Skip to main content
Top
Published in: Molecular Cancer 1/2013

Open Access 01-12-2013 | Research

Id4 dependent acetylation restores mutant-p53 transcriptional activity

Authors: Ashley E Knowell, Divya Patel, Derrick J Morton, Pankaj Sharma, Shanora Glymph, Jaideep Chaudhary

Published in: Molecular Cancer | Issue 1/2013

Login to get access

Abstract

Background

The mechanisms that can restore biological activity of mutant p53 are an area of high interest given that mutant p53 expression is observed in one third of prostate cancer. Here we demonstrate that Id4, an HLH transcriptional regulator and a tumor suppressor, can restore the mutant p53 transcriptional activity in prostate cancer cells.

Methods

Id4 was over-expressed in prostate cancer cell line DU145 harboring mutant p53 (P223L and V274F) and silenced in LNCaP cells with wild type p53. The cells were used to quantitate apoptosis, p53 localization, p53 DNA binding and transcriptional activity. Immuno-precipitation/-blot studies were performed to demonstrate interactions between Id4, p53 and CBP/p300 and acetylation of specific lysine residues within p53.

Results

Ectopic expression of Id4 in DU145 cells resulted in increased apoptosis and expression of BAX, PUMA and p21, the transcriptional targets of p53. Mutant p53 gained DNA binding and transcriptional activity in the presence of Id4 in DU145 cells. Conversely, loss of Id4 in LNCaP cells abrogated wild type p53 DNA binding and transactivation potential. Gain of Id4 resulted in increased acetylation of mutant p53 whereas loss of Id4 lead to decreased acetylation in DU145 and LNCaP cells respectively. Id4 dependent acetylation of p53 was in part due to a physical interaction between Id4, p53 and acetyl-transferase CBP/p300.

Conclusions

Taken together, our results suggest that Id4 regulates the activity of wild type and mutant p53. Id4 promoted the assembly of a macromolecular complex involving CBP/P300 that resulted in acetylation of p53 at K373, a critical post-translational modification required for its biological activity.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ruzinova MB, Benezra R: Id proteins in development, cell cycle and cancer. Trends Cell Biol. 2003, 13: 410-418. 10.1016/S0962-8924(03)00147-8CrossRefPubMed Ruzinova MB, Benezra R: Id proteins in development, cell cycle and cancer. Trends Cell Biol. 2003, 13: 410-418. 10.1016/S0962-8924(03)00147-8CrossRefPubMed
2.
go back to reference Coppe JP, Smith AP, Desprez PY: Id proteins in epithelial cells. Exp Cell Res. 2003, 285: 131-145. 10.1016/S0014-4827(03)00014-4CrossRefPubMed Coppe JP, Smith AP, Desprez PY: Id proteins in epithelial cells. Exp Cell Res. 2003, 285: 131-145. 10.1016/S0014-4827(03)00014-4CrossRefPubMed
3.
go back to reference Norton JD, Deed RW, Craggs G, Sablitzky F: Id helix-loop-helix proteins in cell growth and differentiation. Trends Cell Biol. 1998, 8: 58-65.PubMed Norton JD, Deed RW, Craggs G, Sablitzky F: Id helix-loop-helix proteins in cell growth and differentiation. Trends Cell Biol. 1998, 8: 58-65.PubMed
4.
go back to reference Tokuzawa Y, Yagi K, Yamashita Y, Nakachi Y, Nikaido I, Bono H, Ninomiya Y, Kanesaki-Yatsuka Y, Akita M, Motegi H: Id4, a new candidate gene for senile osteoporosis, acts as a molecular switch promoting osteoblast differentiation. PLoS Genet. 2010, 6: e1001019- 10.1371/journal.pgen.1001019PubMedCentralCrossRefPubMed Tokuzawa Y, Yagi K, Yamashita Y, Nakachi Y, Nikaido I, Bono H, Ninomiya Y, Kanesaki-Yatsuka Y, Akita M, Motegi H: Id4, a new candidate gene for senile osteoporosis, acts as a molecular switch promoting osteoblast differentiation. PLoS Genet. 2010, 6: e1001019- 10.1371/journal.pgen.1001019PubMedCentralCrossRefPubMed
5.
go back to reference Murad JM, Place CS, Ran C, Hekmatyar SK, Watson NP, Kauppinen RA, Israel MA: Inhibitor of DNA binding 4 (ID4) regulation of adipocyte differentiation and adipose tissue formation in mice. J Biol Chem. 2010, 285: 24164-24173. 10.1074/jbc.M110.128744PubMedCentralCrossRefPubMed Murad JM, Place CS, Ran C, Hekmatyar SK, Watson NP, Kauppinen RA, Israel MA: Inhibitor of DNA binding 4 (ID4) regulation of adipocyte differentiation and adipose tissue formation in mice. J Biol Chem. 2010, 285: 24164-24173. 10.1074/jbc.M110.128744PubMedCentralCrossRefPubMed
6.
go back to reference Yun K, Mantani A, Garel S, Rubenstein J, Israel MA: Id4 regulates neural progenitor proliferation and differentiation in vivo. Development. 2004, 131: 5441-5448. 10.1242/dev.01430CrossRefPubMed Yun K, Mantani A, Garel S, Rubenstein J, Israel MA: Id4 regulates neural progenitor proliferation and differentiation in vivo. Development. 2004, 131: 5441-5448. 10.1242/dev.01430CrossRefPubMed
7.
go back to reference Samanta J, Kessler JA: Interactions between ID and OLIG proteins mediate the inhibitory effects of BMP4 on oligodendroglial differentiation. Development. 2004, 131: 4131-4142. 10.1242/dev.01273CrossRefPubMed Samanta J, Kessler JA: Interactions between ID and OLIG proteins mediate the inhibitory effects of BMP4 on oligodendroglial differentiation. Development. 2004, 131: 4131-4142. 10.1242/dev.01273CrossRefPubMed
8.
go back to reference Yu L, Liu C, Vandeusen J, Becknell B, Dai Z, Wu YZ, Raval A, Liu TH, Ding W, Mao C: Global assessment of promoter methylation in a mouse model of cancer identifies ID4 as a putative tumor-suppressor gene in human leukemia. Nat Genet. 2005, 37: 265-274. 10.1038/ng1521CrossRefPubMed Yu L, Liu C, Vandeusen J, Becknell B, Dai Z, Wu YZ, Raval A, Liu TH, Ding W, Mao C: Global assessment of promoter methylation in a mouse model of cancer identifies ID4 as a putative tumor-suppressor gene in human leukemia. Nat Genet. 2005, 37: 265-274. 10.1038/ng1521CrossRefPubMed
9.
go back to reference Umetani N, Mori T, Koyanagi K, Shinozaki M, Kim J, Giuliano AE, Hoon DS: Aberrant hypermethylation of ID4 gene promoter region increases risk of lymph node metastasis in T1 breast cancer. Oncogene. 2005, 24: 4721-4727. 10.1038/sj.onc.1208538CrossRefPubMed Umetani N, Mori T, Koyanagi K, Shinozaki M, Kim J, Giuliano AE, Hoon DS: Aberrant hypermethylation of ID4 gene promoter region increases risk of lymph node metastasis in T1 breast cancer. Oncogene. 2005, 24: 4721-4727. 10.1038/sj.onc.1208538CrossRefPubMed
10.
go back to reference Noetzel E, Veeck J, Niederacher D, Galm O, Horn F, Hartmann A, Knuchel R, Dahl E: Promoter methylation-associated loss of ID4 expression is a marker of tumour recurrence in human breast cancer. BMC Cancer. 2008, 8: 154- 10.1186/1471-2407-8-154PubMedCentralCrossRefPubMed Noetzel E, Veeck J, Niederacher D, Galm O, Horn F, Hartmann A, Knuchel R, Dahl E: Promoter methylation-associated loss of ID4 expression is a marker of tumour recurrence in human breast cancer. BMC Cancer. 2008, 8: 154- 10.1186/1471-2407-8-154PubMedCentralCrossRefPubMed
11.
go back to reference Umetani N, Takeuchi H, Fujimoto A, Shinozaki M, Bilchik AJ, Hoon DS: Epigenetic inactivation of ID4 in colorectal carcinomas correlates with poor differentiation and unfavorable prognosis. Clin Cancer Res. 2004, 10: 7475-7483. 10.1158/1078-0432.CCR-04-0689CrossRefPubMed Umetani N, Takeuchi H, Fujimoto A, Shinozaki M, Bilchik AJ, Hoon DS: Epigenetic inactivation of ID4 in colorectal carcinomas correlates with poor differentiation and unfavorable prognosis. Clin Cancer Res. 2004, 10: 7475-7483. 10.1158/1078-0432.CCR-04-0689CrossRefPubMed
12.
go back to reference Chen SS, Claus R, Lucas DM, Yu L, Qian J, Ruppert AS, West DA, Williams KE, Johnson AJ, Sablitzky F: Silencing of the inhibitor of DNA binding protein 4 (ID4) contributes to the pathogenesis of mouse and human CLL. Blood. 2011, 117: 862-871. 10.1182/blood-2010-05-284638PubMedCentralCrossRefPubMed Chen SS, Claus R, Lucas DM, Yu L, Qian J, Ruppert AS, West DA, Williams KE, Johnson AJ, Sablitzky F: Silencing of the inhibitor of DNA binding protein 4 (ID4) contributes to the pathogenesis of mouse and human CLL. Blood. 2011, 117: 862-871. 10.1182/blood-2010-05-284638PubMedCentralCrossRefPubMed
13.
go back to reference Chan AS, Tsui WY, Chen X, Chu KM, Chan TL, Li R, So S, Yuen ST, Leung SY: Downregulation of ID4 by promoter hypermethylation in gastric adenocarcinoma. Oncogene. 2003, 22: 6946-6953. 10.1038/sj.onc.1206799CrossRefPubMed Chan AS, Tsui WY, Chen X, Chu KM, Chan TL, Li R, So S, Yuen ST, Leung SY: Downregulation of ID4 by promoter hypermethylation in gastric adenocarcinoma. Oncogene. 2003, 22: 6946-6953. 10.1038/sj.onc.1206799CrossRefPubMed
14.
go back to reference Wu Q, Hoffmann MJ, Hartmann FH, Schulz WA: Amplification and overexpression of the ID4 gene at 6p22.3 in bladder cancer. Mol Cancer. 2005, 4: 16- 10.1186/1476-4598-4-16PubMedCentralCrossRefPubMed Wu Q, Hoffmann MJ, Hartmann FH, Schulz WA: Amplification and overexpression of the ID4 gene at 6p22.3 in bladder cancer. Mol Cancer. 2005, 4: 16- 10.1186/1476-4598-4-16PubMedCentralCrossRefPubMed
15.
go back to reference Shan L, Yu M, Qiu C, Snyderwine EG: Id4 regulates mammary epithelial cell growth and differentiation and is overexpressed in rat mammary gland carcinomas. Am J Pathol. 2003, 163: 2495-2502. 10.1016/S0002-9440(10)63604-8PubMedCentralCrossRefPubMed Shan L, Yu M, Qiu C, Snyderwine EG: Id4 regulates mammary epithelial cell growth and differentiation and is overexpressed in rat mammary gland carcinomas. Am J Pathol. 2003, 163: 2495-2502. 10.1016/S0002-9440(10)63604-8PubMedCentralCrossRefPubMed
16.
go back to reference Bellido M, Aventin A, Lasa A, Estivill C, Carnicer MJ, Pons C, Matias-Guiu X, Bordes R, Baiget M, Sierra J, Nomdedeu JF: Id4 is deregulated by a t(6;14)(p22;q32) chromosomal translocation in a B-cell lineage acute lymphoblastic leukemia. Haematologica. 2003, 88: 994-1001.PubMed Bellido M, Aventin A, Lasa A, Estivill C, Carnicer MJ, Pons C, Matias-Guiu X, Bordes R, Baiget M, Sierra J, Nomdedeu JF: Id4 is deregulated by a t(6;14)(p22;q32) chromosomal translocation in a B-cell lineage acute lymphoblastic leukemia. Haematologica. 2003, 88: 994-1001.PubMed
17.
go back to reference Russell LJ, Akasaka T, Majid A, Sugimoto KJ, Loraine Karran E, Nagel I, Harder L, Claviez A, Gesk S, Moorman AV: t(6;14)(p22;q32): a new recurrent IGH@ translocation involving ID4 in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Blood. 2008, 111: 387-391. 10.1182/blood-2007-07-092015CrossRefPubMed Russell LJ, Akasaka T, Majid A, Sugimoto KJ, Loraine Karran E, Nagel I, Harder L, Claviez A, Gesk S, Moorman AV: t(6;14)(p22;q32): a new recurrent IGH@ translocation involving ID4 in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Blood. 2008, 111: 387-391. 10.1182/blood-2007-07-092015CrossRefPubMed
18.
go back to reference Sharma P, Chinaranagari S, Patel D, Carey J, Chaudhary J: Epigenetic inactivation of inhibitor of differentiation 4 (Id4) correlates with prostate cancer. Cancer Med. 2012, 2: 176-186.CrossRef Sharma P, Chinaranagari S, Patel D, Carey J, Chaudhary J: Epigenetic inactivation of inhibitor of differentiation 4 (Id4) correlates with prostate cancer. Cancer Med. 2012, 2: 176-186.CrossRef
19.
go back to reference Vinarskaja A, Goering W, Ingenwerth M, Schulz WA: ID4 is frequently downregulated and partially hypermethylated in prostate cancer. World J Urol. 2012, 30: 319-325. 10.1007/s00345-011-0750-8CrossRefPubMed Vinarskaja A, Goering W, Ingenwerth M, Schulz WA: ID4 is frequently downregulated and partially hypermethylated in prostate cancer. World J Urol. 2012, 30: 319-325. 10.1007/s00345-011-0750-8CrossRefPubMed
20.
go back to reference Carey JP, Asirvatham AJ, Galm O, Ghogomu TA, Chaudhary J: Inhibitor of differentiation 4 (Id4) is a potential tumor suppressor in prostate cancer. BMC Cancer. 2009, 9: 173- 10.1186/1471-2407-9-173PubMedCentralCrossRefPubMed Carey JP, Asirvatham AJ, Galm O, Ghogomu TA, Chaudhary J: Inhibitor of differentiation 4 (Id4) is a potential tumor suppressor in prostate cancer. BMC Cancer. 2009, 9: 173- 10.1186/1471-2407-9-173PubMedCentralCrossRefPubMed
21.
go back to reference Logan IR, McNeill HV, Cook S, Lu X, Lunec J, Robson CN: Analysis of the MDM2 antagonist nutlin-3 in human prostate cancer cells. Prostate. 2007, 67: 900-906. 10.1002/pros.20568CrossRefPubMed Logan IR, McNeill HV, Cook S, Lu X, Lunec J, Robson CN: Analysis of the MDM2 antagonist nutlin-3 in human prostate cancer cells. Prostate. 2007, 67: 900-906. 10.1002/pros.20568CrossRefPubMed
22.
go back to reference Isaacs WB, Carter BS, Ewing CM: Wild-type p53 suppresses growth of human prostate cancer cells containing mutant p53 alleles. Cancer Res. 1991, 51: 4716-4720.PubMed Isaacs WB, Carter BS, Ewing CM: Wild-type p53 suppresses growth of human prostate cancer cells containing mutant p53 alleles. Cancer Res. 1991, 51: 4716-4720.PubMed
23.
go back to reference Joerger AC, Fersht AR: Structure-function-rescue: the diverse nature of common p53 cancer mutants. Oncogene. 2007, 26: 2226-2242. 10.1038/sj.onc.1210291CrossRefPubMed Joerger AC, Fersht AR: Structure-function-rescue: the diverse nature of common p53 cancer mutants. Oncogene. 2007, 26: 2226-2242. 10.1038/sj.onc.1210291CrossRefPubMed
24.
go back to reference Cho Y, Gorina S, Jeffrey PD, Pavletich NP: Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science. 1994, 265: 346-355. 10.1126/science.8023157CrossRefPubMed Cho Y, Gorina S, Jeffrey PD, Pavletich NP: Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science. 1994, 265: 346-355. 10.1126/science.8023157CrossRefPubMed
25.
go back to reference Campomenosi P, Monti P, Aprile A, Abbondandolo A, Frebourg T, Gold B, Crook T, Inga A, Resnick MA, Iggo R, Fronza G: p53 mutants can often transactivate promoters containing a p21 but not Bax or PIG3 responsive elements. Oncogene. 2001, 20: 3573-3579. 10.1038/sj.onc.1204468CrossRefPubMed Campomenosi P, Monti P, Aprile A, Abbondandolo A, Frebourg T, Gold B, Crook T, Inga A, Resnick MA, Iggo R, Fronza G: p53 mutants can often transactivate promoters containing a p21 but not Bax or PIG3 responsive elements. Oncogene. 2001, 20: 3573-3579. 10.1038/sj.onc.1204468CrossRefPubMed
26.
go back to reference Perez RE, Knights CD, Sahu G, Catania J, Kolukula VK, Stoler D, Graessmann A, Ogryzko V, Pishvaian M, Albanese C, Avantaggiati ML: Restoration of DNA-binding and growth-suppressive activity of mutant forms of p53 via a PCAF-mediated acetylation pathway. J Cell Physiol. 2010, 225: 394-405. 10.1002/jcp.22285PubMedCentralCrossRefPubMed Perez RE, Knights CD, Sahu G, Catania J, Kolukula VK, Stoler D, Graessmann A, Ogryzko V, Pishvaian M, Albanese C, Avantaggiati ML: Restoration of DNA-binding and growth-suppressive activity of mutant forms of p53 via a PCAF-mediated acetylation pathway. J Cell Physiol. 2010, 225: 394-405. 10.1002/jcp.22285PubMedCentralCrossRefPubMed
27.
go back to reference Chi SG, deVere White RW, Meyers FJ, Siders DB, Lee F, Gumerlock PH: p53 in prostate cancer: frequent expressed transition mutations. J Natl Cancer Inst. 1994, 86: 926-933. 10.1093/jnci/86.12.926CrossRefPubMed Chi SG, deVere White RW, Meyers FJ, Siders DB, Lee F, Gumerlock PH: p53 in prostate cancer: frequent expressed transition mutations. J Natl Cancer Inst. 1994, 86: 926-933. 10.1093/jnci/86.12.926CrossRefPubMed
28.
go back to reference Ecke TH, Schlechte HH, Schiemenz K, Sachs MD, Lenk SV, Rudolph BD, Loening SA: TP53 gene mutations in prostate cancer progression. Anticancer Res. 2010, 30: 1579-1586.PubMed Ecke TH, Schlechte HH, Schiemenz K, Sachs MD, Lenk SV, Rudolph BD, Loening SA: TP53 gene mutations in prostate cancer progression. Anticancer Res. 2010, 30: 1579-1586.PubMed
29.
go back to reference Kaeser MD, Iggo RD: Chromatin immunoprecipitation analysis fails to support the latency model for regulation of p53 DNA binding activity in vivo. Proc Natl Acad Sci U S A. 2002, 99: 95-100. 10.1073/pnas.012283399PubMedCentralCrossRefPubMed Kaeser MD, Iggo RD: Chromatin immunoprecipitation analysis fails to support the latency model for regulation of p53 DNA binding activity in vivo. Proc Natl Acad Sci U S A. 2002, 99: 95-100. 10.1073/pnas.012283399PubMedCentralCrossRefPubMed
30.
go back to reference Brekman A, Singh KE, Polotskaia A, Kundu N, Bargonetti J: A p53-independent role of Mdm2 in estrogen-mediated activation of breast cancer cell proliferation. Breast Cancer Res. 2011, 13: R3- 10.1186/bcr2804PubMedCentralCrossRefPubMed Brekman A, Singh KE, Polotskaia A, Kundu N, Bargonetti J: A p53-independent role of Mdm2 in estrogen-mediated activation of breast cancer cell proliferation. Breast Cancer Res. 2011, 13: R3- 10.1186/bcr2804PubMedCentralCrossRefPubMed
31.
go back to reference Matys V, Fricke E, Geffers R, Gossling E, Haubrock M, Hehl R, Hornischer K, Karas D, Kel AE, Kel-Margoulis OV: TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res. 2003, 31: 374-378. 10.1093/nar/gkg108PubMedCentralCrossRefPubMed Matys V, Fricke E, Geffers R, Gossling E, Haubrock M, Hehl R, Hornischer K, Karas D, Kel AE, Kel-Margoulis OV: TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res. 2003, 31: 374-378. 10.1093/nar/gkg108PubMedCentralCrossRefPubMed
32.
go back to reference Sharma P, Patel D, Chaudhary J: Id1 and Id3 expression is associated with increasing grade of prostate cancer: Id3 preferentially regulates CDKN1B. Cancer Med. 2012, 1: 187-197. 10.1002/cam4.19PubMedCentralCrossRefPubMed Sharma P, Patel D, Chaudhary J: Id1 and Id3 expression is associated with increasing grade of prostate cancer: Id3 preferentially regulates CDKN1B. Cancer Med. 2012, 1: 187-197. 10.1002/cam4.19PubMedCentralCrossRefPubMed
33.
go back to reference El-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B: Definition of a consensus binding site for p53. Nat Genet. 1992, 1: 45-49. 10.1038/ng0492-45CrossRefPubMed El-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B: Definition of a consensus binding site for p53. Nat Genet. 1992, 1: 45-49. 10.1038/ng0492-45CrossRefPubMed
34.
go back to reference Patel D, Chaudhary J: Increased expression of bHLH transcription factor E2A (TCF3) in prostate cancer promotes proliferation and confers resistance to doxorubicin induced apoptosis. Biochem Biophys Res Commun. 2012, 422: 146-151. 10.1016/j.bbrc.2012.04.126PubMedCentralCrossRefPubMed Patel D, Chaudhary J: Increased expression of bHLH transcription factor E2A (TCF3) in prostate cancer promotes proliferation and confers resistance to doxorubicin induced apoptosis. Biochem Biophys Res Commun. 2012, 422: 146-151. 10.1016/j.bbrc.2012.04.126PubMedCentralCrossRefPubMed
35.
go back to reference Gottlieb E, Armour SM, Harris MH, Thompson CB: Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death Differ. 2003, 10: 709-717. 10.1038/sj.cdd.4401231CrossRefPubMed Gottlieb E, Armour SM, Harris MH, Thompson CB: Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death Differ. 2003, 10: 709-717. 10.1038/sj.cdd.4401231CrossRefPubMed
36.
go back to reference Wolter KG, Hsu YT, Smith CL, Nechushtan A, Xi XG, Youle RJ: Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol. 1997, 139: 1281-1292. 10.1083/jcb.139.5.1281PubMedCentralCrossRefPubMed Wolter KG, Hsu YT, Smith CL, Nechushtan A, Xi XG, Youle RJ: Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol. 1997, 139: 1281-1292. 10.1083/jcb.139.5.1281PubMedCentralCrossRefPubMed
37.
go back to reference Peyerl FW, Dai S, Murphy GA, Crawford F, White J, Marrack P, Kappler JW: Elucidation of some Bax conformational changes through crystallization of an antibody-peptide complex. Cell Death Differ. 2007, 14: 447-452. 10.1038/sj.cdd.4402025CrossRefPubMed Peyerl FW, Dai S, Murphy GA, Crawford F, White J, Marrack P, Kappler JW: Elucidation of some Bax conformational changes through crystallization of an antibody-peptide complex. Cell Death Differ. 2007, 14: 447-452. 10.1038/sj.cdd.4402025CrossRefPubMed
38.
go back to reference Tang HY, Zhao K, Pizzolato JF, Fonarev M, Langer JC, Manfredi JJ: Constitutive expression of the cyclin-dependent kinase inhibitor p21 is transcriptionally regulated by the tumor suppressor protein p53. J Biol Chem. 1998, 273: 29156-29163. 10.1074/jbc.273.44.29156CrossRefPubMed Tang HY, Zhao K, Pizzolato JF, Fonarev M, Langer JC, Manfredi JJ: Constitutive expression of the cyclin-dependent kinase inhibitor p21 is transcriptionally regulated by the tumor suppressor protein p53. J Biol Chem. 1998, 273: 29156-29163. 10.1074/jbc.273.44.29156CrossRefPubMed
40.
41.
go back to reference Van Veldhuizen PJ, Sadasivan R, Garcia F, Austenfeld MS, Stephens RL: Mutant p53 expression in prostate carcinoma. Prostate. 1993, 22: 23-30. 10.1002/pros.2990220104CrossRefPubMed Van Veldhuizen PJ, Sadasivan R, Garcia F, Austenfeld MS, Stephens RL: Mutant p53 expression in prostate carcinoma. Prostate. 1993, 22: 23-30. 10.1002/pros.2990220104CrossRefPubMed
42.
go back to reference Zhu H, Mao Q, Lin Y, Yang K, Xie L: RNA interference targeting mutant p53 inhibits growth and induces apoptosis in DU145 human prostate cancer cells. Med Oncol. 2011, 28 (Suppl 1): S381-S387.CrossRefPubMed Zhu H, Mao Q, Lin Y, Yang K, Xie L: RNA interference targeting mutant p53 inhibits growth and induces apoptosis in DU145 human prostate cancer cells. Med Oncol. 2011, 28 (Suppl 1): S381-S387.CrossRefPubMed
43.
go back to reference Zauberman A, Flusberg D, Haupt Y, Barak Y, Oren M: A functional p53-responsive intronic promoter is contained within the human mdm2 gene. Nucleic Acids Res. 1995, 23: 2584-2592. 10.1093/nar/23.14.2584PubMedCentralCrossRefPubMed Zauberman A, Flusberg D, Haupt Y, Barak Y, Oren M: A functional p53-responsive intronic promoter is contained within the human mdm2 gene. Nucleic Acids Res. 1995, 23: 2584-2592. 10.1093/nar/23.14.2584PubMedCentralCrossRefPubMed
44.
go back to reference Barak Y, Gottlieb E, Juven-Gershon T, Oren M: Regulation of mdm2 expression by p53: alternative promoters produce transcripts with nonidentical translation potential. Genes Dev. 1994, 8: 1739-1749. 10.1101/gad.8.15.1739CrossRefPubMed Barak Y, Gottlieb E, Juven-Gershon T, Oren M: Regulation of mdm2 expression by p53: alternative promoters produce transcripts with nonidentical translation potential. Genes Dev. 1994, 8: 1739-1749. 10.1101/gad.8.15.1739CrossRefPubMed
45.
46.
go back to reference Knights CD, Catania J, Di Giovanni S, Muratoglu S, Perez R, Swartzbeck A, Quong AA, Zhang X, Beerman T, Pestell RG, Avantaggiati ML: Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate. J Cell Biol. 2006, 173: 533-544. 10.1083/jcb.200512059PubMedCentralCrossRefPubMed Knights CD, Catania J, Di Giovanni S, Muratoglu S, Perez R, Swartzbeck A, Quong AA, Zhang X, Beerman T, Pestell RG, Avantaggiati ML: Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate. J Cell Biol. 2006, 173: 533-544. 10.1083/jcb.200512059PubMedCentralCrossRefPubMed
47.
go back to reference Gu W, Roeder RG: Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell. 1997, 90: 595-606. 10.1016/S0092-8674(00)80521-8CrossRefPubMed Gu W, Roeder RG: Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell. 1997, 90: 595-606. 10.1016/S0092-8674(00)80521-8CrossRefPubMed
48.
go back to reference Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P: The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat. 2002, 19: 607-614. 10.1002/humu.10081CrossRefPubMed Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P: The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat. 2002, 19: 607-614. 10.1002/humu.10081CrossRefPubMed
49.
go back to reference Joerger AC, Fersht AR: Structural biology of the tumor suppressor p53. Annu Rev Biochem. 2008, 77: 557-582. 10.1146/annurev.biochem.77.060806.091238CrossRefPubMed Joerger AC, Fersht AR: Structural biology of the tumor suppressor p53. Annu Rev Biochem. 2008, 77: 557-582. 10.1146/annurev.biochem.77.060806.091238CrossRefPubMed
50.
go back to reference Gurova KV, Rokhlin OW, Budanov AV, Burdelya LG, Chumakov PM, Cohen MB, Gudkov AV: Cooperation of two mutant p53 alleles contributes to Fas resistance of prostate carcinoma cells. Cancer Res. 2003, 63: 2905-2912.PubMed Gurova KV, Rokhlin OW, Budanov AV, Burdelya LG, Chumakov PM, Cohen MB, Gudkov AV: Cooperation of two mutant p53 alleles contributes to Fas resistance of prostate carcinoma cells. Cancer Res. 2003, 63: 2905-2912.PubMed
51.
go back to reference Zhang Z, Wang H, Li M, Agrawal S, Chen X, Zhang R: MDM2 is a negative regulator of p21WAF1/CIP1, independent of p53. J Biol Chem. 2004, 279: 16000-16006. 10.1074/jbc.M312264200CrossRefPubMed Zhang Z, Wang H, Li M, Agrawal S, Chen X, Zhang R: MDM2 is a negative regulator of p21WAF1/CIP1, independent of p53. J Biol Chem. 2004, 279: 16000-16006. 10.1074/jbc.M312264200CrossRefPubMed
52.
go back to reference Lu Z, Hunter T: Ubiquitylation and proteasomal degradation of the p21(Cip1), p27(Kip1) and p57(Kip2) CDK inhibitors. Cell Cycle. 2010, 9: 2342-2352. 10.4161/cc.9.12.11988PubMedCentralCrossRefPubMed Lu Z, Hunter T: Ubiquitylation and proteasomal degradation of the p21(Cip1), p27(Kip1) and p57(Kip2) CDK inhibitors. Cell Cycle. 2010, 9: 2342-2352. 10.4161/cc.9.12.11988PubMedCentralCrossRefPubMed
53.
54.
go back to reference Ito A, Lai CH, Zhao X, Saito S, Hamilton MH, Appella E, Yao TP: p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO J. 2001, 20: 1331-1340. 10.1093/emboj/20.6.1331PubMedCentralCrossRefPubMed Ito A, Lai CH, Zhao X, Saito S, Hamilton MH, Appella E, Yao TP: p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO J. 2001, 20: 1331-1340. 10.1093/emboj/20.6.1331PubMedCentralCrossRefPubMed
55.
go back to reference Fontemaggi G, Dell’Orso S, Trisciuoglio D, Shay T, Melucci E, Fazi F, Terrenato I, Mottolese M, Muti P, Domany E: The execution of the transcriptional axis mutant p53, E2F1 and ID4 promotes tumor neo-angiogenesis. Nat Struct Mol Biol. 2009, 16: 1086-1093. 10.1038/nsmb.1669CrossRefPubMed Fontemaggi G, Dell’Orso S, Trisciuoglio D, Shay T, Melucci E, Fazi F, Terrenato I, Mottolese M, Muti P, Domany E: The execution of the transcriptional axis mutant p53, E2F1 and ID4 promotes tumor neo-angiogenesis. Nat Struct Mol Biol. 2009, 16: 1086-1093. 10.1038/nsmb.1669CrossRefPubMed
56.
go back to reference Coradini D, Fornili M, Ambrogi F, Boracchi P, Biganzoli E: TP53 mutation, epithelial-mesenchymal transition, and stemlike features in breast cancer subtypes. J Biomed Biotechnol. 2012, 2012: 254085-PubMedCentralCrossRefPubMed Coradini D, Fornili M, Ambrogi F, Boracchi P, Biganzoli E: TP53 mutation, epithelial-mesenchymal transition, and stemlike features in breast cancer subtypes. J Biomed Biotechnol. 2012, 2012: 254085-PubMedCentralCrossRefPubMed
57.
go back to reference Puca R, Nardinocchi L, Porru M, Simon AJ, Rechavi G, Leonetti C, Givol D, D’Orazi G: Restoring p53 active conformation by zinc increases the response of mutant p53 tumor cells to anticancer drugs. Cell Cycle. 2011, 10: 1679-1689. 10.4161/cc.10.10.15642CrossRefPubMed Puca R, Nardinocchi L, Porru M, Simon AJ, Rechavi G, Leonetti C, Givol D, D’Orazi G: Restoring p53 active conformation by zinc increases the response of mutant p53 tumor cells to anticancer drugs. Cell Cycle. 2011, 10: 1679-1689. 10.4161/cc.10.10.15642CrossRefPubMed
Metadata
Title
Id4 dependent acetylation restores mutant-p53 transcriptional activity
Authors
Ashley E Knowell
Divya Patel
Derrick J Morton
Pankaj Sharma
Shanora Glymph
Jaideep Chaudhary
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2013
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-12-161

Other articles of this Issue 1/2013

Molecular Cancer 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine