Skip to main content
Top
Published in: Molecular Cancer 1/2012

Open Access 01-12-2012 | Research

Gene therapy for colorectal cancer by an oncolytic adenovirus that targets loss of the insulin-like growth factor 2 imprinting system

Authors: Zhen-Lin Nie, Yu-Qin Pan, Bang-Shun He, Ling Gu, Li-Ping Chen, Rui Li, Ye-Qiong Xu, Tian-Yi Gao, Guo-Qi Song, Andrew R Hoffman, Shu-Kui Wang, Ji-Fan Hu

Published in: Molecular Cancer | Issue 1/2012

Login to get access

Abstract

Background

Colorectal cancer is one of the most common malignant tumors worldwide. Loss of imprinting (LOI) of the insulin-like growth factor 2 (IGF2) gene is an epigenetic abnormality observed in human colorectal neoplasms. Our aim was to investigate the feasibility of using the IGF2 imprinting system for targeted gene therapy of colorectal cancer.

Results

We constructed a novel oncolytic adenovirus, Ad315-E1A, and a replication-deficient recombinant adenovirus, Ad315-EGFP, driven by the IGF2 imprinting system by inserting the H19 promoter, CCCTC binding factor, enhancer, human adenovirus early region 1A (E1A) and enhanced green fluorescent protein (EGFP) reporter gene into a pDC-315 shuttle plasmid. Cell lines with IGF2 LOI (HCT-8 and HT-29), which were infected with Ad315-EGFP, produced EGFP. However, no EGFP was produced in cell lines with maintenance of imprinting (HCT116 and GES-1). We found that Ad315-E1A significantly decreased cell viability and induced apoptosis only in LOI cell lines in vitro. In addition, mice bearing HCT-8-xenografted tumors, which received intratumoral administration of the oncolytic adenovirus, showed significantly reduced tumor growth and enhanced survival.

Conclusions

Our recombinant oncolytic virus targeting the IGF2 LOI system inhibits LOI cell growth in vitro and in vivo, and provides a novel approach for targeted gene therapy.
Appendix
Available only for authorised users
Literature
2.
go back to reference Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM: Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010, 127: 2893-2917. 10.1002/ijc.25516CrossRefPubMed Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM: Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010, 127: 2893-2917. 10.1002/ijc.25516CrossRefPubMed
3.
go back to reference Falls JG, Pulford DJ, Wylie AA, Jirtle RL: Genomic imprinting: implications for human disease. Am J Pathol. 1999, 154: 635-647. 10.1016/S0002-9440(10)65309-6PubMedCentralCrossRefPubMed Falls JG, Pulford DJ, Wylie AA, Jirtle RL: Genomic imprinting: implications for human disease. Am J Pathol. 1999, 154: 635-647. 10.1016/S0002-9440(10)65309-6PubMedCentralCrossRefPubMed
4.
go back to reference Christofori G, Naik P, Hanahan D: A second signal supplied by insulin-like growth factor II in oncogene-induced tumorigenesis. Nature. 1994, 369: 414-418. 10.1038/369414a0CrossRefPubMed Christofori G, Naik P, Hanahan D: A second signal supplied by insulin-like growth factor II in oncogene-induced tumorigenesis. Nature. 1994, 369: 414-418. 10.1038/369414a0CrossRefPubMed
5.
go back to reference DeChiara TM, Robertson EJ, Efstratiadis A: Parental imprinting of the mouse insulin-like growth factor II gene. Cell. 1991, 64: 849-859. 10.1016/0092-8674(91)90513-XCrossRefPubMed DeChiara TM, Robertson EJ, Efstratiadis A: Parental imprinting of the mouse insulin-like growth factor II gene. Cell. 1991, 64: 849-859. 10.1016/0092-8674(91)90513-XCrossRefPubMed
6.
go back to reference Chen HL, Li T, Qiu XW, Wu J, Ling JQ, Sun ZH, Wang W, Chen W, Hou A, Vu TH, Hoffman AR, Hu JF: Correction of aberrant imprinting of IGF2 in human tumors by nuclear transfer-induced epigenetic reprogramming. EMBO J. 2006, 25: 5329-5338. 10.1038/sj.emboj.7601399PubMedCentralCrossRefPubMed Chen HL, Li T, Qiu XW, Wu J, Ling JQ, Sun ZH, Wang W, Chen W, Hou A, Vu TH, Hoffman AR, Hu JF: Correction of aberrant imprinting of IGF2 in human tumors by nuclear transfer-induced epigenetic reprogramming. EMBO J. 2006, 25: 5329-5338. 10.1038/sj.emboj.7601399PubMedCentralCrossRefPubMed
7.
go back to reference Ling JQ, Li T, Hu JF, Vu TH, Chen HL, Qiu XW, Cherry AM, Hoffman AR: CTCF mediates interchromosomal colocalization between Igf2/H19 and Wsb1/Nf1. Science. 2006, 312: 269-272. 10.1126/science.1123191CrossRefPubMed Ling JQ, Li T, Hu JF, Vu TH, Chen HL, Qiu XW, Cherry AM, Hoffman AR: CTCF mediates interchromosomal colocalization between Igf2/H19 and Wsb1/Nf1. Science. 2006, 312: 269-272. 10.1126/science.1123191CrossRefPubMed
9.
go back to reference Li T, Hu JF, Qiu X, Ling J, Chen H, Wang S, Hou A, Vu TH, Hoffman AR: CTCF regulates allelic expression of Igf2 by orchestrating a promoter-polycomb repressive complex 2 intrachromosomal loop. Mol Cell Biol. 2008, 28: 6473-6482. 10.1128/MCB.00204-08PubMedCentralCrossRefPubMed Li T, Hu JF, Qiu X, Ling J, Chen H, Wang S, Hou A, Vu TH, Hoffman AR: CTCF regulates allelic expression of Igf2 by orchestrating a promoter-polycomb repressive complex 2 intrachromosomal loop. Mol Cell Biol. 2008, 28: 6473-6482. 10.1128/MCB.00204-08PubMedCentralCrossRefPubMed
10.
go back to reference Zhang H, Niu B, Hu JF, Ge S, Wang H, Li T, Ling J, Steelman BN, Qian G, Hoffman AR: Interruption of intrachromosomal looping by CCCTC binding factor decoy proteins abrogates genomic imprinting of human insulin-like growth factor II. J Cell Biol. 2011, 193: 475-487. 10.1083/jcb.201101021PubMedCentralCrossRefPubMed Zhang H, Niu B, Hu JF, Ge S, Wang H, Li T, Ling J, Steelman BN, Qian G, Hoffman AR: Interruption of intrachromosomal looping by CCCTC binding factor decoy proteins abrogates genomic imprinting of human insulin-like growth factor II. J Cell Biol. 2011, 193: 475-487. 10.1083/jcb.201101021PubMedCentralCrossRefPubMed
11.
go back to reference Pan Y, He B, Li T, Zhu C, Zhang L, Wang B, Xu Y, Qu L, Hoffman AR, Wang S, Hu J: Targeted tumor gene therapy based on loss of IGF2 imprinting. Cancer Biol Ther. 2010, 10: 290-298. 10.4161/cbt.10.3.12442PubMedCentralCrossRefPubMed Pan Y, He B, Li T, Zhu C, Zhang L, Wang B, Xu Y, Qu L, Hoffman AR, Wang S, Hu J: Targeted tumor gene therapy based on loss of IGF2 imprinting. Cancer Biol Ther. 2010, 10: 290-298. 10.4161/cbt.10.3.12442PubMedCentralCrossRefPubMed
12.
go back to reference Breyer B, Jiang W, Cheng H, Zhou L, Paul R, Feng T, He TC: Adenoviral vector-mediated gene transfer for human gene therapy. Curr Gene Ther. 2001, 1: 149-162. 10.2174/1566523013348689CrossRefPubMed Breyer B, Jiang W, Cheng H, Zhou L, Paul R, Feng T, He TC: Adenoviral vector-mediated gene transfer for human gene therapy. Curr Gene Ther. 2001, 1: 149-162. 10.2174/1566523013348689CrossRefPubMed
14.
go back to reference Ueno NT, Yu D, Hung MC: E1A: tumor suppressor or oncogene? Preclinical and clinical investigations of E1A gene therapy. Breast Cancer. 2001, 8: 285-293. 10.1007/BF02967526CrossRefPubMed Ueno NT, Yu D, Hung MC: E1A: tumor suppressor or oncogene? Preclinical and clinical investigations of E1A gene therapy. Breast Cancer. 2001, 8: 285-293. 10.1007/BF02967526CrossRefPubMed
15.
go back to reference Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M, Ng L, Nye JA, Sampson-Johannes A, Fattaey A, McCormick F: An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science. 1996, 274: 373-376. 10.1126/science.274.5286.373CrossRefPubMed Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M, Ng L, Nye JA, Sampson-Johannes A, Fattaey A, McCormick F: An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science. 1996, 274: 373-376. 10.1126/science.274.5286.373CrossRefPubMed
16.
go back to reference Chakraborty AA, Tansey WP: Adenoviral E1A function through Myc. Cancer Res. 2009, 69: 6-9. 10.1158/0008-5472.CAN-08-3026CrossRefPubMed Chakraborty AA, Tansey WP: Adenoviral E1A function through Myc. Cancer Res. 2009, 69: 6-9. 10.1158/0008-5472.CAN-08-3026CrossRefPubMed
17.
go back to reference Turnell AS, Stewart GS, Grand RJ, Rookes SM, Martin A, Yamano H, Elledge SJ, Gallimore PH: The APC/C and CBP/p300 cooperate to regulate transcription and cell-cycle progression. Nature. 2005, 438: 690-695. 10.1038/nature04151CrossRefPubMed Turnell AS, Stewart GS, Grand RJ, Rookes SM, Martin A, Yamano H, Elledge SJ, Gallimore PH: The APC/C and CBP/p300 cooperate to regulate transcription and cell-cycle progression. Nature. 2005, 438: 690-695. 10.1038/nature04151CrossRefPubMed
19.
go back to reference Hammill AM, Conner J, Cripe TP: Oncolytic virotherapy reaches adolescence. Pediatr Blood Cancer. 2010, 55: 1253-1263. 10.1002/pbc.22724CrossRefPubMed Hammill AM, Conner J, Cripe TP: Oncolytic virotherapy reaches adolescence. Pediatr Blood Cancer. 2010, 55: 1253-1263. 10.1002/pbc.22724CrossRefPubMed
20.
go back to reference Shirakawa T: The current status of adenovirus-based cancer gene therapy. Mol Cells. 2008, 25: 462-466.PubMed Shirakawa T: The current status of adenovirus-based cancer gene therapy. Mol Cells. 2008, 25: 462-466.PubMed
21.
go back to reference Jia W, Zhou Q: Viral vectors for cancer gene therapy: viral dissemination and tumor targeting. Curr Gene Ther. 2005, 5: 133-142. 10.2174/1566523052997460CrossRefPubMed Jia W, Zhou Q: Viral vectors for cancer gene therapy: viral dissemination and tumor targeting. Curr Gene Ther. 2005, 5: 133-142. 10.2174/1566523052997460CrossRefPubMed
22.
go back to reference Cao X, Yang M, Wei RC, Zeng Y, Gu JF, Huang WD, Yang DQ, Li HL, Ding M, Wei N, Zhang KJ, Xu B, Liu XR, Qian QJ, Liu XY: Cancer targeting Gene-Viro-Therapy of liver carcinoma by dual-regulated oncolytic adenovirus armed with TRAIL gene. Gene Ther. 2011, 18: 765-777. 10.1038/gt.2011.16CrossRefPubMed Cao X, Yang M, Wei RC, Zeng Y, Gu JF, Huang WD, Yang DQ, Li HL, Ding M, Wei N, Zhang KJ, Xu B, Liu XR, Qian QJ, Liu XY: Cancer targeting Gene-Viro-Therapy of liver carcinoma by dual-regulated oncolytic adenovirus armed with TRAIL gene. Gene Ther. 2011, 18: 765-777. 10.1038/gt.2011.16CrossRefPubMed
23.
go back to reference Wang H, Song X, Zhang H, Zhang J, Shen X, Zhou Y, Fan X, Dai L, Qian G, Hoffman AR, Hu JF, Ge S: Potentiation of tumor radiotherapy by a radiation-inducible oncolytic and oncoapoptotic adenovirus in cervical cancer xenografts. Int J Cancer. 2012, 130: 443-453. 10.1002/ijc.26013PubMedCentralCrossRefPubMed Wang H, Song X, Zhang H, Zhang J, Shen X, Zhou Y, Fan X, Dai L, Qian G, Hoffman AR, Hu JF, Ge S: Potentiation of tumor radiotherapy by a radiation-inducible oncolytic and oncoapoptotic adenovirus in cervical cancer xenografts. Int J Cancer. 2012, 130: 443-453. 10.1002/ijc.26013PubMedCentralCrossRefPubMed
24.
go back to reference Raus S, Coin S, Monsurrò V: Adenovirus as a new agent for multiple myeloma therapies: Opportunities and restrictions. Korean J Hematol. 2011, 46: 229-238. 10.5045/kjh.2011.46.4.229PubMedCentralCrossRefPubMed Raus S, Coin S, Monsurrò V: Adenovirus as a new agent for multiple myeloma therapies: Opportunities and restrictions. Korean J Hematol. 2011, 46: 229-238. 10.5045/kjh.2011.46.4.229PubMedCentralCrossRefPubMed
25.
go back to reference Pesonen S, Kangasniemi L, Hemminki A: Oncolytic adenoviruses for the treatment of human cancer: focus on translational and clinical data. Mol Pharm. 2011, 8: 12-28. 10.1021/mp100219nCrossRefPubMed Pesonen S, Kangasniemi L, Hemminki A: Oncolytic adenoviruses for the treatment of human cancer: focus on translational and clinical data. Mol Pharm. 2011, 8: 12-28. 10.1021/mp100219nCrossRefPubMed
26.
go back to reference Liikanen I, Monsurrò V, Ahtiainen L, Raki M, Hakkarainen T, Diaconu I, Escutenaire S, Hemminki O, Dias JD, Cerullo V, Kanerva A, Pesonen S, Marzioni D, Colombatti M, Hemminki A: Induction of interferon pathways mediates in vivo resistance to oncolytic adenovirus. Mol Ther. 2011, 19: 1858-66.6. 10.1038/mt.2011.144PubMedCentralCrossRefPubMed Liikanen I, Monsurrò V, Ahtiainen L, Raki M, Hakkarainen T, Diaconu I, Escutenaire S, Hemminki O, Dias JD, Cerullo V, Kanerva A, Pesonen S, Marzioni D, Colombatti M, Hemminki A: Induction of interferon pathways mediates in vivo resistance to oncolytic adenovirus. Mol Ther. 2011, 19: 1858-66.6. 10.1038/mt.2011.144PubMedCentralCrossRefPubMed
27.
go back to reference Cui H, Horon IL, Ohlsson R, Hamilton SR, Feinberg AP: Loss of imprinting in normal tissue of colorectal cancer patients with microsatellite instability. Nat Med. 1998, 4: 1276-1280. 10.1038/3260CrossRefPubMed Cui H, Horon IL, Ohlsson R, Hamilton SR, Feinberg AP: Loss of imprinting in normal tissue of colorectal cancer patients with microsatellite instability. Nat Med. 1998, 4: 1276-1280. 10.1038/3260CrossRefPubMed
28.
go back to reference Nishihara S, Hayashida T, Mitsuya K, Schulz TC, Ikeguchi M, Kaibara N, Oshimura M: Multipoint imprinting analysis in sporadic colorectal cancers with and without microsatellite instability. Int J Oncol. 2000, 17: 317-322.PubMed Nishihara S, Hayashida T, Mitsuya K, Schulz TC, Ikeguchi M, Kaibara N, Oshimura M: Multipoint imprinting analysis in sporadic colorectal cancers with and without microsatellite instability. Int J Oncol. 2000, 17: 317-322.PubMed
29.
go back to reference Takano Y, Shiota G, Kawasaki H: Analysis of genomic imprinting of insulin-like growth factor 2 in colorectal cancer. Oncology. 2000, 59: 210-216. 10.1159/000012163CrossRefPubMed Takano Y, Shiota G, Kawasaki H: Analysis of genomic imprinting of insulin-like growth factor 2 in colorectal cancer. Oncology. 2000, 59: 210-216. 10.1159/000012163CrossRefPubMed
30.
go back to reference Kirn D: Oncolytic virotherapy for cancer with the adenovirus dl1520 (Onyx-015): results of phase I and II trials. Expert Opin Biol Ther. 2001, 1: 525-538. 10.1517/14712598.1.3.525CrossRefPubMed Kirn D: Oncolytic virotherapy for cancer with the adenovirus dl1520 (Onyx-015): results of phase I and II trials. Expert Opin Biol Ther. 2001, 1: 525-538. 10.1517/14712598.1.3.525CrossRefPubMed
31.
go back to reference Yu DC, Working P, Ando D: Selectively replicating oncolytic adenoviruses as cancer therapeutics. Curr Opin Mol Ther. 2002, 4: 435-443.PubMed Yu DC, Working P, Ando D: Selectively replicating oncolytic adenoviruses as cancer therapeutics. Curr Opin Mol Ther. 2002, 4: 435-443.PubMed
32.
go back to reference Reid T, Warren R, Kirn D: Intravascular adenoviral agents in cancer patients: lessons from clinical trials. Cancer Gene Ther. 2002, 9: 979-986. 10.1038/sj.cgt.7700539CrossRefPubMed Reid T, Warren R, Kirn D: Intravascular adenoviral agents in cancer patients: lessons from clinical trials. Cancer Gene Ther. 2002, 9: 979-986. 10.1038/sj.cgt.7700539CrossRefPubMed
33.
go back to reference Khuri FR, Nemunaitis J, Ganly I, Arseneau J, Tannock IF, Romel L, Gore M, Ironside J, MacDougall RH, Heise C: A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med. 2000, 6: 879-885. 10.1038/78638CrossRefPubMed Khuri FR, Nemunaitis J, Ganly I, Arseneau J, Tannock IF, Romel L, Gore M, Ironside J, MacDougall RH, Heise C: A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med. 2000, 6: 879-885. 10.1038/78638CrossRefPubMed
34.
go back to reference Lamfers ML, Grill J, Dirven CM, Van Beusechem VW, Geoerger B: Potential of the conditionally replicative adenovirus Ad5-Delta24RGD in the treatment of malignant gliomas and its enhanced effect with radiotherapy. Cancer Res. 2002, 62: 5736-5742.PubMed Lamfers ML, Grill J, Dirven CM, Van Beusechem VW, Geoerger B: Potential of the conditionally replicative adenovirus Ad5-Delta24RGD in the treatment of malignant gliomas and its enhanced effect with radiotherapy. Cancer Res. 2002, 62: 5736-5742.PubMed
35.
go back to reference Zhang H, Wang H, Zhang J, Qian G, Niu B, Fan X, Lu J, Hoffman AR, Hu JF, Ge S: Enhanced therapeutic efficacy by simultaneously targeting two genetic defects in tumors. Mol Ther. 2009, 17: 57-64. 10.1038/mt.2008.236PubMedCentralCrossRefPubMed Zhang H, Wang H, Zhang J, Qian G, Niu B, Fan X, Lu J, Hoffman AR, Hu JF, Ge S: Enhanced therapeutic efficacy by simultaneously targeting two genetic defects in tumors. Mol Ther. 2009, 17: 57-64. 10.1038/mt.2008.236PubMedCentralCrossRefPubMed
36.
go back to reference Takeuchi A, Mishina Y, Miyaishi O, Kojima E, Hasegawa T, Isobe K: Heterozygosity with respect to Zfp148 causes complete loss of fetal germ cells during mouse embryogenesis. Nat Genet. 2003, 33: 172-176. 10.1038/ng1072CrossRefPubMed Takeuchi A, Mishina Y, Miyaishi O, Kojima E, Hasegawa T, Isobe K: Heterozygosity with respect to Zfp148 causes complete loss of fetal germ cells during mouse embryogenesis. Nat Genet. 2003, 33: 172-176. 10.1038/ng1072CrossRefPubMed
Metadata
Title
Gene therapy for colorectal cancer by an oncolytic adenovirus that targets loss of the insulin-like growth factor 2 imprinting system
Authors
Zhen-Lin Nie
Yu-Qin Pan
Bang-Shun He
Ling Gu
Li-Ping Chen
Rui Li
Ye-Qiong Xu
Tian-Yi Gao
Guo-Qi Song
Andrew R Hoffman
Shu-Kui Wang
Ji-Fan Hu
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2012
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-11-86

Other articles of this Issue 1/2012

Molecular Cancer 1/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine