Skip to main content
Top
Published in: Molecular Cancer 1/2012

Open Access 01-12-2012 | Research

Highly efficient site-specific transgenesis in cancer cell lines

Published in: Molecular Cancer | Issue 1/2012

Login to get access

Abstract

Background

Transgenes introduced into cancer cell lines serve as powerful tools for identification of genes involved in cancer. However, the random nature of genomic integration site of a transgene highly influences the fidelity, reliability and level of its expression. In order to alleviate this bottleneck, we characterized the potential utility of a novel PhiC31 integrase-mediated site-specific insertion system (PhiC31-IMSI) for introduction of transgenes into a pre-inserted docking site in the genome of cancer cells.

Methods

According to this system, a “docking-site” was first randomly inserted into human cancer cell lines and clones with a single copy were selected. Subsequently, an “incoming” vector containing the gene of interest was specifically inserted in the docking-site using PhiC31.

Results

Using the Pc-3 and SKOV-3 cancer cell lines, we showed that transgene insertion is reproducible and reliable. Furthermore, the selection system ensured that all surviving stable transgenic lines harbored the correct integration site. We demonstrated that the expression levels of reporter genes, such as green fluorescent protein and luciferase, from the same locus were comparable among sister, isogenic clones. Using in vivo xenograft studies, we showed that the genetically altered cancer cell lines retain the properties of the parental line. To achieve temporal control of transgene expression, we coupled our insertion strategy with the doxycycline inducible system and demonstrated tight regulation of the expression of the antiangiogenic molecule sFlt-1-Fc in Pc-3 cells. Furthermore, we introduced the luciferase gene into the insertion cassette allowing for possible live imaging of cancer cells in transplantation assays. We also generated a series of Gateway cloning-compatible intermediate cassettes ready for high-throughput cloning of transgenes and demonstrated that PhiC31-IMSI can be achieved in a high throughput 96-well plate format.

Conclusions

The novel PhiC31-IMSI system described in this study represents a powerful tool that can facilitate the characterization of cancer-related genes.
Appendix
Available only for authorised users
Literature
1.
go back to reference Whibley C, Pharoah PD, Hollstein M: p53 polymorphisms: cancer implications. Nat Rev Cancer. 2009, 9 (2): 95-107. 10.1038/nrc2584CrossRefPubMed Whibley C, Pharoah PD, Hollstein M: p53 polymorphisms: cancer implications. Nat Rev Cancer. 2009, 9 (2): 95-107. 10.1038/nrc2584CrossRefPubMed
2.
go back to reference Soussi T, Wiman KG: Shaping genetic alterations in human cancer: the p53 mutation paradigm. Cancer Cell. 2007, 12 (4): 303-312. 10.1016/j.ccr.2007.10.001CrossRefPubMed Soussi T, Wiman KG: Shaping genetic alterations in human cancer: the p53 mutation paradigm. Cancer Cell. 2007, 12 (4): 303-312. 10.1016/j.ccr.2007.10.001CrossRefPubMed
3.
go back to reference Sur S, Pagliarini R, Bunz F, Rago C, Diaz LA, Kinzler KW, Vogelstein B, Papadopoulos N: A panel of isogenic human cancer cells suggests a therapeutic approach for cancers with inactivated p53. Proc Natl Acad Sci USA. 2009, 106 (10): 3964-3969. 10.1073/pnas.0813333106PubMedCentralCrossRefPubMed Sur S, Pagliarini R, Bunz F, Rago C, Diaz LA, Kinzler KW, Vogelstein B, Papadopoulos N: A panel of isogenic human cancer cells suggests a therapeutic approach for cancers with inactivated p53. Proc Natl Acad Sci USA. 2009, 106 (10): 3964-3969. 10.1073/pnas.0813333106PubMedCentralCrossRefPubMed
4.
go back to reference Cimoli G, Malacarne D, Ponassi R, Valenti M, Alberti S, Parodi S: Meta-analysis of the role of p53 status in isogenic systems tested for sensitivity to cytotoxic antineoplastic drugs. Biochim Biophys Acta. 2004, 1705 (2): 103-120.PubMed Cimoli G, Malacarne D, Ponassi R, Valenti M, Alberti S, Parodi S: Meta-analysis of the role of p53 status in isogenic systems tested for sensitivity to cytotoxic antineoplastic drugs. Biochim Biophys Acta. 2004, 1705 (2): 103-120.PubMed
5.
go back to reference Recillas-Targa F: Multiple strategies for gene transfer, expression, knockdown, and chromatin influence in mammalian cell lines and transgenic animals. Mol Biotechnol. 2006, 34 (3): 337-354. 10.1385/MB:34:3:337CrossRefPubMed Recillas-Targa F: Multiple strategies for gene transfer, expression, knockdown, and chromatin influence in mammalian cell lines and transgenic animals. Mol Biotechnol. 2006, 34 (3): 337-354. 10.1385/MB:34:3:337CrossRefPubMed
6.
go back to reference Soriano P: Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet. 1999, 21 (1): 70-71. 10.1038/5007CrossRefPubMed Soriano P: Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet. 1999, 21 (1): 70-71. 10.1038/5007CrossRefPubMed
7.
go back to reference Belteki G, Haigh J, Kabacs N, Haigh K, Sison K, Costantini F, Whitsett J, Quaggin SE, Nagy A: Conditional and inducible transgene expression in mice through the combinatorial use of Cre-mediated recombination and tetracycline induction. Nucleic Acids Res. 2005, 33 (5): e51- 10.1093/nar/gni051PubMedCentralCrossRefPubMed Belteki G, Haigh J, Kabacs N, Haigh K, Sison K, Costantini F, Whitsett J, Quaggin SE, Nagy A: Conditional and inducible transgene expression in mice through the combinatorial use of Cre-mediated recombination and tetracycline induction. Nucleic Acids Res. 2005, 33 (5): e51- 10.1093/nar/gni051PubMedCentralCrossRefPubMed
8.
go back to reference Thompson S, Clarke AR, Pow AM, Hooper ML, Melton DW: Germ line transmission and expression of a corrected HPRT gene produced by gene targeting in embryonic stem cells. Cell. 1989, 56 (2): 313-321. 10.1016/0092-8674(89)90905-7CrossRefPubMed Thompson S, Clarke AR, Pow AM, Hooper ML, Melton DW: Germ line transmission and expression of a corrected HPRT gene produced by gene targeting in embryonic stem cells. Cell. 1989, 56 (2): 313-321. 10.1016/0092-8674(89)90905-7CrossRefPubMed
9.
go back to reference Sakurai K, Shimoji M, Tahimic CG, Aiba K, Kawase E, Hasegawa K, Amagai Y, Suemori H, Nakatsuji N: Efficient integration of transgenes into a defined locus in human embryonic stem cells. Nucleic Acids Res. 2010, 38 (7): e96- 10.1093/nar/gkp1234PubMedCentralCrossRefPubMed Sakurai K, Shimoji M, Tahimic CG, Aiba K, Kawase E, Hasegawa K, Amagai Y, Suemori H, Nakatsuji N: Efficient integration of transgenes into a defined locus in human embryonic stem cells. Nucleic Acids Res. 2010, 38 (7): e96- 10.1093/nar/gkp1234PubMedCentralCrossRefPubMed
10.
go back to reference Sorrell DA, Kolb AF: Targeted modification of mammalian genomes. Biotechnol Adv. 2005, 23 (7–8): 431-469.CrossRefPubMed Sorrell DA, Kolb AF: Targeted modification of mammalian genomes. Biotechnol Adv. 2005, 23 (7–8): 431-469.CrossRefPubMed
11.
go back to reference Kolb AF: Genome engineering using site-specific recombinases. Cloning Stem Cells. 2002, 4 (1): 65-80. 10.1089/153623002753632066CrossRefPubMed Kolb AF: Genome engineering using site-specific recombinases. Cloning Stem Cells. 2002, 4 (1): 65-80. 10.1089/153623002753632066CrossRefPubMed
12.
go back to reference Branda CS, Dymecki SM: Talking about a revolution: The impact of site-specific recombinases on genetic analyses in mice. Dev Cell. 2004, 6 (1): 7-28. 10.1016/S1534-5807(03)00399-XCrossRefPubMed Branda CS, Dymecki SM: Talking about a revolution: The impact of site-specific recombinases on genetic analyses in mice. Dev Cell. 2004, 6 (1): 7-28. 10.1016/S1534-5807(03)00399-XCrossRefPubMed
13.
go back to reference Belteki G, Gertsenstein M, Ow DW, Nagy A: Site-specific cassette exchange and germline transmission with mouse ES cells expressing phiC31 integrase. Nat Biotechnol. 2003, 21 (3): 321-324. 10.1038/nbt787CrossRefPubMed Belteki G, Gertsenstein M, Ow DW, Nagy A: Site-specific cassette exchange and germline transmission with mouse ES cells expressing phiC31 integrase. Nat Biotechnol. 2003, 21 (3): 321-324. 10.1038/nbt787CrossRefPubMed
14.
go back to reference van der Weyden L, Adams DJ, Bradley A: Tools for targeted manipulation of the mouse genome. Physiol Genomics. 2002, 11 (3): 133-164.CrossRefPubMed van der Weyden L, Adams DJ, Bradley A: Tools for targeted manipulation of the mouse genome. Physiol Genomics. 2002, 11 (3): 133-164.CrossRefPubMed
15.
go back to reference Vasquez KM, Marburger K, Intody Z, Wilson JH: Manipulating the mammalian genome by homologous recombination. Proc Natl Acad Sci USA. 2001, 98 (15): 8403-8410. 10.1073/pnas.111009698PubMedCentralCrossRefPubMed Vasquez KM, Marburger K, Intody Z, Wilson JH: Manipulating the mammalian genome by homologous recombination. Proc Natl Acad Sci USA. 2001, 98 (15): 8403-8410. 10.1073/pnas.111009698PubMedCentralCrossRefPubMed
16.
go back to reference Irion S, Luche H, Gadue P, Fehling HJ, Kennedy M, Keller G: Identification and targeting of the ROSA26 locus in human embryonic stem cells. Nat Biotechnol. 2007, 25 (12): 1477-1482. 10.1038/nbt1362CrossRefPubMed Irion S, Luche H, Gadue P, Fehling HJ, Kennedy M, Keller G: Identification and targeting of the ROSA26 locus in human embryonic stem cells. Nat Biotechnol. 2007, 25 (12): 1477-1482. 10.1038/nbt1362CrossRefPubMed
17.
go back to reference Vogelstein B, Kinzler KW: The multistep nature of cancer. Trends Genet. 1993, 9 (4): 138-141. 10.1016/0168-9525(93)90209-ZCrossRefPubMed Vogelstein B, Kinzler KW: The multistep nature of cancer. Trends Genet. 1993, 9 (4): 138-141. 10.1016/0168-9525(93)90209-ZCrossRefPubMed
18.
go back to reference Lengauer C, Kinzler KW, Vogelstein B: Genetic instabilities in human cancers. Nature. 1998, 396 (6712): 643-649. 10.1038/25292CrossRefPubMed Lengauer C, Kinzler KW, Vogelstein B: Genetic instabilities in human cancers. Nature. 1998, 396 (6712): 643-649. 10.1038/25292CrossRefPubMed
19.
go back to reference Rago C, Vogelstein B, Bunz F: Genetic knockouts and knockins in human somatic cells. Nat Protoc. 2007, 2 (11): 2734-2746. 10.1038/nprot.2007.408CrossRefPubMed Rago C, Vogelstein B, Bunz F: Genetic knockouts and knockins in human somatic cells. Nat Protoc. 2007, 2 (11): 2734-2746. 10.1038/nprot.2007.408CrossRefPubMed
20.
go back to reference Porteus M: Using homologous recombination to manipulate the genome of human somatic cells. Biotechnol Genet Eng Rev. 2007, 24: 195-212.CrossRefPubMed Porteus M: Using homologous recombination to manipulate the genome of human somatic cells. Biotechnol Genet Eng Rev. 2007, 24: 195-212.CrossRefPubMed
21.
go back to reference Kim JS, Bonifant C, Bunz F, Lane WS, Waldman T: Epitope tagging of endogenous genes in diverse human cell lines. Nucleic Acids Res. 2008, 36 (19): e127- 10.1093/nar/gkn566PubMedCentralCrossRefPubMed Kim JS, Bonifant C, Bunz F, Lane WS, Waldman T: Epitope tagging of endogenous genes in diverse human cell lines. Nucleic Acids Res. 2008, 36 (19): e127- 10.1093/nar/gkn566PubMedCentralCrossRefPubMed
22.
go back to reference Hoess RH, Ziese M, Sternberg N: P1 site-specific recombination: nucleotide sequence of the recombining sites. Proc Natl Acad Sci USA. 1982, 79 (11): 3398-3402. 10.1073/pnas.79.11.3398PubMedCentralCrossRefPubMed Hoess RH, Ziese M, Sternberg N: P1 site-specific recombination: nucleotide sequence of the recombining sites. Proc Natl Acad Sci USA. 1982, 79 (11): 3398-3402. 10.1073/pnas.79.11.3398PubMedCentralCrossRefPubMed
23.
go back to reference Hamilton DL, Abremski K: Site-specific recombination by the bacteriophage P1 lox-Cre system. Cre-mediated synapsis of two lox sites. J Mol Biol. 1984, 178 (2): 481-486. 10.1016/0022-2836(84)90154-2CrossRefPubMed Hamilton DL, Abremski K: Site-specific recombination by the bacteriophage P1 lox-Cre system. Cre-mediated synapsis of two lox sites. J Mol Biol. 1984, 178 (2): 481-486. 10.1016/0022-2836(84)90154-2CrossRefPubMed
24.
go back to reference Kilby NJ, Snaith MR, Murray JA: Site-specific recombinases: tools for genome engineering. Trends Genet. 1993, 9 (12): 413-421. 10.1016/0168-9525(93)90104-PCrossRefPubMed Kilby NJ, Snaith MR, Murray JA: Site-specific recombinases: tools for genome engineering. Trends Genet. 1993, 9 (12): 413-421. 10.1016/0168-9525(93)90104-PCrossRefPubMed
25.
go back to reference Bode J, Schlake T, Iber M, Schubeler D, Seibler J, Snezhkov E, Nikolaev L: The transgeneticist's toolbox: novel methods for the targeted modification of eukaryotic genomes. Biol Chem. 2000, 381 (9–10): 801-813.PubMed Bode J, Schlake T, Iber M, Schubeler D, Seibler J, Snezhkov E, Nikolaev L: The transgeneticist's toolbox: novel methods for the targeted modification of eukaryotic genomes. Biol Chem. 2000, 381 (9–10): 801-813.PubMed
26.
go back to reference Nagy A: Cre recombinase: the universal reagent for genome tailoring. Genesis. 2000, 26 (2): 99-109. 10.1002/(SICI)1526-968X(200002)26:2<99::AID-GENE1>3.0.CO;2-BCrossRefPubMed Nagy A: Cre recombinase: the universal reagent for genome tailoring. Genesis. 2000, 26 (2): 99-109. 10.1002/(SICI)1526-968X(200002)26:2<99::AID-GENE1>3.0.CO;2-BCrossRefPubMed
27.
go back to reference Baer A, Bode J: Coping with kinetic and thermodynamic barriers: RMCE, an efficient strategy for the targeted integration of transgenes. Curr Opin Biotechnol. 2001, 12 (5): 473-480. 10.1016/S0958-1669(00)00248-2CrossRefPubMed Baer A, Bode J: Coping with kinetic and thermodynamic barriers: RMCE, an efficient strategy for the targeted integration of transgenes. Curr Opin Biotechnol. 2001, 12 (5): 473-480. 10.1016/S0958-1669(00)00248-2CrossRefPubMed
28.
go back to reference Zhang Z, Lutz B: Cre recombinase-mediated inversion using lox66 and lox71: method to introduce conditional point mutations into the CREB-binding protein. Nucleic Acids Res. 2002, 30 (17): e90- 10.1093/nar/gnf089PubMedCentralCrossRefPubMed Zhang Z, Lutz B: Cre recombinase-mediated inversion using lox66 and lox71: method to introduce conditional point mutations into the CREB-binding protein. Nucleic Acids Res. 2002, 30 (17): e90- 10.1093/nar/gnf089PubMedCentralCrossRefPubMed
29.
go back to reference Oberdoerffer P, Otipoby KL, Maruyama M, Rajewsky K: Unidirectional Cre-mediated genetic inversion in mice using the mutant loxP pair lox66/lox71. Nucleic Acids Res. 2003, 31 (22): e140- 10.1093/nar/gng140PubMedCentralCrossRefPubMed Oberdoerffer P, Otipoby KL, Maruyama M, Rajewsky K: Unidirectional Cre-mediated genetic inversion in mice using the mutant loxP pair lox66/lox71. Nucleic Acids Res. 2003, 31 (22): e140- 10.1093/nar/gng140PubMedCentralCrossRefPubMed
30.
go back to reference Wong ET, Kolman JL, Li YC, Mesner LD, Hillen W, Berens C, Wahl GM: Reproducible doxycycline-inducible transgene expression at specific loci generated by Cre-recombinase mediated cassette exchange. Nucleic Acids Res. 2005, 33 (17): e147- 10.1093/nar/gni145PubMedCentralCrossRefPubMed Wong ET, Kolman JL, Li YC, Mesner LD, Hillen W, Berens C, Wahl GM: Reproducible doxycycline-inducible transgene expression at specific loci generated by Cre-recombinase mediated cassette exchange. Nucleic Acids Res. 2005, 33 (17): e147- 10.1093/nar/gni145PubMedCentralCrossRefPubMed
31.
go back to reference Warren D, Laxmikanthan G, Landy A: A chimeric Cre recombinase with regulated directionality. Proc Natl Acad Sci USA. 2008, 105 (47): 18278-18283. 10.1073/pnas.0809949105PubMedCentralCrossRefPubMed Warren D, Laxmikanthan G, Landy A: A chimeric Cre recombinase with regulated directionality. Proc Natl Acad Sci USA. 2008, 105 (47): 18278-18283. 10.1073/pnas.0809949105PubMedCentralCrossRefPubMed
32.
go back to reference Rausch H, Lehmann M: Structural analysis of the actinophage phi C31 attachment site. Nucleic Acids Res. 1991, 19 (19): 5187-5189. 10.1093/nar/19.19.5187PubMedCentralCrossRefPubMed Rausch H, Lehmann M: Structural analysis of the actinophage phi C31 attachment site. Nucleic Acids Res. 1991, 19 (19): 5187-5189. 10.1093/nar/19.19.5187PubMedCentralCrossRefPubMed
33.
go back to reference Thorpe HM, Smith MC: In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc Natl Acad Sci USA. 1998, 95 (10): 5505-5510. 10.1073/pnas.95.10.5505PubMedCentralCrossRefPubMed Thorpe HM, Smith MC: In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc Natl Acad Sci USA. 1998, 95 (10): 5505-5510. 10.1073/pnas.95.10.5505PubMedCentralCrossRefPubMed
34.
go back to reference Thorpe HM, Wilson SE, Smith MC: Control of directionality in the site-specific recombination system of the Streptomyces phage phiC31. Mol Microbiol. 2000, 38 (2): 232-241. 10.1046/j.1365-2958.2000.02142.xCrossRefPubMed Thorpe HM, Wilson SE, Smith MC: Control of directionality in the site-specific recombination system of the Streptomyces phage phiC31. Mol Microbiol. 2000, 38 (2): 232-241. 10.1046/j.1365-2958.2000.02142.xCrossRefPubMed
35.
go back to reference Chalberg TW, Portlock JL, Olivares EC, Thyagarajan B, Kirby PJ, Hillman RT, Hoelters J, Calos MP: Integration specificity of phage phiC31 integrase in the human genome. J Mol Biol. 2006, 357 (1): 28-48. 10.1016/j.jmb.2005.11.098CrossRefPubMed Chalberg TW, Portlock JL, Olivares EC, Thyagarajan B, Kirby PJ, Hillman RT, Hoelters J, Calos MP: Integration specificity of phage phiC31 integrase in the human genome. J Mol Biol. 2006, 357 (1): 28-48. 10.1016/j.jmb.2005.11.098CrossRefPubMed
36.
go back to reference Groth AC, Olivares EC, Thyagarajan B, Calos MP: A phage integrase directs efficient site-specific integration in human cells. Proc Natl Acad Sci USA. 2000, 97 (11): 5995-6000. 10.1073/pnas.090527097PubMedCentralCrossRefPubMed Groth AC, Olivares EC, Thyagarajan B, Calos MP: A phage integrase directs efficient site-specific integration in human cells. Proc Natl Acad Sci USA. 2000, 97 (11): 5995-6000. 10.1073/pnas.090527097PubMedCentralCrossRefPubMed
37.
go back to reference Thyagarajan B, Guimaraes MJ, Groth AC, Calos MP: Mammalian genomes contain active recombinase recognition sites. Gene. 2000, 244 (1–2): 47-54.CrossRefPubMed Thyagarajan B, Guimaraes MJ, Groth AC, Calos MP: Mammalian genomes contain active recombinase recognition sites. Gene. 2000, 244 (1–2): 47-54.CrossRefPubMed
38.
go back to reference Thyagarajan B, Liu Y, Shin S, Lakshmipathy U, Scheyhing K, Xue H, Ellerström C, Strehl R, Hyllner J, Rao MS: Creation of engineered human embryonic stem cell lines using phiC31 integrase. Stem Cells. 2008, 26 (1): 119-126. 10.1634/stemcells.2007-0283CrossRefPubMed Thyagarajan B, Liu Y, Shin S, Lakshmipathy U, Scheyhing K, Xue H, Ellerström C, Strehl R, Hyllner J, Rao MS: Creation of engineered human embryonic stem cell lines using phiC31 integrase. Stem Cells. 2008, 26 (1): 119-126. 10.1634/stemcells.2007-0283CrossRefPubMed
39.
go back to reference Monetti C, Nishino K, Biechele S, Zhang P, Baba T, Woltjen K, Nagy A: PhiC31 integrase facilitates genetic approaches combining multiple recombinases. Methods. 2011, 53 (4): 380-385. 10.1016/j.ymeth.2010.12.023CrossRefPubMed Monetti C, Nishino K, Biechele S, Zhang P, Baba T, Woltjen K, Nagy A: PhiC31 integrase facilitates genetic approaches combining multiple recombinases. Methods. 2011, 53 (4): 380-385. 10.1016/j.ymeth.2010.12.023CrossRefPubMed
40.
go back to reference Szymczak AL, Vignali DAA: Development of 2A peptide-based strategies in the design of multicistronic vectors. Expert Opin Biol Ther. 2005, 5 (5): 627-638. 10.1517/14712598.5.5.627CrossRefPubMed Szymczak AL, Vignali DAA: Development of 2A peptide-based strategies in the design of multicistronic vectors. Expert Opin Biol Ther. 2005, 5 (5): 627-638. 10.1517/14712598.5.5.627CrossRefPubMed
41.
go back to reference Agha-Mohammadi S, O'Malley M, Etemad A, Wang Z, Xiao X, Lotze MT: Second-generation tetracycline-regulatable promoter: repositioned tet operator elements optimize transactivator synergy while shorter minimal promoter offers tight basal leakiness. J Gene Med. 2004, 6 (7): 817-828. 10.1002/jgm.566CrossRefPubMed Agha-Mohammadi S, O'Malley M, Etemad A, Wang Z, Xiao X, Lotze MT: Second-generation tetracycline-regulatable promoter: repositioned tet operator elements optimize transactivator synergy while shorter minimal promoter offers tight basal leakiness. J Gene Med. 2004, 6 (7): 817-828. 10.1002/jgm.566CrossRefPubMed
42.
go back to reference Urlinger S, Baron U, Thellmann M, Hasan MT, Bujard H, Hillen W: Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc Natl Acad Sci USA. 2000, 97 (14): 7963-7968. 10.1073/pnas.130192197PubMedCentralCrossRefPubMed Urlinger S, Baron U, Thellmann M, Hasan MT, Bujard H, Hillen W: Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc Natl Acad Sci USA. 2000, 97 (14): 7963-7968. 10.1073/pnas.130192197PubMedCentralCrossRefPubMed
43.
go back to reference Kendall RL, Thomas KA: Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc Natl Acad Sci USA. 1993, 90 (22): 10705-10709. 10.1073/pnas.90.22.10705PubMedCentralCrossRefPubMed Kendall RL, Thomas KA: Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc Natl Acad Sci USA. 1993, 90 (22): 10705-10709. 10.1073/pnas.90.22.10705PubMedCentralCrossRefPubMed
44.
go back to reference Barleon B, Totzke F, Herzog C, Blanke S, Kremmer E, Siemeister G, Marmé D, Martiny-Baron G: Mapping of the sites for ligand binding and receptor dimerization at the extracellular domain of the vascular endothelial growth factor receptor FLT-1. J Biol Chem. 1997, 272 (16): 10382-10388. 10.1074/jbc.272.16.10382CrossRefPubMed Barleon B, Totzke F, Herzog C, Blanke S, Kremmer E, Siemeister G, Marmé D, Martiny-Baron G: Mapping of the sites for ligand binding and receptor dimerization at the extracellular domain of the vascular endothelial growth factor receptor FLT-1. J Biol Chem. 1997, 272 (16): 10382-10388. 10.1074/jbc.272.16.10382CrossRefPubMed
45.
46.
go back to reference Schubeler D, Lorincz MC, Cimbora DM, Telling A, Feng YQ, Bouhassira EE, Groudine M: Genomic targeting of methylated DNA: influence of methylation on transcription, replication, chromatin structure, and histone acetylation. Mol Cell Biol. 2000, 20 (24): 9103-9112. 10.1128/MCB.20.24.9103-9112.2000PubMedCentralCrossRefPubMed Schubeler D, Lorincz MC, Cimbora DM, Telling A, Feng YQ, Bouhassira EE, Groudine M: Genomic targeting of methylated DNA: influence of methylation on transcription, replication, chromatin structure, and histone acetylation. Mol Cell Biol. 2000, 20 (24): 9103-9112. 10.1128/MCB.20.24.9103-9112.2000PubMedCentralCrossRefPubMed
47.
go back to reference Feng YQ, Lorincz MC, Fiering S, Greally JM, Bouhassira EE: Position effects are influenced by the orientation of a transgene with respect to flanking chromatin. Mol Cell Biol. 2001, 21 (1): 298-309. 10.1128/MCB.21.1.298-309.2001PubMedCentralCrossRefPubMed Feng YQ, Lorincz MC, Fiering S, Greally JM, Bouhassira EE: Position effects are influenced by the orientation of a transgene with respect to flanking chromatin. Mol Cell Biol. 2001, 21 (1): 298-309. 10.1128/MCB.21.1.298-309.2001PubMedCentralCrossRefPubMed
48.
go back to reference Feng YQ, Alami R, Bouhassira EE: Enhancer-dependent transcriptional oscillations in mouse erythroleukemia cells. Mol Cell Biol. 1999, 19 (7): 4907-4917.PubMedCentralPubMed Feng YQ, Alami R, Bouhassira EE: Enhancer-dependent transcriptional oscillations in mouse erythroleukemia cells. Mol Cell Biol. 1999, 19 (7): 4907-4917.PubMedCentralPubMed
49.
go back to reference Feng YQ, Warin R, Li T, Olivier E, Besse A, Lobell A, Fu H, Lin CM, Aladjem MI, Bouhassira EE: The human beta-globin locus control region can silence as well as activate gene expression. Mol Cell Biol. 2005, 25 (10): 3864-3874. 10.1128/MCB.25.10.3864-3874.2005PubMedCentralCrossRefPubMed Feng YQ, Warin R, Li T, Olivier E, Besse A, Lobell A, Fu H, Lin CM, Aladjem MI, Bouhassira EE: The human beta-globin locus control region can silence as well as activate gene expression. Mol Cell Biol. 2005, 25 (10): 3864-3874. 10.1128/MCB.25.10.3864-3874.2005PubMedCentralCrossRefPubMed
Metadata
Title
Highly efficient site-specific transgenesis in cancer cell lines
Publication date
01-12-2012
Published in
Molecular Cancer / Issue 1/2012
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-11-89

Other articles of this Issue 1/2012

Molecular Cancer 1/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine