Skip to main content
Top
Published in: Molecular Cancer 1/2013

Open Access 01-12-2013 | Research

Asymmetric segregation of template DNA strands in basal-like human breast cancer cell lines

Authors: Wenyu Liu, Gajan Jeganathan, Sohrab Amiri, Katherine M Morgan, Bríd M Ryan, Sharon R Pine

Published in: Molecular Cancer | Issue 1/2013

Login to get access

Abstract

Background and methods

Stem or progenitor cells from healthy tissues have the capacity to co-segregate their template DNA strands during mitosis. Here, we set out to test whether breast cancer cell lines also possess the ability to asymmetrically segregate their template DNA strands via non-random chromosome co-segregation, and whether this ability correlates with certain properties attributed to breast cancer stem cells (CSCs). We quantified the frequency of asymmetric segregation of template DNA strands in 12 human breast cancer cell lines, and correlated the frequency to molecular subtype, CD44+/CD24-/lo phenotype, and invasion/migration ability. We tested if co-culture with human mesenchymal stem cells, which are known to increase self-renewal, can alter the frequency of asymmetric segregation of template DNA in breast cancer.

Results

We found a positive correlation between asymmetric segregation of template DNA and the breast cancer basal-like and claudin-low subtypes. There was an inverse correlation between asymmetric segregation of template DNA and Her2 expression. Breast cancer samples with evidence of asymmetric segregation of template DNA had significantly increased invasion and borderline significantly increased migration abilities. Samples with high CD44+/CD24-/lo surface expression were more likely to harbor a consistent population of cells that asymmetrically segregated its template DNA; however, symmetric self-renewal was enriched in the CD44+/CD24-/lo population. Co-culturing breast cancer cells with human mesenchymal stem cells expanded the breast CSC pool and decreased the frequency of asymmetric segregation of template DNA.

Conclusions

Breast cancer cells within the basal-like subtype can asymmetrically segregate their template DNA strands through non-random chromosome segregation. The frequency of asymmetric segregation of template DNA can be modulated by external factors that influence expansion or self-renewal of CSC populations. Future studies to uncover the underlying mechanisms driving asymmetric segregation of template DNA and dictating cell fate at the time of cell division may explain how CSCs are maintained in tumors.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cicalese A: The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell. 2009, 138 (6): 1083-1095. 10.1016/j.cell.2009.06.048CrossRefPubMed Cicalese A: The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell. 2009, 138 (6): 1083-1095. 10.1016/j.cell.2009.06.048CrossRefPubMed
2.
go back to reference Lathia JD: Distribution of CD133 reveals glioma stem cells self-renew through symmetric and asymmetric cell divisions. Cell Death Dis. 2011, 2: e200- 10.1038/cddis.2011.80PubMedCentralCrossRefPubMed Lathia JD: Distribution of CD133 reveals glioma stem cells self-renew through symmetric and asymmetric cell divisions. Cell Death Dis. 2011, 2: e200- 10.1038/cddis.2011.80PubMedCentralCrossRefPubMed
3.
go back to reference Izumi H, Kaneko Y: Evidence of asymmetric cell division and centrosome inheritance in human neuroblastoma cells. Proc Natl Acad Sci U S A. 2012, 109 (44): 18048-18053. 10.1073/pnas.1205525109PubMedCentralCrossRefPubMed Izumi H, Kaneko Y: Evidence of asymmetric cell division and centrosome inheritance in human neuroblastoma cells. Proc Natl Acad Sci U S A. 2012, 109 (44): 18048-18053. 10.1073/pnas.1205525109PubMedCentralCrossRefPubMed
4.
go back to reference Bu P: A microRNA miR-34a-regulated bimodal switch targets notch in colon cancer stem cells. Cell Stem Cell. 2013, 12 (5): 602-615. 10.1016/j.stem.2013.03.002PubMedCentralCrossRefPubMed Bu P: A microRNA miR-34a-regulated bimodal switch targets notch in colon cancer stem cells. Cell Stem Cell. 2013, 12 (5): 602-615. 10.1016/j.stem.2013.03.002PubMedCentralCrossRefPubMed
5.
go back to reference Lark KG, Consigli RA, Minocha HC: Segregation of sister chromatids in mammalian cells. Science. 1966, 154 (3753): 1202-1205. 10.1126/science.154.3753.1202CrossRefPubMed Lark KG, Consigli RA, Minocha HC: Segregation of sister chromatids in mammalian cells. Science. 1966, 154 (3753): 1202-1205. 10.1126/science.154.3753.1202CrossRefPubMed
6.
go back to reference Morris RJ, Potten CS: Slowly cycling (label-retaining) epidermal cells behave like clonogenic stem cells in vitro. Cell Prolif. 1994, 27 (5): 279-289. 10.1111/j.1365-2184.1994.tb01425.xCrossRefPubMed Morris RJ, Potten CS: Slowly cycling (label-retaining) epidermal cells behave like clonogenic stem cells in vitro. Cell Prolif. 1994, 27 (5): 279-289. 10.1111/j.1365-2184.1994.tb01425.xCrossRefPubMed
7.
go back to reference Zhang HB: Identification of label-retaining cells in nasopharyngeal epithelia and nasopharyngeal carcinoma tissues. Histochem Cell Biol. 2007, 127 (3): 347-354. 10.1007/s00418-006-0251-9CrossRefPubMed Zhang HB: Identification of label-retaining cells in nasopharyngeal epithelia and nasopharyngeal carcinoma tissues. Histochem Cell Biol. 2007, 127 (3): 347-354. 10.1007/s00418-006-0251-9CrossRefPubMed
8.
go back to reference Potten CS, Owen G, Booth D: Intestinal stem cells protect their genome by selective segregation of template DNA strands. J Cell Sci. 2002, 115 (Pt 11): 2381-2388.PubMed Potten CS, Owen G, Booth D: Intestinal stem cells protect their genome by selective segregation of template DNA strands. J Cell Sci. 2002, 115 (Pt 11): 2381-2388.PubMed
9.
go back to reference Smith GH: Label-retaining epithelial cells in mouse mammary gland divide asymmetrically and retain their template DNA strands. Development. 2005, 132 (4): 681-687. 10.1242/dev.01609CrossRefPubMed Smith GH: Label-retaining epithelial cells in mouse mammary gland divide asymmetrically and retain their template DNA strands. Development. 2005, 132 (4): 681-687. 10.1242/dev.01609CrossRefPubMed
10.
go back to reference Bussard KM: Immortalized, pre-malignant epithelial cell populations contain long-lived, label-retaining cells that asymmetrically divide and retain their template DNA. Breast Cancer Res. 2010, 12 (5): R86- 10.1186/bcr2754PubMedCentralCrossRefPubMed Bussard KM: Immortalized, pre-malignant epithelial cell populations contain long-lived, label-retaining cells that asymmetrically divide and retain their template DNA. Breast Cancer Res. 2010, 12 (5): R86- 10.1186/bcr2754PubMedCentralCrossRefPubMed
11.
go back to reference Conboy MJ, Karasov AO, Rando TA: High incidence of non-random template strand segregation and asymmetric fate determination in dividing stem cells and their progeny. PLoS Biol. 2007, 5 (5): e102- 10.1371/journal.pbio.0050102PubMedCentralCrossRefPubMed Conboy MJ, Karasov AO, Rando TA: High incidence of non-random template strand segregation and asymmetric fate determination in dividing stem cells and their progeny. PLoS Biol. 2007, 5 (5): e102- 10.1371/journal.pbio.0050102PubMedCentralCrossRefPubMed
12.
go back to reference Shinin V: Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells. Nat Cell Biol. 2006, 8 (7): 677-687. 10.1038/ncb1425CrossRefPubMed Shinin V: Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells. Nat Cell Biol. 2006, 8 (7): 677-687. 10.1038/ncb1425CrossRefPubMed
14.
15.
go back to reference Sotiropoulou PA, Candi A, Blanpain C: The majority of multipotent epidermal stem cells do not protect their genome by asymmetrical chromosome segregation. Stem Cells. 2008, 26 (11): 2964-2973. 10.1634/stemcells.2008-0634CrossRefPubMed Sotiropoulou PA, Candi A, Blanpain C: The majority of multipotent epidermal stem cells do not protect their genome by asymmetrical chromosome segregation. Stem Cells. 2008, 26 (11): 2964-2973. 10.1634/stemcells.2008-0634CrossRefPubMed
16.
go back to reference Pine SR: Microenvironmental modulation of asymmetric cell division in human lung cancer cells. Proc Natl Acad Sci U S A. 2010, 107 (5): 2195-2200. 10.1073/pnas.0909390107PubMedCentralCrossRefPubMed Pine SR: Microenvironmental modulation of asymmetric cell division in human lung cancer cells. Proc Natl Acad Sci U S A. 2010, 107 (5): 2195-2200. 10.1073/pnas.0909390107PubMedCentralCrossRefPubMed
17.
go back to reference Hari D: Isolation of live label-retaining cells and cells undergoing asymmetric cell division via nonrandom chromosomal cosegregation from human cancers. Stem Cells Dev. 2011, 20 (10): 1649-1658. 10.1089/scd.2010.0455PubMedCentralCrossRefPubMed Hari D: Isolation of live label-retaining cells and cells undergoing asymmetric cell division via nonrandom chromosomal cosegregation from human cancers. Stem Cells Dev. 2011, 20 (10): 1649-1658. 10.1089/scd.2010.0455PubMedCentralCrossRefPubMed
18.
go back to reference Xue Z: Identification of cancer stem cells in vincristine preconditioned SGC7901 gastric cancer cell line. J Cell Biochem. 2012, 113 (1): 302-312. 10.1002/jcb.23356CrossRefPubMed Xue Z: Identification of cancer stem cells in vincristine preconditioned SGC7901 gastric cancer cell line. J Cell Biochem. 2012, 113 (1): 302-312. 10.1002/jcb.23356CrossRefPubMed
19.
go back to reference Xin HW: Wnt and the cancer niche: paracrine interactions with gastrointestinal cancer cells undergoing asymmetric cell division. J Cancer Educ. 2013, 4 (6): 447-457.CrossRef Xin HW: Wnt and the cancer niche: paracrine interactions with gastrointestinal cancer cells undergoing asymmetric cell division. J Cancer Educ. 2013, 4 (6): 447-457.CrossRef
20.
go back to reference Varghese S: Multipotent cancer stem cells derived from human malignant peritoneal mesothelioma promote tumorigenesis. PLoS One. 2012, 7 (12): e52825- 10.1371/journal.pone.0052825PubMedCentralCrossRefPubMed Varghese S: Multipotent cancer stem cells derived from human malignant peritoneal mesothelioma promote tumorigenesis. PLoS One. 2012, 7 (12): e52825- 10.1371/journal.pone.0052825PubMedCentralCrossRefPubMed
21.
go back to reference Neve RM: A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 2006, 10 (6): 515-527. 10.1016/j.ccr.2006.10.008PubMedCentralCrossRefPubMed Neve RM: A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 2006, 10 (6): 515-527. 10.1016/j.ccr.2006.10.008PubMedCentralCrossRefPubMed
22.
go back to reference Herschkowitz JI: Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol. 2007, 8 (5): R76- 10.1186/gb-2007-8-5-r76PubMedCentralCrossRefPubMed Herschkowitz JI: Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol. 2007, 8 (5): R76- 10.1186/gb-2007-8-5-r76PubMedCentralCrossRefPubMed
23.
go back to reference Prat A: Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 2010, 12 (5): R68- 10.1186/bcr2635PubMedCentralCrossRefPubMed Prat A: Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 2010, 12 (5): R68- 10.1186/bcr2635PubMedCentralCrossRefPubMed
24.
go back to reference Tan M, Yu D: Molecular mechanisms of erbB2-mediated breast cancer chemoresistance. Adv Exp Med Biol. 2007, 608: 119-129. 10.1007/978-0-387-74039-3_9CrossRefPubMed Tan M, Yu D: Molecular mechanisms of erbB2-mediated breast cancer chemoresistance. Adv Exp Med Biol. 2007, 608: 119-129. 10.1007/978-0-387-74039-3_9CrossRefPubMed
25.
26.
go back to reference Lacroix M, Toillon RA, Leclercq G: p53 and breast cancer, an update. Endocr Relat Cancer. 2006, 13 (2): 293-325. 10.1677/erc.1.01172CrossRefPubMed Lacroix M, Toillon RA, Leclercq G: p53 and breast cancer, an update. Endocr Relat Cancer. 2006, 13 (2): 293-325. 10.1677/erc.1.01172CrossRefPubMed
27.
28.
go back to reference Fillmore C, Kuperwasser C: Human breast cancer stem cell markers CD44 and CD24: enriching for cells with functional properties in mice or in man?. Breast Cancer Res. 2007, 9 (3): 303- 10.1186/bcr1673PubMedCentralCrossRefPubMed Fillmore C, Kuperwasser C: Human breast cancer stem cell markers CD44 and CD24: enriching for cells with functional properties in mice or in man?. Breast Cancer Res. 2007, 9 (3): 303- 10.1186/bcr1673PubMedCentralCrossRefPubMed
29.
30.
go back to reference Stuelten CH: Complex display of putative tumor stem cell markers in the NCI60 tumor cell line panel. Stem Cells. 2010, 28 (4): 649-660. 10.1002/stem.324CrossRefPubMed Stuelten CH: Complex display of putative tumor stem cell markers in the NCI60 tumor cell line panel. Stem Cells. 2010, 28 (4): 649-660. 10.1002/stem.324CrossRefPubMed
31.
go back to reference Ginestier C: ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007, 1 (5): 555-567. 10.1016/j.stem.2007.08.014PubMedCentralCrossRefPubMed Ginestier C: ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007, 1 (5): 555-567. 10.1016/j.stem.2007.08.014PubMedCentralCrossRefPubMed
32.
go back to reference Marcato P: Aldehyde dehydrogenase activity of breast cancer stem cells is primarily due to isoform ALDH1A3 and its expression is predictive of metastasis. Stem Cells. 2011, 29 (1): 32-45. 10.1002/stem.563CrossRefPubMed Marcato P: Aldehyde dehydrogenase activity of breast cancer stem cells is primarily due to isoform ALDH1A3 and its expression is predictive of metastasis. Stem Cells. 2011, 29 (1): 32-45. 10.1002/stem.563CrossRefPubMed
33.
go back to reference Zhong Y: Expression of ALDH1 in breast invasive ductal carcinoma: an independent predictor of early tumor relapse. Cancer Cell Int. 2013, 13 (1): 60- 10.1186/1475-2867-13-60PubMedCentralCrossRefPubMed Zhong Y: Expression of ALDH1 in breast invasive ductal carcinoma: an independent predictor of early tumor relapse. Cancer Cell Int. 2013, 13 (1): 60- 10.1186/1475-2867-13-60PubMedCentralCrossRefPubMed
34.
go back to reference Fierro FA: Marrow-derived mesenchymal stem cells: role in epithelial tumor cell determination. Clin Exp Metastasis. 2004, 21 (4): 313-319.CrossRefPubMed Fierro FA: Marrow-derived mesenchymal stem cells: role in epithelial tumor cell determination. Clin Exp Metastasis. 2004, 21 (4): 313-319.CrossRefPubMed
35.
go back to reference Martin FT: Potential role of mesenchymal stem cells (MSCs) in the breast tumour microenvironment: stimulation of epithelial to mesenchymal transition (EMT). Breast Cancer Res Treat. 2010, 124 (2): 317-326. 10.1007/s10549-010-0734-1CrossRefPubMed Martin FT: Potential role of mesenchymal stem cells (MSCs) in the breast tumour microenvironment: stimulation of epithelial to mesenchymal transition (EMT). Breast Cancer Res Treat. 2010, 124 (2): 317-326. 10.1007/s10549-010-0734-1CrossRefPubMed
36.
go back to reference Liu S: Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res. 2011, 71 (2): 614-624. 10.1158/0008-5472.CAN-10-0538PubMedCentralCrossRefPubMed Liu S: Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res. 2011, 71 (2): 614-624. 10.1158/0008-5472.CAN-10-0538PubMedCentralCrossRefPubMed
37.
go back to reference Kao J: Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PLoS One. 2009, 4 (7): e6146- 10.1371/journal.pone.0006146PubMedCentralCrossRefPubMed Kao J: Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PLoS One. 2009, 4 (7): e6146- 10.1371/journal.pone.0006146PubMedCentralCrossRefPubMed
38.
go back to reference Wilson JR: A novel HER2-positive breast cancer phenotype arising from germline TP53 mutations. J Med Genet. 2010, 47 (11): 771-774. 10.1136/jmg.2010.078113CrossRefPubMed Wilson JR: A novel HER2-positive breast cancer phenotype arising from germline TP53 mutations. J Med Genet. 2010, 47 (11): 771-774. 10.1136/jmg.2010.078113CrossRefPubMed
39.
go back to reference Cairns J: Mutation selection and the natural history of cancer. Nature. 1975, 255 (5505): 197-200. 10.1038/255197a0CrossRefPubMed Cairns J: Mutation selection and the natural history of cancer. Nature. 1975, 255 (5505): 197-200. 10.1038/255197a0CrossRefPubMed
40.
go back to reference Lansdorp PM: Immortal strands? Give me a break. Cell. 2007, 129 (7): 1244-1247. 10.1016/j.cell.2007.06.017CrossRefPubMed Lansdorp PM: Immortal strands? Give me a break. Cell. 2007, 129 (7): 1244-1247. 10.1016/j.cell.2007.06.017CrossRefPubMed
41.
go back to reference Charville GW, Rando TA: Stem cell ageing and non-random chromosome segregation. Philos Trans R Soc Lond B Biol Sci. 2011, 366 (1561): 85-93. 10.1098/rstb.2010.0279PubMedCentralCrossRefPubMed Charville GW, Rando TA: Stem cell ageing and non-random chromosome segregation. Philos Trans R Soc Lond B Biol Sci. 2011, 366 (1561): 85-93. 10.1098/rstb.2010.0279PubMedCentralCrossRefPubMed
43.
go back to reference Li F, Lu L, Lu J: Identification and location of label retaining cells in mouse liver. J Gastroenterol. 2010, 45 (1): 113-121. 10.1007/s00535-009-0139-2CrossRefPubMed Li F, Lu L, Lu J: Identification and location of label retaining cells in mouse liver. J Gastroenterol. 2010, 45 (1): 113-121. 10.1007/s00535-009-0139-2CrossRefPubMed
44.
go back to reference Geard CR: Chromatid distribution at mitosis in cultured wallabia bicolor cells. Chromosoma. 1973, 44 (3): 301-308. 10.1007/BF00291024CrossRefPubMed Geard CR: Chromatid distribution at mitosis in cultured wallabia bicolor cells. Chromosoma. 1973, 44 (3): 301-308. 10.1007/BF00291024CrossRefPubMed
45.
go back to reference Fernandez-Gomez ME, de al Torre C, Stockert JC: Random segregation of sister chromatids in meristematic cells. Exp Cell Res. 1975, 96 (1): 156-160. 10.1016/S0014-4827(75)80048-6CrossRefPubMed Fernandez-Gomez ME, de al Torre C, Stockert JC: Random segregation of sister chromatids in meristematic cells. Exp Cell Res. 1975, 96 (1): 156-160. 10.1016/S0014-4827(75)80048-6CrossRefPubMed
46.
go back to reference Mayron R, Wise D: Random distribution of centromere regions at mitosis in cultured cells of Muntiacus muntjak. Chromosoma. 1976, 55 (1): 69-74. 10.1007/BF00288328CrossRefPubMed Mayron R, Wise D: Random distribution of centromere regions at mitosis in cultured cells of Muntiacus muntjak. Chromosoma. 1976, 55 (1): 69-74. 10.1007/BF00288328CrossRefPubMed
47.
go back to reference Morris VB: Random segregation of sister chromatids in developing chick retinal cells demonstrated in vivo using the fluorescence plus Giemsa technique. Chromosoma. 1977, 60 (2): 139-145. 10.1007/BF00288461CrossRefPubMed Morris VB: Random segregation of sister chromatids in developing chick retinal cells demonstrated in vivo using the fluorescence plus Giemsa technique. Chromosoma. 1977, 60 (2): 139-145. 10.1007/BF00288461CrossRefPubMed
48.
go back to reference Ito K, McGhee JD: Parental DNA strands segregate randomly during embryonic development of Caenorhabditis elegans. Cell. 1987, 49 (3): 329-336. 10.1016/0092-8674(87)90285-6CrossRefPubMed Ito K, McGhee JD: Parental DNA strands segregate randomly during embryonic development of Caenorhabditis elegans. Cell. 1987, 49 (3): 329-336. 10.1016/0092-8674(87)90285-6CrossRefPubMed
49.
go back to reference Neff MW, Burke DJ: Random segregation of chromatids at mitosis in Saccharomyces cerevisiae. Genetics. 1991, 127 (3): 463-473.PubMedCentralPubMed Neff MW, Burke DJ: Random segregation of chromatids at mitosis in Saccharomyces cerevisiae. Genetics. 1991, 127 (3): 463-473.PubMedCentralPubMed
50.
go back to reference Fei JF, Huttner WB: Nonselective sister chromatid segregation in mouse embryonic neocortical precursor cells. Cereb Cortex. 2009, 19 (Suppl 1): i49-i54. 10.1093/cercor/bhp043CrossRefPubMed Fei JF, Huttner WB: Nonselective sister chromatid segregation in mouse embryonic neocortical precursor cells. Cereb Cortex. 2009, 19 (Suppl 1): i49-i54. 10.1093/cercor/bhp043CrossRefPubMed
51.
go back to reference Kuroki T, Murakami Y: Random segregation of DNA strands in epidermal basal cells. Jpn J Cancer Res. 1989, 80 (7): 637-642. 10.1111/j.1349-7006.1989.tb01690.xCrossRefPubMed Kuroki T, Murakami Y: Random segregation of DNA strands in epidermal basal cells. Jpn J Cancer Res. 1989, 80 (7): 637-642. 10.1111/j.1349-7006.1989.tb01690.xCrossRefPubMed
52.
go back to reference Yadlapalli S, Cheng J, Yamashita YM: Drosophila male germline stem cells do not asymmetrically segregate chromosome strands. J Cell Sci. 2011, 124 (Pt 6): 933-939.PubMedCentralCrossRefPubMed Yadlapalli S, Cheng J, Yamashita YM: Drosophila male germline stem cells do not asymmetrically segregate chromosome strands. J Cell Sci. 2011, 124 (Pt 6): 933-939.PubMedCentralCrossRefPubMed
Metadata
Title
Asymmetric segregation of template DNA strands in basal-like human breast cancer cell lines
Authors
Wenyu Liu
Gajan Jeganathan
Sohrab Amiri
Katherine M Morgan
Bríd M Ryan
Sharon R Pine
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2013
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-12-139

Other articles of this Issue 1/2013

Molecular Cancer 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine