulfi G, Sacchi N: RAR-mediated epigenetic control of the cytochrome P450 Cyp26a1 in embryocarcinoma cells. Oncogene. 2006, 25: 1400-1407. 10.1038/sj.onc.1209173View ArticlePubMed
  10. Xu XC: Tumor-suppressive activity of retinoic acid receptor-beta in cancer. Cancer Lett. 2007, 253: 14-24. 10.1016/j.canlet.2006.11.019PubMed CentralView ArticlePubMed
  11. Masia S, Alvarez S, de Lera AR, Barettino D: Rapid, nongenomic actions of retinoic acid on phosphatidylinositol-3-kinase signaling pathway mediated by the retinoic acid receptor. Mol Endocrinol. 2007, 21: 2391-2402. 10.1210/me.2007-0062View ArticlePubMed
  12. Brognard J, Clark AS, Ni Y, Dennis PA: Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res. 2001, 61: 3986-3997.PubMed
  13. Garcia-Echeverria C, Sellers WR: Drug discovery approaches targeting the PI3K/Akt pathway in cancer. Oncogene. 2008, 27: 5511-5526. 10.1038/onc.2008.246View ArticlePubMed
  14. Guo Y, Du J, Kwiatkowski DJ: Molecular dissection of AKT activation in lung cancer cell lines. Mol Cancer Res. 2013, 11: 282-293. 10.1158/1541-7786.MCR-12-0558PubMed CentralView ArticlePubMed
  15. Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB: Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov. 2005, 4: 988-1004. 10.1038/nrd1902View ArticlePubMed
  16. Garcia-Regalado A, Guzman-Hernandez ML, Ramirez-Rangel I, Robles-Molina E, Balla T, Vazquez-Prado J, Reyes-Cruz G: G protein-coupled receptor-promoted trafficking of Gbeta1gamma2 leads to AKT activation at endosomes via a mechanism mediated by Gbeta1gamma2-Rab11a interaction. Mol Biol Cell. 2008, 19: 4188-4200. 10.1091/mbc.E07-10-1089PubMed CentralView ArticlePubMed
  17. Song G, Ouyang G, Bao S: The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med. 2005, 9: 59-71. 10.1111/j.1582-4934.2005.tb00337.xView ArticlePubMed
  18. Hers I, Vincent EE, Tavare JM: Akt signalling in health and disease. Cell Signal. 2011, 23: 1515-1527. 10.1016/j.cellsig.2011.05.004View ArticlePubMed
  19. Fritz H, Kennedy D, Fergusson D, Fernandes R, Doucette S, Cooley K, Seely A, Sagar S, Wong R, Seely D: Vitamin A and retinoid derivatives for lung cancer: a systematic review and meta analysis. PLoS One. 2011, 6: e21107- 10.1371/journal.pone.0021107PubMed CentralView ArticlePubMed
  20. Geradts J, Chen JY, Russell EK, Yankaskas JR, Nieves L, Minna JD: Human lung cancer cell lines exhibit resistance to retinoic acid treatment. Cell Growth Differ. 1993, 4: 799-809.PubMed
  21. Petty WJ, Li N, Biddle A, Bounds R, Nitkin C, Ma Y, Dragnev KH, Freemantle SJ, Dmitrovsky E: A novel retinoic acid receptor beta isoform and retinoid resistance in lung carcinogenesis. J Natl Cancer Inst. 2005, 97: 1645-1651. 10.1093/jnci/dji371View ArticlePubMed
  22. Somenzi G, Sala G, Rossetti S, Ren M, Ghidoni R, Sacchi N: Disruption of retinoic acid receptor alpha reveals the growth promoter face of retinoic acid. PLoS One. 2007, 2: e836- 10.1371/journal.pone.0000836PubMed CentralView ArticlePubMed
  23. Sussan TE, Pletcher MT, Murakami Y, Reeves RH: Tumor suppressor in lung cancer 1 (TSLC1) alters tumorigenic growth properties and gene expression. Mol Cancer. 2005, 4: 28- 10.1186/1476-4598-4-28PubMed CentralView ArticlePubMed
  24. Vinodhkumar R, Song YS, Ravikumar V, Ramakrishnan G, Devaki T: Depsipeptide a histone deacetlyase inhibitor down regulates levels of matrix metalloproteinases 2 and 9 mRNA and protein expressions in lung cancer cells (A549). Chem Biol Interact. 2007, 165: 220-229. 10.1016/j.cbi.2006.12.012View ArticlePubMed
  25. Chang CC, Shih JY, Jeng YM, Su JL, Lin BZ, Chen ST, Chau YP, Yang PC, Kuo ML: Connective tissue growth factor and its role in lung adenocarcinoma invasion and metastasis. J Natl Cancer Inst. 2004, 96: 364-375. 10.1093/jnci/djh059View ArticlePubMed
  26. Nakajoh M, Fukushima T, Suzuki T, Yamaya M, Nakayama K, Sekizawa K, Sasaki H: Retinoic acid inhibits elastase-induced injury in human lung epithelial cell lines. Am J Respir Cell Mol Biol. 2003, 28: 296-304. 10.1165/rcmb.4845View ArticlePubMed
  27. Kawakami S, Suzuki S, Yamashita F, Hashida M: Induction of apoptosis in A549 human lung cancer cells by all-trans retinoic acid incorporated in DOTAP/cholesterol liposomes. J Control Release. 2006, 110: 514-521. 10.1016/j.jconrel.2005.10.030View ArticlePubMed
  28. Zhang H, Rosdahl I: Expression profiles of p53, p21, bax and bcl-2 proteins in all-trans-retinoic acid treated primary and metastatic melanoma cells. Int J Oncol. 2004, 25: 303-308.PubMed
  29. Wan YJ, Wang L, Wu TC: Detection of retinoic acid receptor mRNA in rat tissues by reverse transcriptase-polymerase chain reaction. J Mol Endocrinol. 1992, 9: 291-294. 10.1677/jme.0.0090291View ArticlePubMed
  30. Chen N, Napoli JL: All-trans-retinoic acid stimulates translation and induces spine formation in hippocampal neurons through a membrane-associated RARalpha. FASEB J. 2008, 22: 236-245.View ArticlePubMed
  31. Tan Y, You H, Wu C, Altomare DA, Testa JR: Appl1 is dispensable for mouse development, and loss of Appl1 has growth factor-selective effects on Akt signaling in murine embryonic fibroblasts. J Biol Chem. 2010, 285: 6377-6389. 10.1074/jbc.M109.068452PubMed CentralView ArticlePubMed
  32. Saito T, Jones CC, Huang S, Czech MP, Pilch PF: The interaction of Akt with APPL1 is required for insulin-stimulated Glut4 translocation. J Biol Chem. 2007, 282: 32280-32287. 10.1074/jbc.M704150200View ArticlePubMed
  33. Mitsuuchi Y, Johnson SW, Sonoda G, Tanno S, Golemis EA, Testa JR: Identification of a chromosome 3p14.3–21.1 gene, APPL, encoding an adaptor molecule that interacts with the oncoprotein-serine/threonine kinase AKT2. Oncogene. 1999, 18: 4891-4898. 10.1038/sj.onc.1203080View ArticlePubMed
  34. Hernandez-Cuevas NA, Hernandez-Rivas R, Sosa-Peinado A, Rojo-Dominguez A, Vargas M: Identification and evaluation of inhibitors of the EhGEF1 protein from Entamoeba histolytica. J Mol Recognit. 2011, 24: 935-944. 10.1002/jmr.1137View ArticlePubMed
  35. Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A: The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell. 1992, 70: 401-410. 10.1016/0092-8674(92)90164-8View ArticlePubMed
  36. Arrieta O, Gonzalez-De la Rosa CH, Arechaga-Ocampo E, Villanueva-Rodriguez G, Ceron-Lizarraga TL, Martinez-Barrera L, Vazquez-Manriquez ME, Rios-Trejo MA, Alvarez-Avitia MA, Hernandez-Pedro N, Rojas-Marin C, De la Garza J: Randomized phase II trial of All-trans-retinoic acid with chemotherapy based on paclitaxel and cisplatin as first-line treatment in patients with advanced non-small-cell lung cancer. J Clin Oncol. 2010, 28: 3463-3471. 10.1200/JCO.2009.26.6452View ArticlePubMed
  37. Smith CL, O’Malley BW: Coregulator function: a key to understanding tissue specificity of selective receptor modulators. Endocr Rev. 2004, 25: 45-71. 10.1210/er.2003-0023View ArticlePubMed
  38. Robinson SP, Jordan VC: Reversal of the antitumor effects of tamoxifen by progesterone in the 7, 12-dimethylbenzanthracene-induced rat mammary carcinoma model. Cancer Res. 1987, 47: 5386-5390.PubMed
  39. Piskunov A, Rochette-Egly C: A retinoic acid receptor RARalpha pool present in membrane lipid rafts forms complexes with G protein alphaQ to activate p38MAPK. Oncogene. 2012, 31: 3333-3345. 10.1038/onc.2011.499View ArticlePubMed
  40. Pan J, Kao YL, Joshi S, Jeetendran S, Dipette D, Singh US: Activation of Rac1 by phosphatidylinositol 3-kinase in vivo: role in activation of mitogen-activated protein kinase (MAPK) pathways and retinoic acid-induced neuronal differentiation of SH-SY5Y cells. J Neurochem. 2005, 93: 571-583. 10.1111/j.1471-4159.2005.03106.xView ArticlePubMed
  41. Kunigal S, Ponnusamy MP, Momi N, Batra SK, Chellappan SP: Nicotine, IFN-gamma and retinoic acid mediated induction of MUC4 in pancreatic cancer requires E2F1 and STAT-1 transcription factors and utilize different signaling cascades. Mol Cancer. 2012, 11: 24-PubMed CentralView ArticlePubMed
  42. Zaragoza R, Gimeno A, Miralles VJ, Garcia-Trevijano ER, Carmena R, Garcia C, Mata M, Puertes IR, Torres L, Vina JR: Retinoids induce MMP-9 expression through RARalpha during mammary gland remodeling. Am J Physiol Endocrinol Metab. 2007, 292: E1140-E1148.View ArticlePubMed
  43. Billottet C, Banerjee L, Vanhaesebroeck B, Khwaja A: Inhibition of class I phosphoinositide 3-kinase activity impairs proliferation and triggers apoptosis in acute promyelocytic leukemia without affecting atra-induced differentiation. Cancer Res. 2009, 69: 1027-1036.View ArticlePubMed
  44. Srinivas H, Xia D, Moore NL, Uray IP, Kim H, Ma L, Weigel NL, Brown PH, Kurie JM: Akt phosphorylates and suppresses the transactivation of retinoic acid receptor alpha. Biochem J. 2006, 395: 653-662. 10.1042/BJ20051794PubMed CentralView ArticlePubMed
  45. Mrass P, Rendl M, Mildner M, Gruber F, Lengauer B, Ballaun C, Eckhart L, Tschachler E: Retinoic acid increases the expression of p53 and proapoptotic caspases and sensitizes keratinocytes to apoptosis: a possible explanation for tumor preventive action of retinoids. Cancer Res. 2004, 64: 6542-6548. 10.1158/0008-5472.CAN-04-1129View ArticlePubMed
  46. Lefebvre B, Brand C, Flajollet S, Lefebvre P: Down-regulation of the tumor suppressor gene retinoic acid receptor beta2 through the phosphoinositide 3-kinase/Akt signaling pathway. Mol Endocrinol. 2006, 20: 2109-2121. 10.1210/me.2005-0321View ArticlePubMed
  47. Farias EF, Marzan C, Mira-y-Lopez R: Cellular retinol-binding protein-I inhibits PI3K/Akt signaling through a retinoic acid receptor-dependent mechanism that regulates p85-p110 heterodimerization. Oncogene. 2005, 24: 1598-1606. 10.1038/sj.onc.1208347View ArticlePubMed
Metadata
Title
Activation of Akt pathway by transcription-independent mechanisms of retinoic acid promotes survival and invasion in lung cancer cells
Authors
Alejandro García-Regalado
Miguel Vargas
Alejandro García-Carrancá
Elena Aréchaga-Ocampo
Claudia Haydée González-De la Rosa
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2013
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-12-44

Other articles of this Issue 1/2013

Molecular Cancer 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine