Skip to main content
Top
Published in: Molecular Cancer 1/2013

Open Access 01-12-2013 | Research

The novel BH3 α-helix mimetic JY-1-106 induces apoptosis in a subset of cancer cells (lung cancer, colon cancer and mesothelioma) by disrupting Bcl-xL and Mcl-1 protein–protein interactions with Bak

Authors: Xiaobo Cao, Jeremy L Yap, M Karen Newell-Rogers, Chander Peddaboina, Weihua Jiang, Harry T Papaconstantinou, Dan Jupitor, Arun Rai, Kwan-Young Jung, Richard P Tubin, Wenbo Yu, Kenno Vanommeslaeghe, Paul T Wilder, Alexander D MacKerell JR, Steven Fletcher, Roy W Smythe

Published in: Molecular Cancer | Issue 1/2013

Login to get access

Abstract

Background

It has been shown in many solid tumors that the overexpression of the pro-survival Bcl-2 family members Bcl-2/Bcl-xL and Mcl-1 confers resistance to a variety of chemotherapeutic agents. We designed the BH3 α-helix mimetic JY-1-106 to engage the hydrophobic BH3-binding grooves on the surfaces of both Bcl-xL and Mcl-1.

Methods

JY-1-106–protein complexes were studied using molecular dynamics (MD) simulations and the SILCS methodology. We have evaluated the in vitro effects of JY-1-106 by using a fluorescence polarization (FP) assay, an XTT assay, apoptosis assays, and immunoprecipitation and western-blot assays. A preclinical human cancer xenograft model was used to test the efficacy of JY-1-106 in vivo.

Results

MD and SILCS simulations of the JY-1-106–protein complexes indicated the importance of the aliphatic side chains of JY-1-106 to binding and successfully predicted the improved affinity of the ligand for Bcl-xL over Mcl-1. Ligand binding affinities were measured via an FP assay using a fluorescently labeled Bak-BH3 peptide in vitro. Apoptosis induction via JY-1-106 was evidenced by TUNEL assay and PARP cleavage as well as by Bax–Bax dimerization. Release of multi-domain Bak from its inhibitory binding to Bcl-2/Bcl-xL and Mcl-1 using JY-1-106 was detected via immunoprecipitation (IP) western blotting.
At the cellular level, we compared the growth proliferation IC50s of JY-1-106 and ABT-737 in multiple cancer cell lines with various Bcl-xL and Mcl-1 expression levels. JY-1-106 effectively induced cell death regardless of the Mcl-1 expression level in ABT-737 resistant solid tumor cells, whilst toxicity toward normal human endothelial cells was limited. Furthermore, synergistic effects were observed in A549 cells using a combination of JY-1-106 and multiple chemotherapeutic agents. We also observed that JY-1-106 was a very effective agent in inducing apoptosis in metabolically stressed tumors. Finally, JY-1-106 was evaluated in a tumor-bearing nude mouse model, and was found to effectively repress tumor growth. Strong TUNEL signals in the tumor cells demonstrated the effectiveness of JY-1-106 in this animal model. No significant side effects were observed in mouse organs after multiple injections.

Conclusions

Taken together, these observations demonstrate that JY-1-106 is an effective pan-Bcl-2 inhibitor with very promising clinical potential.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ: Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature. 1990, 348: 334-336. 10.1038/348334a0CrossRefPubMed Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ: Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature. 1990, 348: 334-336. 10.1038/348334a0CrossRefPubMed
2.
go back to reference Amundson SA, Myers TG, Scudiero D, Kitada S, Reed JC, Fornace AJ: An informatics approach identifying markers of chemosensitivity in human cancer cell lines. Cancer Res. 2000, 60: 6101-6110.PubMed Amundson SA, Myers TG, Scudiero D, Kitada S, Reed JC, Fornace AJ: An informatics approach identifying markers of chemosensitivity in human cancer cell lines. Cancer Res. 2000, 60: 6101-6110.PubMed
3.
go back to reference Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ: An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature. 2005, 435: 677-681. 10.1038/nature03579CrossRefPubMed Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ: An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature. 2005, 435: 677-681. 10.1038/nature03579CrossRefPubMed
4.
go back to reference Wong M, Tan N, Zha J, Peale FV, Yue P, Fairbrother WJ, Belmont LD: Navitoclax (ABT-263) reduces Bcl-x(L)-mediated chemoresistance in ovarian cancer models. Mol Cancer Ther. 2012, 11: 1026-1035. 10.1158/1535-7163.MCT-11-0693CrossRefPubMed Wong M, Tan N, Zha J, Peale FV, Yue P, Fairbrother WJ, Belmont LD: Navitoclax (ABT-263) reduces Bcl-x(L)-mediated chemoresistance in ovarian cancer models. Mol Cancer Ther. 2012, 11: 1026-1035. 10.1158/1535-7163.MCT-11-0693CrossRefPubMed
5.
go back to reference Peddaboina C, Jupiter D, Fletcher S, Yap JL, Rai A, Tobin R, Jiang W, Rascoe P, Rogers MK, Smythe WR, Cao X: The downregulation of Mcl-1 via USP9X inhibition sensitizes solid tumors to Bcl-xl inhibition. BMC Cancer. 2012, 12: 541- 10.1186/1471-2407-12-541PubMedCentralCrossRefPubMed Peddaboina C, Jupiter D, Fletcher S, Yap JL, Rai A, Tobin R, Jiang W, Rascoe P, Rogers MK, Smythe WR, Cao X: The downregulation of Mcl-1 via USP9X inhibition sensitizes solid tumors to Bcl-xl inhibition. BMC Cancer. 2012, 12: 541- 10.1186/1471-2407-12-541PubMedCentralCrossRefPubMed
6.
go back to reference Rascoe PA, Jupiter D, Cao X, Littlejohn JE, Smythe WR: Molecular pathogenesis of malignant mesothelioma. Expert Rev Mol Med. 2012, 14: e12-CrossRefPubMed Rascoe PA, Jupiter D, Cao X, Littlejohn JE, Smythe WR: Molecular pathogenesis of malignant mesothelioma. Expert Rev Mol Med. 2012, 14: e12-CrossRefPubMed
7.
go back to reference Mohammad RM, Goustin AS, Aboukameel A, Chen B, Banerjee S, Wang G, Nikolovska-Coleska Z, Wang S, Al-Katib A: Preclinical studies of TW-37, a new nonpeptidic small-molecule inhibitor of Bcl-2, in diffuse large cell lymphoma xenograft model reveal drug action on both Bcl-2 and Mcl-1. Clin Cancer Res. 2007, 13: 2226-2235. 10.1158/1078-0432.CCR-06-1574CrossRefPubMed Mohammad RM, Goustin AS, Aboukameel A, Chen B, Banerjee S, Wang G, Nikolovska-Coleska Z, Wang S, Al-Katib A: Preclinical studies of TW-37, a new nonpeptidic small-molecule inhibitor of Bcl-2, in diffuse large cell lymphoma xenograft model reveal drug action on both Bcl-2 and Mcl-1. Clin Cancer Res. 2007, 13: 2226-2235. 10.1158/1078-0432.CCR-06-1574CrossRefPubMed
8.
go back to reference Feng W, Huang S, Wu H, Zhang M: Molecular basis of Bcl-xL’s target recognition versatility revealed by the structure of Bcl-xL in complex with the BH3 domain of Beclin-1. J Mol Biol. 2007, 372: 223-235. 10.1016/j.jmb.2007.06.069CrossRefPubMed Feng W, Huang S, Wu H, Zhang M: Molecular basis of Bcl-xL’s target recognition versatility revealed by the structure of Bcl-xL in complex with the BH3 domain of Beclin-1. J Mol Biol. 2007, 372: 223-235. 10.1016/j.jmb.2007.06.069CrossRefPubMed
9.
go back to reference Azmi AS, Wang Z, Philip PA, Mohammad RM, Sarkar FH: Emerging Bcl-2 inhibitors for the treatment of cancer. Expert Opin Emerg Drugs. 2011, 16: 59-70. 10.1517/14728214.2010.515210PubMedCentralCrossRefPubMed Azmi AS, Wang Z, Philip PA, Mohammad RM, Sarkar FH: Emerging Bcl-2 inhibitors for the treatment of cancer. Expert Opin Emerg Drugs. 2011, 16: 59-70. 10.1517/14728214.2010.515210PubMedCentralCrossRefPubMed
10.
go back to reference Masood A, Azmi AS, Mohammad RM: Small molecule inhibitors of Bcl-2 family proteins for pancreatic cancer therapy. Cancers (Basel). 2011, 3: 1527-1549. 10.3390/cancers3021527.CrossRef Masood A, Azmi AS, Mohammad RM: Small molecule inhibitors of Bcl-2 family proteins for pancreatic cancer therapy. Cancers (Basel). 2011, 3: 1527-1549. 10.3390/cancers3021527.CrossRef
11.
go back to reference Hawley R-G, Chen Y, Riz I, Zeng C: An Integrated Bioinformatics and Computational Biology Approach Identifies New BH3-Only Protein Candidates. Open Biol J. 2012, 5: 6-16. 10.2174/1874196701205010006PubMedCentralCrossRefPubMed Hawley R-G, Chen Y, Riz I, Zeng C: An Integrated Bioinformatics and Computational Biology Approach Identifies New BH3-Only Protein Candidates. Open Biol J. 2012, 5: 6-16. 10.2174/1874196701205010006PubMedCentralCrossRefPubMed
12.
go back to reference Sattler M, Liang H, Nettesheim D, Meadows RP, Harlan JE, Eberstadt M, Yoon HS, Shuker SB, Chang BS, Minn AJ, Thompson CB, Fesik SW:Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science. 1997, 275: 983-986. 10.1126/science.275.5302.983CrossRefPubMed Sattler M, Liang H, Nettesheim D, Meadows RP, Harlan JE, Eberstadt M, Yoon HS, Shuker SB, Chang BS, Minn AJ, Thompson CB, Fesik SW:Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science. 1997, 275: 983-986. 10.1126/science.275.5302.983CrossRefPubMed
13.
go back to reference Kazi A, Sun J, Doi K, Sung SS, Takahashi Y, Yin H, Rodriguez JM, Becerril J, Berndt N, Hamilton AD, Wang HG, Sebti SM: The BH3 α-Helical Mimic BH3-M6 Disrupts Bcl-XL, Bcl-2, and MCL-1 Protein-Protein Interactions with Bax, Bak, Bad, or Bim and Induces Apoptosis in a Bax- and Bim-dependent Manner. J Biol Chem. 2011, 286: 9382-9392. 10.1074/jbc.M110.203638PubMedCentralCrossRefPubMed Kazi A, Sun J, Doi K, Sung SS, Takahashi Y, Yin H, Rodriguez JM, Becerril J, Berndt N, Hamilton AD, Wang HG, Sebti SM: The BH3 α-Helical Mimic BH3-M6 Disrupts Bcl-XL, Bcl-2, and MCL-1 Protein-Protein Interactions with Bax, Bak, Bad, or Bim and Induces Apoptosis in a Bax- and Bim-dependent Manner. J Biol Chem. 2011, 286: 9382-9392. 10.1074/jbc.M110.203638PubMedCentralCrossRefPubMed
14.
go back to reference Chen J, Zhou H, Aguilar A, Liu L, Bai L, McEachern D, Yang CY, Meagher JL, Stuckey JA, Wang S: Structure-based discovery of BM-957 as a potent small-molecule inhibitor of Bcl-2 and Bcl-xL capable of achieving complete tumor regression. J Med Chem. 2012, 55: 8502-8514. 10.1021/jm3010306PubMedCentralCrossRefPubMed Chen J, Zhou H, Aguilar A, Liu L, Bai L, McEachern D, Yang CY, Meagher JL, Stuckey JA, Wang S: Structure-based discovery of BM-957 as a potent small-molecule inhibitor of Bcl-2 and Bcl-xL capable of achieving complete tumor regression. J Med Chem. 2012, 55: 8502-8514. 10.1021/jm3010306PubMedCentralCrossRefPubMed
15.
go back to reference Yap JL, Cao X, Vanommeslaeghe K, Jung KY, Peddaboina C, Wilder PT, Nan A, MacKerell AD, Smythe WR, Fletcher S: Relaxation of the rigid backbone of an oligoamide-foldamer-based alpha-helix mimetic: identification of potent Bcl-xL inhibitors. Org Biomol Chem. 2012, 10: 2928-2933. 10.1039/c2ob07125hCrossRefPubMed Yap JL, Cao X, Vanommeslaeghe K, Jung KY, Peddaboina C, Wilder PT, Nan A, MacKerell AD, Smythe WR, Fletcher S: Relaxation of the rigid backbone of an oligoamide-foldamer-based alpha-helix mimetic: identification of potent Bcl-xL inhibitors. Org Biomol Chem. 2012, 10: 2928-2933. 10.1039/c2ob07125hCrossRefPubMed
16.
go back to reference Guvench O, MacKerell AD: Computational Fragment-Based Binding Site Identification by Ligand Competitive Saturation. PLoS Comput Biol. 2009, 5: e1000435- 10.1371/journal.pcbi.1000435PubMedCentralCrossRefPubMed Guvench O, MacKerell AD: Computational Fragment-Based Binding Site Identification by Ligand Competitive Saturation. PLoS Comput Biol. 2009, 5: e1000435- 10.1371/journal.pcbi.1000435PubMedCentralCrossRefPubMed
17.
go back to reference Raman EP, Yu W, Guvench O, MacKerell AD: Reproducing Crystal Binding Modes of Ligand Functional Groups Using Site-Identification by Ligand Competitive Saturation (SILCS) Simulations. J Chem Inf Model. 2011, 51: 877-896. 10.1021/ci100462tPubMedCentralCrossRefPubMed Raman EP, Yu W, Guvench O, MacKerell AD: Reproducing Crystal Binding Modes of Ligand Functional Groups Using Site-Identification by Ligand Competitive Saturation (SILCS) Simulations. J Chem Inf Model. 2011, 51: 877-896. 10.1021/ci100462tPubMedCentralCrossRefPubMed
18.
go back to reference Yang C-Y, Wang S: Analysis of Flexibility and Hotspots in Bcl-xL and Mcl-1 Proteins for the Design of Selective Small-Molecule Inhibitors. ACS Med Chem Lett. 2012, 3: 308-312. 10.1021/ml200301w.PubMedCentralCrossRefPubMed Yang C-Y, Wang S: Analysis of Flexibility and Hotspots in Bcl-xL and Mcl-1 Proteins for the Design of Selective Small-Molecule Inhibitors. ACS Med Chem Lett. 2012, 3: 308-312. 10.1021/ml200301w.PubMedCentralCrossRefPubMed
19.
go back to reference Zhang Q, Lu H: Identification of Small Molecules Affecting p53-MDM2/MDMX Interaction by Fluorescence Polarization. p53 Protocols. Volume 962. 2013, 95-111. Humana Press; Methods in Molecular Biology.CrossRef Zhang Q, Lu H: Identification of Small Molecules Affecting p53-MDM2/MDMX Interaction by Fluorescence Polarization. p53 Protocols. Volume 962. 2013, 95-111. Humana Press; Methods in Molecular Biology.CrossRef
20.
go back to reference Yin XM, Oltvai ZN, Korsmeyer SJ: BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature. 1994, 369: 321-333. 10.1038/369321a0CrossRefPubMed Yin XM, Oltvai ZN, Korsmeyer SJ: BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature. 1994, 369: 321-333. 10.1038/369321a0CrossRefPubMed
21.
go back to reference Day CL, Smits C, Fan FC, Lee EF, Fairlie WD, Hinds MG: Structure of the BH3 Domains from the p53-Inducible BH3-Only Proteins Noxa and Puma in Complex with Mcl-1. J Mol Biol. 2008, 380: 958-971. 10.1016/j.jmb.2008.05.071CrossRefPubMed Day CL, Smits C, Fan FC, Lee EF, Fairlie WD, Hinds MG: Structure of the BH3 Domains from the p53-Inducible BH3-Only Proteins Noxa and Puma in Complex with Mcl-1. J Mol Biol. 2008, 380: 958-971. 10.1016/j.jmb.2008.05.071CrossRefPubMed
22.
go back to reference Elkholi R, Floros KV, Chipuk JE: The Role of BH3-Only Proteins in Tumor Cell Development, Signaling, and Treatment. Genes & Cancer. 2011, 2: 523-537. 10.1177/1947601911417177CrossRef Elkholi R, Floros KV, Chipuk JE: The Role of BH3-Only Proteins in Tumor Cell Development, Signaling, and Treatment. Genes & Cancer. 2011, 2: 523-537. 10.1177/1947601911417177CrossRef
23.
go back to reference Kutuk O, Letai A: Alteration of the Mitochondrial Apoptotic Pathway Is Key to Acquired Paclitaxel Resistance and Can Be Reversed by ABT-737. Cancer Res. 2008, 68: 7985-7994. 10.1158/0008-5472.CAN-08-1418PubMedCentralCrossRefPubMed Kutuk O, Letai A: Alteration of the Mitochondrial Apoptotic Pathway Is Key to Acquired Paclitaxel Resistance and Can Be Reversed by ABT-737. Cancer Res. 2008, 68: 7985-7994. 10.1158/0008-5472.CAN-08-1418PubMedCentralCrossRefPubMed
24.
go back to reference Mason EF, Rathmell JC: Cell metabolism: An essential link between cell growth and apoptosis. Biochimica et Biophysica Acta (BBA) Molecular Cell Research. 2011, 1813: 645-654. 10.1016/j.bbamcr.2010.08.011.CrossRef Mason EF, Rathmell JC: Cell metabolism: An essential link between cell growth and apoptosis. Biochimica et Biophysica Acta (BBA) Molecular Cell Research. 2011, 1813: 645-654. 10.1016/j.bbamcr.2010.08.011.CrossRef
25.
go back to reference Alavian KN, Li H, Collis L, Bonanni L, Zeng L, Sacchetti S, Lazrove E, Nabili P, Flaherty B, Graham M: Bcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F1FO ATP synthase. Nat Cell Biol. 2011, 13: 1224-1233. 10.1038/ncb2330PubMedCentralCrossRefPubMed Alavian KN, Li H, Collis L, Bonanni L, Zeng L, Sacchetti S, Lazrove E, Nabili P, Flaherty B, Graham M: Bcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F1FO ATP synthase. Nat Cell Biol. 2011, 13: 1224-1233. 10.1038/ncb2330PubMedCentralCrossRefPubMed
26.
go back to reference Perciavalle RM, Stewart DP, Koss B, Lynch J, Milasta S, Bathina M, Temirov J, Cleland MM, Pelletier S, Schuetz JD: Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to respiration. Nat Cell Biol. 2012, 14: 575-583. 10.1038/ncb2488PubMedCentralCrossRefPubMed Perciavalle RM, Stewart DP, Koss B, Lynch J, Milasta S, Bathina M, Temirov J, Cleland MM, Pelletier S, Schuetz JD: Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to respiration. Nat Cell Biol. 2012, 14: 575-583. 10.1038/ncb2488PubMedCentralCrossRefPubMed
27.
go back to reference Brooks BR, Brooks CL, Mackerell AD, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S: CHARMM: the biomolecular simulation program. J Comput Chem. 2009, 30: 1545-1614. 10.1002/jcc.21287PubMedCentralCrossRefPubMed Brooks BR, Brooks CL, Mackerell AD, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S: CHARMM: the biomolecular simulation program. J Comput Chem. 2009, 30: 1545-1614. 10.1002/jcc.21287PubMedCentralCrossRefPubMed
28.
go back to reference Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K: Scalable molecular dynamics with NAMD. J Comput Chem. 2005, 26: 1781-1802. 10.1002/jcc.20289PubMedCentralCrossRefPubMed Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K: Scalable molecular dynamics with NAMD. J Comput Chem. 2005, 26: 1781-1802. 10.1002/jcc.20289PubMedCentralCrossRefPubMed
29.
go back to reference Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD: CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem. 2010, 31: 671-690.PubMedCentralPubMed Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD: CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem. 2010, 31: 671-690.PubMedCentralPubMed
30.
go back to reference Yu W, He X, Vanommeslaeghe K, MacKerell AD: Extension of the CHARMM general force field to sulfonyl-containing compounds and its utility in biomolecular simulations. J Comput Chem. 2012, 33: 2451-2468. 10.1002/jcc.23067PubMedCentralCrossRefPubMed Yu W, He X, Vanommeslaeghe K, MacKerell AD: Extension of the CHARMM general force field to sulfonyl-containing compounds and its utility in biomolecular simulations. J Comput Chem. 2012, 33: 2451-2468. 10.1002/jcc.23067PubMedCentralCrossRefPubMed
31.
go back to reference Raman EP, Vanommeslaeghe K, Mackerell AD: Site-specific fragment identification guided by single-step free energy perturbation calculations. J Chem Theory Comput. 2012, 8: 3513-3525. 10.1021/ct300088rPubMedCentralCrossRefPubMed Raman EP, Vanommeslaeghe K, Mackerell AD: Site-specific fragment identification guided by single-step free energy perturbation calculations. J Chem Theory Comput. 2012, 8: 3513-3525. 10.1021/ct300088rPubMedCentralCrossRefPubMed
32.
go back to reference MacKerell AD, Bashford D, Bellott T, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S: All-atom empirical potential for molecular modeling and dynamics studies of proteins?. J Phys Chem B. 1998, 102: 3586-3616. 10.1021/jp973084f.CrossRefPubMed MacKerell AD, Bashford D, Bellott T, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S: All-atom empirical potential for molecular modeling and dynamics studies of proteins?. J Phys Chem B. 1998, 102: 3586-3616. 10.1021/jp973084f.CrossRefPubMed
33.
go back to reference Cossu A, Posadino AM, Giordo R, Emanueli C, Sanguinetti AM, Piscopo A, Poiana M, Capobianco G, Piga A, Pintus G: Apricot melanoidins prevent oxidative endothelial cell death by counteracting mitochondrial oxidation and membrane depolarization. PLoS One. 2012, 7: e48817- 10.1371/journal.pone.0048817PubMedCentralCrossRefPubMed Cossu A, Posadino AM, Giordo R, Emanueli C, Sanguinetti AM, Piscopo A, Poiana M, Capobianco G, Piga A, Pintus G: Apricot melanoidins prevent oxidative endothelial cell death by counteracting mitochondrial oxidation and membrane depolarization. PLoS One. 2012, 7: e48817- 10.1371/journal.pone.0048817PubMedCentralCrossRefPubMed
Metadata
Title
The novel BH3 α-helix mimetic JY-1-106 induces apoptosis in a subset of cancer cells (lung cancer, colon cancer and mesothelioma) by disrupting Bcl-xL and Mcl-1 protein–protein interactions with Bak
Authors
Xiaobo Cao
Jeremy L Yap
M Karen Newell-Rogers
Chander Peddaboina
Weihua Jiang
Harry T Papaconstantinou
Dan Jupitor
Arun Rai
Kwan-Young Jung
Richard P Tubin
Wenbo Yu
Kenno Vanommeslaeghe
Paul T Wilder
Alexander D MacKerell JR
Steven Fletcher
Roy W Smythe
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2013
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-12-42

Other articles of this Issue 1/2013

Molecular Cancer 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine