Skip to main content
Top
Published in: Molecular Cancer 1/2012

Open Access 01-12-2012 | Research

The small GTPase RhoG mediates glioblastoma cell invasion

Authors: Aneta Kwiatkowska, Sebastien Didier, Shannon Fortin, Yayu Chuang, Timothy White, Michael E Berens, Elisabeth Rushing, Jennifer Eschbacher, Nhan L Tran, Amanda Chan, Marc Symons

Published in: Molecular Cancer | Issue 1/2012

Login to get access

Abstract

Background

The invasion of glioblastoma cells into regions of the normal brain is a critical factor that limits current therapies for malignant astrocytomas. Previous work has identified roles for the Rho family guanine nucleotide exchange factors Trio and Vav3 in glioblastoma invasion. Both Trio and Vav3 act on the small GTPase RhoG. We therefore examined the role of RhoG in the invasive behavior of glioblastoma cells.

Results

We found that siRNA-mediated depletion of RhoG strongly inhibits invasion of glioblastoma cells through brain slices ex vivo. In addition, depletion of RhoG has a marginal effect on glioblastoma cell proliferation, but significantly inhibits glioblastoma cell survival in colony formation assays. We also observed that RhoG is activated by both HGF and EGF, two factors that are thought to be clinically relevant drivers of glioblastoma invasive behavior, and that RhoG is overexpressed in human glioblastoma tumors versus non-neoplastic brain. In search of a mechanism for the contribution of RhoG to the malignant behavior of glioblastoma cells, we found that depletion of RhoG strongly inhibits activation of the Rac1 GTPase by both HGF and EGF. In line with this observation, we also show that RhoG contributes to the formation of lamellipodia and invadopodia, two functions that have been shown to be Rac1-dependent.

Conclusions

Our functional analysis of RhoG in the context of glioblastoma revealed a critical role for RhoG in tumor cell invasion and survival. These results suggest that targeting RhoG-mediated signaling presents a novel avenue for glioblastoma therapy.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Karlsson R, Pedersen ED, Wang Z, Brakebusch C: Rho GTPase function in tumorigenesis. Biochim Biophys Acta. 2009, 1796: 91-98.PubMed Karlsson R, Pedersen ED, Wang Z, Brakebusch C: Rho GTPase function in tumorigenesis. Biochim Biophys Acta. 2009, 1796: 91-98.PubMed
3.
go back to reference Olson MF, Sahai E: The actin cytoskeleton in cancer cell motility. Clin Exp Metastasis. 2009, 26: 273-287. 10.1007/s10585-008-9174-2CrossRefPubMed Olson MF, Sahai E: The actin cytoskeleton in cancer cell motility. Clin Exp Metastasis. 2009, 26: 273-287. 10.1007/s10585-008-9174-2CrossRefPubMed
4.
go back to reference Vigil D, Cherfils J, Rossman KL, Der CJ: Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy?. Nat Rev Cancer. 2010, 10: 842-857. 10.1038/nrc2960PubMedCentralCrossRefPubMed Vigil D, Cherfils J, Rossman KL, Der CJ: Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy?. Nat Rev Cancer. 2010, 10: 842-857. 10.1038/nrc2960PubMedCentralCrossRefPubMed
5.
go back to reference Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC: Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009, 10: 459-466. 10.1016/S1470-2045(09)70025-7CrossRefPubMed Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC: Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009, 10: 459-466. 10.1016/S1470-2045(09)70025-7CrossRefPubMed
6.
go back to reference Wen PY, Kesari S: Malignant gliomas in adults. N Engl J Med. 2008, 359: 492-507. 10.1056/NEJMra0708126CrossRefPubMed Wen PY, Kesari S: Malignant gliomas in adults. N Engl J Med. 2008, 359: 492-507. 10.1056/NEJMra0708126CrossRefPubMed
7.
go back to reference Giese A, Bjerkvig R, Berens ME, Westphal M: Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol. 2003, 21: 1624-1636. 10.1200/JCO.2003.05.063CrossRefPubMed Giese A, Bjerkvig R, Berens ME, Westphal M: Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol. 2003, 21: 1624-1636. 10.1200/JCO.2003.05.063CrossRefPubMed
8.
go back to reference Lefranc F, Brotchi J, Kiss R: Possible future issues in the treatment of glioblastomas: special emphasis on cell migration and the resistance of migrating glioblastoma cells to apoptosis. J Clin Oncol. 2005, 23: 2411-2422. 10.1200/JCO.2005.03.089CrossRefPubMed Lefranc F, Brotchi J, Kiss R: Possible future issues in the treatment of glioblastomas: special emphasis on cell migration and the resistance of migrating glioblastoma cells to apoptosis. J Clin Oncol. 2005, 23: 2411-2422. 10.1200/JCO.2005.03.089CrossRefPubMed
9.
go back to reference Lucio-Eterovic AK, Piao Y, de Groot JF: Mediators of glioblastoma resistance and invasion during antivascular endothelial growth factor therapy. Clin Cancer Res. 2009, 15: 4589-4599. 10.1158/1078-0432.CCR-09-0575CrossRefPubMed Lucio-Eterovic AK, Piao Y, de Groot JF: Mediators of glioblastoma resistance and invasion during antivascular endothelial growth factor therapy. Clin Cancer Res. 2009, 15: 4589-4599. 10.1158/1078-0432.CCR-09-0575CrossRefPubMed
10.
go back to reference Chan AY, Coniglio SJ, Chuang YY, Michaelson D, Knaus UG, Philips MR: Roles of the Rac1 and Rac3 GTPases in human tumor cell invasion. Oncogene. 2005, 24: 7821-7829. 10.1038/sj.onc.1208909CrossRefPubMed Chan AY, Coniglio SJ, Chuang YY, Michaelson D, Knaus UG, Philips MR: Roles of the Rac1 and Rac3 GTPases in human tumor cell invasion. Oncogene. 2005, 24: 7821-7829. 10.1038/sj.onc.1208909CrossRefPubMed
11.
go back to reference Chuang YY, Tran NL, Rusk N, Nakada M, Berens ME, Symons M: Role of Synaptojanin 2 in Glioma Cell Migration and Invasion. Cancer Res. 2004, 64: 8271-8275. 10.1158/0008-5472.CAN-04-2097CrossRefPubMed Chuang YY, Tran NL, Rusk N, Nakada M, Berens ME, Symons M: Role of Synaptojanin 2 in Glioma Cell Migration and Invasion. Cancer Res. 2004, 64: 8271-8275. 10.1158/0008-5472.CAN-04-2097CrossRefPubMed
12.
go back to reference Salhia B, Tran NL, Chan A, Wolf A, Nakada M, Rutka F: The guanine nucleotide exchange factors trio, Ect2, and Vav3 mediate the invasive behavior of glioblastoma. Am J Pathol. 2008, 173: 1828-1838. 10.2353/ajpath.2008.080043PubMedCentralCrossRefPubMed Salhia B, Tran NL, Chan A, Wolf A, Nakada M, Rutka F: The guanine nucleotide exchange factors trio, Ect2, and Vav3 mediate the invasive behavior of glioblastoma. Am J Pathol. 2008, 173: 1828-1838. 10.2353/ajpath.2008.080043PubMedCentralCrossRefPubMed
13.
go back to reference Blangy A, Vignal E, Schmidt S, Debant A, Gauthier-Rouviere C, Fort P: TrioGEF1 controls Rac- and Cdc42-dependent cell structures through the direct activation of rhoG. J Cell Sci. 2000, 113 (Pt 4): 729-739.PubMed Blangy A, Vignal E, Schmidt S, Debant A, Gauthier-Rouviere C, Fort P: TrioGEF1 controls Rac- and Cdc42-dependent cell structures through the direct activation of rhoG. J Cell Sci. 2000, 113 (Pt 4): 729-739.PubMed
14.
go back to reference Movilla N, Bustelo XR: Biological and regulatory properties of Vav-3, a new member of the Vav family of oncoproteins. Mol Cell Biol. 1999, 19: 7870-7885.PubMedCentralPubMed Movilla N, Bustelo XR: Biological and regulatory properties of Vav-3, a new member of the Vav family of oncoproteins. Mol Cell Biol. 1999, 19: 7870-7885.PubMedCentralPubMed
15.
go back to reference Vincent S, Jeanteur P, Fort P: Growth-regulated expression of rhoG, a new member of the ras homolog gene family. Mol Cell Biol. 1992, 12: 3138-3148.PubMedCentralPubMed Vincent S, Jeanteur P, Fort P: Growth-regulated expression of rhoG, a new member of the ras homolog gene family. Mol Cell Biol. 1992, 12: 3138-3148.PubMedCentralPubMed
16.
go back to reference Katoh H, Yasui H, Yamaguchi Y, Aoki J, Fujita H, Mori K: Small GTPase RhoG is a key regulator for neurite outgrowth in PC12 cells. Mol Cell Biol. 2000, 20: 7378-7387. 10.1128/MCB.20.19.7378-7387.2000PubMedCentralCrossRefPubMed Katoh H, Yasui H, Yamaguchi Y, Aoki J, Fujita H, Mori K: Small GTPase RhoG is a key regulator for neurite outgrowth in PC12 cells. Mol Cell Biol. 2000, 20: 7378-7387. 10.1128/MCB.20.19.7378-7387.2000PubMedCentralCrossRefPubMed
17.
go back to reference Murga C, Zohar M, Teramoto H, Gutkind JS: Rac1 and RhoG promote cell survival by the activation of PI3K and Akt, independently of their ability to stimulate JNK and NF-kappaB. Oncogene. 2002, 21: 207-216. 10.1038/sj.onc.1205036CrossRefPubMed Murga C, Zohar M, Teramoto H, Gutkind JS: Rac1 and RhoG promote cell survival by the activation of PI3K and Akt, independently of their ability to stimulate JNK and NF-kappaB. Oncogene. 2002, 21: 207-216. 10.1038/sj.onc.1205036CrossRefPubMed
18.
go back to reference Katoh H, Hiramoto K, Negishi M: Activation of Rac1 by RhoG regulates cell migration. J Cell Sci. 2006, 119: 56-65. 10.1242/jcs.02720CrossRefPubMed Katoh H, Hiramoto K, Negishi M: Activation of Rac1 by RhoG regulates cell migration. J Cell Sci. 2006, 119: 56-65. 10.1242/jcs.02720CrossRefPubMed
19.
go back to reference Samson T, Welch C, Monaghan-Benson E, Hahn KM, Burridge K: Endogenous RhoG is rapidly activated after epidermal growth factor stimulation through multiple guanine-nucleotide exchange factors. Mol Biol Cell. 2010, 21: 1629-1642. 10.1091/mbc.E09-09-0809PubMedCentralCrossRefPubMed Samson T, Welch C, Monaghan-Benson E, Hahn KM, Burridge K: Endogenous RhoG is rapidly activated after epidermal growth factor stimulation through multiple guanine-nucleotide exchange factors. Mol Biol Cell. 2010, 21: 1629-1642. 10.1091/mbc.E09-09-0809PubMedCentralCrossRefPubMed
20.
go back to reference Valster A, Tran NL, Nakada M, Berens ME, Chan AY, Symons M: Cell migration and invasion assays. Methods. 2005, 37: 208-215. 10.1016/j.ymeth.2005.08.001CrossRefPubMed Valster A, Tran NL, Nakada M, Berens ME, Chan AY, Symons M: Cell migration and invasion assays. Methods. 2005, 37: 208-215. 10.1016/j.ymeth.2005.08.001CrossRefPubMed
21.
go back to reference Fujimoto S, Negishi M, Katoh H: RhoG promotes neural progenitor cell proliferation in mouse cerebral cortex. Mol Biol Cell. 2009, 20: 4941-4950. 10.1091/mbc.E09-03-0200PubMedCentralCrossRefPubMed Fujimoto S, Negishi M, Katoh H: RhoG promotes neural progenitor cell proliferation in mouse cerebral cortex. Mol Biol Cell. 2009, 20: 4941-4950. 10.1091/mbc.E09-03-0200PubMedCentralCrossRefPubMed
22.
go back to reference Brockmann MA, Ulbricht U, Gruner K, Fillbrandt R, Westphal M, Lamszus K: Glioblastoma and cerebral microvascular endothelial cell migration in response to tumor-associated growth factors. Neurosurgery. 2003, 52: 1391-1399. 10.1227/01.NEU.0000064806.87785.ABCrossRefPubMed Brockmann MA, Ulbricht U, Gruner K, Fillbrandt R, Westphal M, Lamszus K: Glioblastoma and cerebral microvascular endothelial cell migration in response to tumor-associated growth factors. Neurosurgery. 2003, 52: 1391-1399. 10.1227/01.NEU.0000064806.87785.ABCrossRefPubMed
23.
go back to reference Rosen EM, Laterra J, Joseph A, Jin L, Fuchs A, Way D: Scatter factor expression and regulation in human glial tumors. Int J Cancer. 1996, 67: 248-255. 10.1002/(SICI)1097-0215(19960717)67:2<248::AID-IJC16>3.0.CO;2-7CrossRefPubMed Rosen EM, Laterra J, Joseph A, Jin L, Fuchs A, Way D: Scatter factor expression and regulation in human glial tumors. Int J Cancer. 1996, 67: 248-255. 10.1002/(SICI)1097-0215(19960717)67:2<248::AID-IJC16>3.0.CO;2-7CrossRefPubMed
24.
go back to reference Koochekpour S, Jeffers M, Rulong S, Taylor G, Klineberg E, Hudson EA: Met and hepatocyte growth factor/scatter factor expression in human gliomas. Cancer Res. 1997, 57: 5391-5398.PubMed Koochekpour S, Jeffers M, Rulong S, Taylor G, Klineberg E, Hudson EA: Met and hepatocyte growth factor/scatter factor expression in human gliomas. Cancer Res. 1997, 57: 5391-5398.PubMed
25.
go back to reference Abounader R, Ranganathan S, Lal B, Fielding K, Book A, Dietz H: Reversion of human glioblastoma malignancy by U1 small nuclear RNA/ribozyme targeting of scatter factor/hepatocyte growth factor and c-met expression. J Natl Cancer Inst. 1999, 91: 1548-1556. 10.1093/jnci/91.18.1548CrossRefPubMed Abounader R, Ranganathan S, Lal B, Fielding K, Book A, Dietz H: Reversion of human glioblastoma malignancy by U1 small nuclear RNA/ribozyme targeting of scatter factor/hepatocyte growth factor and c-met expression. J Natl Cancer Inst. 1999, 91: 1548-1556. 10.1093/jnci/91.18.1548CrossRefPubMed
26.
go back to reference Guessous F, Zhang Y, di Pierro C, Marcinkiewicz L, Sarkaria J, Schiff D: An orally bioavailable c-Met kinase inhibitor potently inhibits brain tumor malignancy and growth. Anticancer Agents Med Chem. 2010, 10: 28-35. 10.2174/1871520611009010028PubMedCentralCrossRefPubMed Guessous F, Zhang Y, di Pierro C, Marcinkiewicz L, Sarkaria J, Schiff D: An orally bioavailable c-Met kinase inhibitor potently inhibits brain tumor malignancy and growth. Anticancer Agents Med Chem. 2010, 10: 28-35. 10.2174/1871520611009010028PubMedCentralCrossRefPubMed
27.
go back to reference Gauthier-Rouviere C, Vignal E, Meriane M, Roux P, Montcourier P, Fort P: RhoG GTPase controls a pathway that independently activates Rac1 and Cdc42Hs. Mol Biol Cell. 1998, 9: 1379-1394.PubMedCentralCrossRefPubMed Gauthier-Rouviere C, Vignal E, Meriane M, Roux P, Montcourier P, Fort P: RhoG GTPase controls a pathway that independently activates Rac1 and Cdc42Hs. Mol Biol Cell. 1998, 9: 1379-1394.PubMedCentralCrossRefPubMed
28.
go back to reference Katoh H, Negishi M: RhoG activates Rac1 by direct interaction with the Dock180-binding protein Elmo. Nature. 2003, 424: 461-464. 10.1038/nature01817CrossRefPubMed Katoh H, Negishi M: RhoG activates Rac1 by direct interaction with the Dock180-binding protein Elmo. Nature. 2003, 424: 461-464. 10.1038/nature01817CrossRefPubMed
29.
go back to reference Royal I, Lamarche-Vane N, Lamorte L, Kaibuchi K, Park M: Activation of cdc42, rac, PAK, and rho-kinase in response to hepatocyte growth factor differentially regulates epithelial cell colony spreading and dissociation. Mol Biol Cell. 2000, 11: 1709-1725.PubMedCentralCrossRefPubMed Royal I, Lamarche-Vane N, Lamorte L, Kaibuchi K, Park M: Activation of cdc42, rac, PAK, and rho-kinase in response to hepatocyte growth factor differentially regulates epithelial cell colony spreading and dissociation. Mol Biol Cell. 2000, 11: 1709-1725.PubMedCentralCrossRefPubMed
30.
go back to reference Azim AC, Barkalow KL, Hartwig JH: Determination of GTP loading on Rac and Cdc42 in platelets and fibroblasts. Methods Enzymol. 2000, 325: 257-263.CrossRefPubMed Azim AC, Barkalow KL, Hartwig JH: Determination of GTP loading on Rac and Cdc42 in platelets and fibroblasts. Methods Enzymol. 2000, 325: 257-263.CrossRefPubMed
31.
go back to reference Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A: Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 2007, 21: 2683-2710. 10.1101/gad.1596707CrossRefPubMed Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A: Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 2007, 21: 2683-2710. 10.1101/gad.1596707CrossRefPubMed
32.
go back to reference Van Meir EG, Hadjipanayis CG, Norden AD, Shu HK, Wen PY, Olson JJ: Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin. 2010, 60: 166-193. 10.3322/caac.20069PubMedCentralCrossRefPubMed Van Meir EG, Hadjipanayis CG, Norden AD, Shu HK, Wen PY, Olson JJ: Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin. 2010, 60: 166-193. 10.3322/caac.20069PubMedCentralCrossRefPubMed
33.
go back to reference Yamaki N, Negishi M, Katoh H: RhoG regulates anoikis through a phosphatidylinositol 3-kinase-dependent mechanism. Exp Cell Res. 2007, 313: 2821-2832. 10.1016/j.yexcr.2007.05.010CrossRefPubMed Yamaki N, Negishi M, Katoh H: RhoG regulates anoikis through a phosphatidylinositol 3-kinase-dependent mechanism. Exp Cell Res. 2007, 313: 2821-2832. 10.1016/j.yexcr.2007.05.010CrossRefPubMed
34.
go back to reference Abounader R, Laterra J: Scatter factor/hepatocyte growth factor in brain tumor growth and angiogenesis. Neuro Oncol. 2005, 7: 436-451. 10.1215/S1152851705000050PubMedCentralCrossRefPubMed Abounader R, Laterra J: Scatter factor/hepatocyte growth factor in brain tumor growth and angiogenesis. Neuro Oncol. 2005, 7: 436-451. 10.1215/S1152851705000050PubMedCentralCrossRefPubMed
35.
go back to reference van Buul JD, Allingham MJ, Samson T, Meller J, Boulter E, Garcia-Mata R: RhoG regulates endothelial apical cup assembly downstream from ICAM1 engagement and is involved in leukocyte trans-endothelial migration. J Cell Biol. 2007, 178: 1279-1293. 10.1083/jcb.200612053PubMedCentralCrossRefPubMed van Buul JD, Allingham MJ, Samson T, Meller J, Boulter E, Garcia-Mata R: RhoG regulates endothelial apical cup assembly downstream from ICAM1 engagement and is involved in leukocyte trans-endothelial migration. J Cell Biol. 2007, 178: 1279-1293. 10.1083/jcb.200612053PubMedCentralCrossRefPubMed
36.
go back to reference Elfenbein A, Rhodes JM, Meller J, Schwartz MA, Matsuda M, Simons M: Suppression of RhoG activity is mediated by a syndecan 4-synectin-RhoGDI1 complex and is reversed by PKCalpha in a Rac1 activation pathway. J Cell Biol. 2009, 186: 75-83. 10.1083/jcb.200810179PubMedCentralCrossRefPubMed Elfenbein A, Rhodes JM, Meller J, Schwartz MA, Matsuda M, Simons M: Suppression of RhoG activity is mediated by a syndecan 4-synectin-RhoGDI1 complex and is reversed by PKCalpha in a Rac1 activation pathway. J Cell Biol. 2009, 186: 75-83. 10.1083/jcb.200810179PubMedCentralCrossRefPubMed
37.
go back to reference Wennerberg K, Ellerbroek SM, Liu RY, Karnoub AE, Burridge K, Der CJ: RhoG signals in parallel with Rac1 and Cdc42. J Biol Chem. 2002, 277: 47810-47817. 10.1074/jbc.M203816200CrossRefPubMed Wennerberg K, Ellerbroek SM, Liu RY, Karnoub AE, Burridge K, Der CJ: RhoG signals in parallel with Rac1 and Cdc42. J Biol Chem. 2002, 277: 47810-47817. 10.1074/jbc.M203816200CrossRefPubMed
38.
go back to reference Cote JF, Vuori K: GEF what? Dock180 and related proteins help Rac to polarize cells in new ways. Trends Cell Biol. 2007, 17: 383-393. 10.1016/j.tcb.2007.05.001PubMedCentralCrossRefPubMed Cote JF, Vuori K: GEF what? Dock180 and related proteins help Rac to polarize cells in new ways. Trends Cell Biol. 2007, 17: 383-393. 10.1016/j.tcb.2007.05.001PubMedCentralCrossRefPubMed
39.
go back to reference de Bakker CD, Haney LB, Kinchen JM, Grimsley C, Lu M, Klingele D: Phagocytosis of apoptotic cells is regulated by a UNC-73/TRIO-MIG-2/RhoG signaling module and armadillo repeats of CED-12/ELMO. Curr Biol. 2004, 14: 2208-2216. 10.1016/j.cub.2004.12.029CrossRef de Bakker CD, Haney LB, Kinchen JM, Grimsley C, Lu M, Klingele D: Phagocytosis of apoptotic cells is regulated by a UNC-73/TRIO-MIG-2/RhoG signaling module and armadillo repeats of CED-12/ELMO. Curr Biol. 2004, 14: 2208-2216. 10.1016/j.cub.2004.12.029CrossRef
40.
go back to reference Meller J, Vidali L, Schwartz MA: Endogenous RhoG is dispensable for integrin-mediated cell spreading but contributes to Rac-independent migration. J Cell Sci. 2008, 121: 1981-1989. 10.1242/jcs.025130PubMedCentralCrossRefPubMed Meller J, Vidali L, Schwartz MA: Endogenous RhoG is dispensable for integrin-mediated cell spreading but contributes to Rac-independent migration. J Cell Sci. 2008, 121: 1981-1989. 10.1242/jcs.025130PubMedCentralCrossRefPubMed
41.
go back to reference Mariani L, Beaudry C, McDonough WS, Hoelzinger DB, Demuth T, Ross KR: Glioma cell motility is associated with reduced transcription of proapoptotic and proliferation genes: a cDNA microarray analysis. J Neurooncol. 2001, 53: 161-176. 10.1023/A:1012253317934CrossRefPubMed Mariani L, Beaudry C, McDonough WS, Hoelzinger DB, Demuth T, Ross KR: Glioma cell motility is associated with reduced transcription of proapoptotic and proliferation genes: a cDNA microarray analysis. J Neurooncol. 2001, 53: 161-176. 10.1023/A:1012253317934CrossRefPubMed
42.
go back to reference Hoelzinger DB, Mariani L, Weis J, Woyke T, Berens TJ, McDonough WS: Gene expression profile of glioblastoma multiforme invasive phenotype points to new therapeutic targets. Neoplasia. 2005, 7: 7-16. 10.1593/neo.04535PubMedCentralCrossRefPubMed Hoelzinger DB, Mariani L, Weis J, Woyke T, Berens TJ, McDonough WS: Gene expression profile of glioblastoma multiforme invasive phenotype points to new therapeutic targets. Neoplasia. 2005, 7: 7-16. 10.1593/neo.04535PubMedCentralCrossRefPubMed
43.
go back to reference Goswami S, Wang W, Wyckoff JB, Condeelis JS: Breast cancer cells isolated by chemotaxis from primary tumors show increased survival and resistance to chemotherapy. Cancer Res. 2004, 64: 7664-7667. 10.1158/0008-5472.CAN-04-2027CrossRefPubMed Goswami S, Wang W, Wyckoff JB, Condeelis JS: Breast cancer cells isolated by chemotaxis from primary tumors show increased survival and resistance to chemotherapy. Cancer Res. 2004, 64: 7664-7667. 10.1158/0008-5472.CAN-04-2027CrossRefPubMed
44.
go back to reference Vigorito E, Bell S, Hebeis BJ, Reynolds H, McAdam S, Emson PC: Immunological function in mice lacking the Rac-related GTPase RhoG. Mol Cell Biol. 2004, 24: 719-729. 10.1128/MCB.24.2.719-729.2004PubMedCentralCrossRefPubMed Vigorito E, Bell S, Hebeis BJ, Reynolds H, McAdam S, Emson PC: Immunological function in mice lacking the Rac-related GTPase RhoG. Mol Cell Biol. 2004, 24: 719-729. 10.1128/MCB.24.2.719-729.2004PubMedCentralCrossRefPubMed
45.
go back to reference Fritz G, Kaina B: Rho GTPases: promising cellular targets for novel anticancer drugs. Curr Cancer Drug Targets. 2006, 6: 1-14.PubMed Fritz G, Kaina B: Rho GTPases: promising cellular targets for novel anticancer drugs. Curr Cancer Drug Targets. 2006, 6: 1-14.PubMed
46.
go back to reference Gao Y, Dickerson JB, Guo F, Zheng J, Zheng Y: Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci U S A. 2004, 101: 7618-7623. 10.1073/pnas.0307512101PubMedCentralCrossRefPubMed Gao Y, Dickerson JB, Guo F, Zheng J, Zheng Y: Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci U S A. 2004, 101: 7618-7623. 10.1073/pnas.0307512101PubMedCentralCrossRefPubMed
47.
go back to reference Cancelas JA, Lee AW, Prabhakar R, Stringer KF, Zheng Y, Williams DA: Rac GTPases differentially integrate signals regulating hematopoietic stem cell localization. Nat Med. 2005, 11: 886-891. 10.1038/nm1274CrossRefPubMed Cancelas JA, Lee AW, Prabhakar R, Stringer KF, Zheng Y, Williams DA: Rac GTPases differentially integrate signals regulating hematopoietic stem cell localization. Nat Med. 2005, 11: 886-891. 10.1038/nm1274CrossRefPubMed
48.
go back to reference Marchioni F, Zheng Y: Targeting rho GTPases by peptidic structures. Curr Pharm Des. 2009, 15: 2481-2487. 10.2174/138161209788682334CrossRefPubMed Marchioni F, Zheng Y: Targeting rho GTPases by peptidic structures. Curr Pharm Des. 2009, 15: 2481-2487. 10.2174/138161209788682334CrossRefPubMed
49.
go back to reference Shutes A, Onesto C, Picard V, Leblond B, Schweighoffer F, Der CJ: Specificity and mechanism of action of EHT 1864, a novel small molecule inhibitor of Rac family small GTPases. J Biol Chem. 2007, 282: 35666-35678. 10.1074/jbc.M703571200CrossRefPubMed Shutes A, Onesto C, Picard V, Leblond B, Schweighoffer F, Der CJ: Specificity and mechanism of action of EHT 1864, a novel small molecule inhibitor of Rac family small GTPases. J Biol Chem. 2007, 282: 35666-35678. 10.1074/jbc.M703571200CrossRefPubMed
50.
go back to reference van Hennik PB, ten Klooster JP, Halstead JR, Voermans C, Anthony EC, Divecha N: The C-terminal domain of Rac1 contains two motifs that control targeting and signaling specificity. J Biol Chem. 2003, 278: 39166-39175. 10.1074/jbc.M307001200CrossRefPubMed van Hennik PB, ten Klooster JP, Halstead JR, Voermans C, Anthony EC, Divecha N: The C-terminal domain of Rac1 contains two motifs that control targeting and signaling specificity. J Biol Chem. 2003, 278: 39166-39175. 10.1074/jbc.M307001200CrossRefPubMed
51.
go back to reference Abreu JR, Dontje W, Krausz S, de Launay D, van Hennik PB, van Stalborch AM: A Rac1 inhibitory peptide suppresses antibody production and paw swelling in the murine collagen-induced arthritis model of rheumatoid arthritis. Arthritis Res Ther. 2010, 12: R2- 10.1186/ar2900PubMedCentralCrossRefPubMed Abreu JR, Dontje W, Krausz S, de Launay D, van Hennik PB, van Stalborch AM: A Rac1 inhibitory peptide suppresses antibody production and paw swelling in the murine collagen-induced arthritis model of rheumatoid arthritis. Arthritis Res Ther. 2010, 12: R2- 10.1186/ar2900PubMedCentralCrossRefPubMed
52.
go back to reference Vader P, van der Meel R, Symons MH, Fens MH, Pieters E, Wilschut KJ: Examining the role of Rac1 in tumor angiogenesis and growth: a clinically relevant RNAi-mediated approach. Angiogenesis. 2011, 14: 457-466. 10.1007/s10456-011-9229-xCrossRefPubMed Vader P, van der Meel R, Symons MH, Fens MH, Pieters E, Wilschut KJ: Examining the role of Rac1 in tumor angiogenesis and growth: a clinically relevant RNAi-mediated approach. Angiogenesis. 2011, 14: 457-466. 10.1007/s10456-011-9229-xCrossRefPubMed
53.
go back to reference Hiramoto K, Negishi M, Katoh H: Dock4 is regulated by RhoG and promotes Rac-dependent cell migration. Exp Cell Res. 2006, 312: 4205-4216. 10.1016/j.yexcr.2006.09.006CrossRefPubMed Hiramoto K, Negishi M, Katoh H: Dock4 is regulated by RhoG and promotes Rac-dependent cell migration. Exp Cell Res. 2006, 312: 4205-4216. 10.1016/j.yexcr.2006.09.006CrossRefPubMed
54.
go back to reference Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D: New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst. 1990, 82: 1107-1112. 10.1093/jnci/82.13.1107CrossRefPubMed Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D: New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst. 1990, 82: 1107-1112. 10.1093/jnci/82.13.1107CrossRefPubMed
55.
go back to reference Bowden ET, Coopman PJ, Mueller SC: Invadopodia: unique methods for measurement of extracellular matrix degradation in vitro. Methods Cell Biol. 2001, 63: 613-627.CrossRefPubMed Bowden ET, Coopman PJ, Mueller SC: Invadopodia: unique methods for measurement of extracellular matrix degradation in vitro. Methods Cell Biol. 2001, 63: 613-627.CrossRefPubMed
56.
go back to reference Fortin SP, Ennis MJ, Savitch BA, Carpentieri D, McDonough WS, Winkles JA: Tumor necrosis factor-like weak inducer of apoptosis stimulation of glioma cell survival is dependent on Akt2 function. Mol Cancer Res. 2009, 7: 1871-1881. 10.1158/1541-7786.MCR-09-0194PubMedCentralCrossRefPubMed Fortin SP, Ennis MJ, Savitch BA, Carpentieri D, McDonough WS, Winkles JA: Tumor necrosis factor-like weak inducer of apoptosis stimulation of glioma cell survival is dependent on Akt2 function. Mol Cancer Res. 2009, 7: 1871-1881. 10.1158/1541-7786.MCR-09-0194PubMedCentralCrossRefPubMed
Metadata
Title
The small GTPase RhoG mediates glioblastoma cell invasion
Authors
Aneta Kwiatkowska
Sebastien Didier
Shannon Fortin
Yayu Chuang
Timothy White
Michael E Berens
Elisabeth Rushing
Jennifer Eschbacher
Nhan L Tran
Amanda Chan
Marc Symons
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2012
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-11-65

Other articles of this Issue 1/2012

Molecular Cancer 1/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine