Skip to main content
Top
Published in: Molecular Cancer 1/2012

Open Access 01-12-2012 | Research

miR-31 and its host gene lncRNA LOC554202 are regulated by promoter hypermethylation in triple-negative breast cancer

Authors: Katarzyna Augoff, Brian McCue, Edward F Plow, Khalid Sossey-Alaoui

Published in: Molecular Cancer | Issue 1/2012

Login to get access

Abstract

Background

microRNAs have been established as powerful regulators of gene expression in normal physiological as well as in pathological conditions, including cancer progression and metastasis. Recent studies have demonstrated a key role of miR-31 in the progression and metastasis of breast cancer. Downregulation of miR-31 enhances several steps of the invasion-metastasis cascade in breast cancer, i.e., local invasion, extravasation and survival in the circulation system, and metastatic colonization of distant sites. miR-31 exerts its metastasis-suppressor activity by targeting a cohort of pro-metastatic genes, including RhoA and WAVE3. The molecular mechanisms that lead to the loss of miR-31 and the activation of its pro-metastatic target genes during these specific steps of the invasion-metastasis cascade are however unknown.

Results

In the present report, we identify promoter hypermethylation as one of the major mechanisms for silencing miR-31 in breast cancer, and in the triple-negative breast cancer (TNBC) cell lines of basal subtype, in particular. miR-31 maps to the intronic sequence of a novel long non-coding (lnc)RNA, LOC554202 and the regulation of its transcriptional activity is under control of LOC554202. Both miR-31 and the host gene LOC554202 are down-regulated in the TNBC cell lines of basal subtype and over-expressed in the luminal counterparts. Treatment of the TNBC cell lines with either a de-methylating agent alone or in combination with a de-acetylating agent resulted in a significant increase of both miR-31 and its host gene, suggesting an epigenetic mechanism for the silencing of these two genes by promoter hypermethylation. Finally, both methylation-specific PCR and sequencing of bisulfite-converted DNA demonstrated that the LOC554202 promoter-associated CpG island is heavily methylated in the TNBC cell lines and hypomethylated in the luminal subtypes.

Conclusion

Loss of miR-31 expression in TNBC cell lines is attributed to hypermethylation of its promoter-associated CpG island. Together, our results provide the initial evidence for a mechanism by which miR-31, an important determinant of the invasion metastasis cascade, is regulated in breast cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Berx G, Raspe E, Christofori G, Thiery JP, Sleeman JP: Pre-EMTing metastasis? Recapitulation of morphogenetic processes in cancer. Clin Exp Metastasis. 2007, 24: 587-597. 10.1007/s10585-007-9114-6CrossRefPubMed Berx G, Raspe E, Christofori G, Thiery JP, Sleeman JP: Pre-EMTing metastasis? Recapitulation of morphogenetic processes in cancer. Clin Exp Metastasis. 2007, 24: 587-597. 10.1007/s10585-007-9114-6CrossRefPubMed
3.
go back to reference Spaderna S, Schmalhofer O, Hlubek F, Jung A, Kirchner T, Brabletz T: Epithelial-mesenchymal and mesenchymal-epithelial transitions during cancer progression. Verh Dtsch Ges Pathol. 2007, 91: 21-28.PubMed Spaderna S, Schmalhofer O, Hlubek F, Jung A, Kirchner T, Brabletz T: Epithelial-mesenchymal and mesenchymal-epithelial transitions during cancer progression. Verh Dtsch Ges Pathol. 2007, 91: 21-28.PubMed
4.
go back to reference Nguyen DX, Bos PD, Massague J: Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer. 2009, 9: 274-284. 10.1038/nrc2622CrossRefPubMed Nguyen DX, Bos PD, Massague J: Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer. 2009, 9: 274-284. 10.1038/nrc2622CrossRefPubMed
5.
go back to reference May CD, Sphyris N, Evans KW, Werden SJ, Guo W, Mani SA: Epithelial-mesenchymal transition and cancer stem cells: a dangerously dynamic duo in breast cancer progression. Breast Cancer Res. 2011, 13: 202-PubMedCentralCrossRefPubMed May CD, Sphyris N, Evans KW, Werden SJ, Guo W, Mani SA: Epithelial-mesenchymal transition and cancer stem cells: a dangerously dynamic duo in breast cancer progression. Breast Cancer Res. 2011, 13: 202-PubMedCentralCrossRefPubMed
6.
go back to reference Taylor MA, Parvani JG, Schiemann WP: The pathophysiology of epithelial-mesenchymal transition induced by transforming growth factor-beta in normal and malignant mammary epithelial cells. J Mammary Gland Biol Neoplasia. 2010, 15: 169-190. 10.1007/s10911-010-9181-1PubMedCentralCrossRefPubMed Taylor MA, Parvani JG, Schiemann WP: The pathophysiology of epithelial-mesenchymal transition induced by transforming growth factor-beta in normal and malignant mammary epithelial cells. J Mammary Gland Biol Neoplasia. 2010, 15: 169-190. 10.1007/s10911-010-9181-1PubMedCentralCrossRefPubMed
7.
go back to reference Yang J, Weinberg RA: Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell. 2008, 14: 818-829. 10.1016/j.devcel.2008.05.009CrossRefPubMed Yang J, Weinberg RA: Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell. 2008, 14: 818-829. 10.1016/j.devcel.2008.05.009CrossRefPubMed
8.
go back to reference Talmadge JE, Fidler IJ: AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res. 2010, 70: 5649-5669. 10.1158/0008-5472.CAN-10-1040PubMedCentralCrossRefPubMed Talmadge JE, Fidler IJ: AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res. 2010, 70: 5649-5669. 10.1158/0008-5472.CAN-10-1040PubMedCentralCrossRefPubMed
9.
go back to reference Gupta GP, Massague J: Cancer metastasis: building a framework. Cell. 2006, 127: 679-695. 10.1016/j.cell.2006.11.001CrossRefPubMed Gupta GP, Massague J: Cancer metastasis: building a framework. Cell. 2006, 127: 679-695. 10.1016/j.cell.2006.11.001CrossRefPubMed
10.
go back to reference Li F, Tiede B, Massague J, Kang Y: Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res. 2007, 17: 3-14. 10.1038/sj.cr.7310118CrossRefPubMed Li F, Tiede B, Massague J, Kang Y: Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res. 2007, 17: 3-14. 10.1038/sj.cr.7310118CrossRefPubMed
11.
go back to reference Jemal A, Siegel R, Xu J, Ward E: Cancer statistics, 2010. CA Cancer J Clin. 2010, 60: 277-300. 10.3322/caac.20073CrossRefPubMed Jemal A, Siegel R, Xu J, Ward E: Cancer statistics, 2010. CA Cancer J Clin. 2010, 60: 277-300. 10.3322/caac.20073CrossRefPubMed
12.
go back to reference Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA: Molecular portraits of human breast tumours. Nature. 2000, 406: 747-752. 10.1038/35021093CrossRefPubMed Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA: Molecular portraits of human breast tumours. Nature. 2000, 406: 747-752. 10.1038/35021093CrossRefPubMed
13.
go back to reference Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001, 98: 10869-10874. 10.1073/pnas.191367098PubMedCentralCrossRefPubMed Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001, 98: 10869-10874. 10.1073/pnas.191367098PubMedCentralCrossRefPubMed
14.
go back to reference Anders C, Carey LA: Understanding and treating triple-negative breast cancer. Oncology (Williston Park). 2008, 22: 1233-1239. Anders C, Carey LA: Understanding and treating triple-negative breast cancer. Oncology (Williston Park). 2008, 22: 1233-1239.
15.
go back to reference Anders CK, Carey LA: Biology, metastatic patterns, and treatment of patients with triple-negative breast cancer. Clin Breast Cancer. 2009, 9 (Suppl 2): S73-S81.PubMedCentralCrossRefPubMed Anders CK, Carey LA: Biology, metastatic patterns, and treatment of patients with triple-negative breast cancer. Clin Breast Cancer. 2009, 9 (Suppl 2): S73-S81.PubMedCentralCrossRefPubMed
16.
go back to reference Carey L, Winer E, Viale G, Cameron D, Gianni L: Triple-negative breast cancer: disease entity or title of convenience?. Nat Rev Clin Oncol. 2010, 7: 683-692. 10.1038/nrclinonc.2010.154CrossRefPubMed Carey L, Winer E, Viale G, Cameron D, Gianni L: Triple-negative breast cancer: disease entity or title of convenience?. Nat Rev Clin Oncol. 2010, 7: 683-692. 10.1038/nrclinonc.2010.154CrossRefPubMed
17.
go back to reference Finnegan TJ, Carey LA: Gene-expression analysis and the basal-like breast cancer subtype. Future Oncol. 2007, 3: 55-63. 10.2217/14796694.3.1.55CrossRefPubMed Finnegan TJ, Carey LA: Gene-expression analysis and the basal-like breast cancer subtype. Future Oncol. 2007, 3: 55-63. 10.2217/14796694.3.1.55CrossRefPubMed
18.
go back to reference Foulkes WD, Smith IE, Reis-Filho JS: Triple-negative breast cancer. N Engl J Med. 2010, 363: 1938-1948. 10.1056/NEJMra1001389CrossRefPubMed Foulkes WD, Smith IE, Reis-Filho JS: Triple-negative breast cancer. N Engl J Med. 2010, 363: 1938-1948. 10.1056/NEJMra1001389CrossRefPubMed
19.
go back to reference Jiang Z, Jones R, Liu JC, Deng T, Robinson T, Chung PE: RB1 and p53 at the crossroad of EMT and triple negative breast cancer. Cell Cycle. 2011, 10: 1563-1570. 10.4161/cc.10.10.15703CrossRefPubMed Jiang Z, Jones R, Liu JC, Deng T, Robinson T, Chung PE: RB1 and p53 at the crossroad of EMT and triple negative breast cancer. Cell Cycle. 2011, 10: 1563-1570. 10.4161/cc.10.10.15703CrossRefPubMed
20.
go back to reference Schneider BP, Winer EP, Foulkes WD, Garber J, Perou CM, Richardson A: Triple-negative breast cancer: risk factors to potential targets. Clin Cancer Res. 2008, 14: 8010-8018. 10.1158/1078-0432.CCR-08-1208CrossRefPubMed Schneider BP, Winer EP, Foulkes WD, Garber J, Perou CM, Richardson A: Triple-negative breast cancer: risk factors to potential targets. Clin Cancer Res. 2008, 14: 8010-8018. 10.1158/1078-0432.CCR-08-1208CrossRefPubMed
21.
go back to reference Padua D, Massague J: Roles of TGFbeta in metastasis. Cell Res. 2009, 19: 89-102. 10.1038/cr.2008.316CrossRefPubMed Padua D, Massague J: Roles of TGFbeta in metastasis. Cell Res. 2009, 19: 89-102. 10.1038/cr.2008.316CrossRefPubMed
22.
go back to reference Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S: A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 2008, 9: 582-589. 10.1038/embor.2008.74PubMedCentralCrossRefPubMed Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S: A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 2008, 9: 582-589. 10.1038/embor.2008.74PubMedCentralCrossRefPubMed
23.
go back to reference Esquela-Kerscher A, Slack FJ: Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer. 2006, 6: 259-269. 10.1038/nrc1840CrossRefPubMed Esquela-Kerscher A, Slack FJ: Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer. 2006, 6: 259-269. 10.1038/nrc1840CrossRefPubMed
24.
go back to reference Sossey-Alaoui K, Downs-Kelly E, Das M, Izem L, Tubbs R, Plow EF: WAVE3, an actin remodeling protein, is regulated by the metastasis suppressor microRNA, miR-31, during the invasion-metastasis cascade. Int J Cancer. 2011, 129 (6): 1331-1343. 10.1002/ijc.25793PubMedCentralCrossRefPubMed Sossey-Alaoui K, Downs-Kelly E, Das M, Izem L, Tubbs R, Plow EF: WAVE3, an actin remodeling protein, is regulated by the metastasis suppressor microRNA, miR-31, during the invasion-metastasis cascade. Int J Cancer. 2011, 129 (6): 1331-1343. 10.1002/ijc.25793PubMedCentralCrossRefPubMed
25.
go back to reference Sossey-Alaoui K, Bialkowska K, Plow EF: The miR200 family of microRNAs regulates WAVE3-dependent cancer cell invasion. J Biol Chem. 2009, 284: 33019-33029. 10.1074/jbc.M109.034553PubMedCentralCrossRefPubMed Sossey-Alaoui K, Bialkowska K, Plow EF: The miR200 family of microRNAs regulates WAVE3-dependent cancer cell invasion. J Biol Chem. 2009, 284: 33019-33029. 10.1074/jbc.M109.034553PubMedCentralCrossRefPubMed
26.
go back to reference Akao Y, Nakagawa Y, Naoe T: let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull. 2006, 29: 903-906. 10.1248/bpb.29.903CrossRefPubMed Akao Y, Nakagawa Y, Naoe T: let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull. 2006, 29: 903-906. 10.1248/bpb.29.903CrossRefPubMed
27.
go back to reference Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E: Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2002, 99: 15524-15529. 10.1073/pnas.242606799PubMedCentralCrossRefPubMed Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E: Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2002, 99: 15524-15529. 10.1073/pnas.242606799PubMedCentralCrossRefPubMed
28.
go back to reference Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K, Ovcharenko D: The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res. 2007, 67: 7713-7722. 10.1158/0008-5472.CAN-07-1083CrossRefPubMed Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K, Ovcharenko D: The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res. 2007, 67: 7713-7722. 10.1158/0008-5472.CAN-07-1083CrossRefPubMed
29.
go back to reference Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H: Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 2004, 64: 3753-3756. 10.1158/0008-5472.CAN-04-0637CrossRefPubMed Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H: Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 2004, 64: 3753-3756. 10.1158/0008-5472.CAN-04-0637CrossRefPubMed
30.
go back to reference Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M: Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006, 9: 189-198. 10.1016/j.ccr.2006.01.025CrossRefPubMed Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M: Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006, 9: 189-198. 10.1016/j.ccr.2006.01.025CrossRefPubMed
31.
go back to reference He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S: A microRNA polycistron as a potential human oncogene. Nature. 2005, 435: 828-833. 10.1038/nature03552CrossRefPubMed He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S: A microRNA polycistron as a potential human oncogene. Nature. 2005, 435: 828-833. 10.1038/nature03552CrossRefPubMed
32.
go back to reference Voorhoeve PM, le SC, Schrier M, Gillis AJ, Stoop H, Nagel R: A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell. 2006, 124: 1169-1181. 10.1016/j.cell.2006.02.037CrossRefPubMed Voorhoeve PM, le SC, Schrier M, Gillis AJ, Stoop H, Nagel R: A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell. 2006, 124: 1169-1181. 10.1016/j.cell.2006.02.037CrossRefPubMed
33.
go back to reference Valastyan S, Weinberg RA: miR-31: A crucial overseer of tumor metastasis and other emerging roles. Cell Cycle. 2010, 9: 2124-2129. 10.4161/cc.9.11.11843CrossRefPubMed Valastyan S, Weinberg RA: miR-31: A crucial overseer of tumor metastasis and other emerging roles. Cell Cycle. 2010, 9: 2124-2129. 10.4161/cc.9.11.11843CrossRefPubMed
34.
go back to reference Valastyan S, Chang A, Benaich N, Reinhardt F, Weinberg RA: Activation of miR-31 function in already-established metastases elicits metastatic regression. Genes Dev. 2011, 25: 646-659. 10.1101/gad.2004211PubMedCentralCrossRefPubMed Valastyan S, Chang A, Benaich N, Reinhardt F, Weinberg RA: Activation of miR-31 function in already-established metastases elicits metastatic regression. Genes Dev. 2011, 25: 646-659. 10.1101/gad.2004211PubMedCentralCrossRefPubMed
35.
go back to reference Valastyan S, Benaich N, Chang A, Reinhardt F, Weinberg RA: Concomitant suppression of three target genes can explain the impact of a microRNA on metastasis. Genes Dev. 2009, 23: 2592-2597. 10.1101/gad.1832709PubMedCentralCrossRefPubMed Valastyan S, Benaich N, Chang A, Reinhardt F, Weinberg RA: Concomitant suppression of three target genes can explain the impact of a microRNA on metastasis. Genes Dev. 2009, 23: 2592-2597. 10.1101/gad.1832709PubMedCentralCrossRefPubMed
36.
go back to reference Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szasz AM, Wang ZC: A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell. 2009, 137: 1032-1046. 10.1016/j.cell.2009.03.047PubMedCentralCrossRefPubMed Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szasz AM, Wang ZC: A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell. 2009, 137: 1032-1046. 10.1016/j.cell.2009.03.047PubMedCentralCrossRefPubMed
37.
go back to reference Sossey-Alaoui K, Safina A, Li X, Vaughan MM, Hicks DG, Bakin AV: Down-Regulation of WAVE3, a Metastasis Promoter Gene, Inhibits Invasion and Metastasis of Breast Cancer Cells. Am J Pathol. 2007, 170 (6): 2112-2121. 10.2353/ajpath.2007.060975PubMedCentralCrossRefPubMed Sossey-Alaoui K, Safina A, Li X, Vaughan MM, Hicks DG, Bakin AV: Down-Regulation of WAVE3, a Metastasis Promoter Gene, Inhibits Invasion and Metastasis of Breast Cancer Cells. Am J Pathol. 2007, 170 (6): 2112-2121. 10.2353/ajpath.2007.060975PubMedCentralCrossRefPubMed
38.
go back to reference Fernando HS, Davies SR, Chhabra A, Watkins G, Douglas-Jones A, Kynaston H: Expression of the WASP verprolin-homologues (WAVE members) in human breast cancer. Oncology. 2007, 73: 376-383. 10.1159/000136157CrossRefPubMed Fernando HS, Davies SR, Chhabra A, Watkins G, Douglas-Jones A, Kynaston H: Expression of the WASP verprolin-homologues (WAVE members) in human breast cancer. Oncology. 2007, 73: 376-383. 10.1159/000136157CrossRefPubMed
39.
go back to reference Fernando HS, Sanders AJ, Kynaston HG, Jiang WG: WAVE3 is associated with invasiveness in prostate cancer cells. Urol Oncol. 2009, 28 (3): 320-327.CrossRefPubMed Fernando HS, Sanders AJ, Kynaston HG, Jiang WG: WAVE3 is associated with invasiveness in prostate cancer cells. Urol Oncol. 2009, 28 (3): 320-327.CrossRefPubMed
40.
go back to reference Wang W, Goswami S, Lapidus K, Wells AL, Wyckoff JB, Sahai E: Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Res. 2004, 64: 8585-8594. 10.1158/0008-5472.CAN-04-1136CrossRefPubMed Wang W, Goswami S, Lapidus K, Wells AL, Wyckoff JB, Sahai E: Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Res. 2004, 64: 8585-8594. 10.1158/0008-5472.CAN-04-1136CrossRefPubMed
41.
go back to reference Corcoran DL, Pandit KV, Gordon B, Bhattacharjee A, Kaminski N, Benos PV: Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data. PLoS One. 2009, 4: e5279- 10.1371/journal.pone.0005279PubMedCentralCrossRefPubMed Corcoran DL, Pandit KV, Gordon B, Bhattacharjee A, Kaminski N, Benos PV: Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data. PLoS One. 2009, 4: e5279- 10.1371/journal.pone.0005279PubMedCentralCrossRefPubMed
42.
go back to reference Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R: Complete sequencing and characterization of 21, 243 full-length human cDNAs. Nat Genet. 2004, 36: 40-45. 10.1038/ng1285CrossRefPubMed Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R: Complete sequencing and characterization of 21, 243 full-length human cDNAs. Nat Genet. 2004, 36: 40-45. 10.1038/ng1285CrossRefPubMed
43.
go back to reference Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS: Generation and initial analysis of more than 15, 000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci USA. 2002, 99: 16899-16903. 10.1073/pnas.242603899CrossRefPubMed Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS: Generation and initial analysis of more than 15, 000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci USA. 2002, 99: 16899-16903. 10.1073/pnas.242603899CrossRefPubMed
44.
go back to reference Bachour T, Bennett K: The Role of MicroRNAs in Breast Cancer. J Assoc Genet Technol. 2011, 37: 21-28.PubMed Bachour T, Bennett K: The Role of MicroRNAs in Breast Cancer. J Assoc Genet Technol. 2011, 37: 21-28.PubMed
45.
go back to reference Andorfer CA, Necela BM, Thompson EA, Perez EA: MicroRNA signatures: clinical biomarkers for the diagnosis and treatment of breast cancer. Trends Mol Med. 2011, 17: 313-319. 10.1016/j.molmed.2011.01.006CrossRefPubMed Andorfer CA, Necela BM, Thompson EA, Perez EA: MicroRNA signatures: clinical biomarkers for the diagnosis and treatment of breast cancer. Trends Mol Med. 2011, 17: 313-319. 10.1016/j.molmed.2011.01.006CrossRefPubMed
46.
go back to reference Weigel MT, Dowsett M: Current and emerging biomarkers in breast cancer: prognosis and prediction. Endocr Relat Cancer. 2010, 17: R245-R262. 10.1677/ERC-10-0136CrossRefPubMed Weigel MT, Dowsett M: Current and emerging biomarkers in breast cancer: prognosis and prediction. Endocr Relat Cancer. 2010, 17: R245-R262. 10.1677/ERC-10-0136CrossRefPubMed
47.
go back to reference Augoff K, Das M, Bialkowska K, McCue B, Plow EF, Sossey-Alaoui K: miR-31 is a broad regulator of β1-integrin expression and function in cancer cells. Mol Cancer Res. 2011, 9 (11): 1500-1508. 10.1158/1541-7786.MCR-11-0311PubMedCentralCrossRefPubMed Augoff K, Das M, Bialkowska K, McCue B, Plow EF, Sossey-Alaoui K: miR-31 is a broad regulator of β1-integrin expression and function in cancer cells. Mol Cancer Res. 2011, 9 (11): 1500-1508. 10.1158/1541-7786.MCR-11-0311PubMedCentralCrossRefPubMed
48.
go back to reference Wapinski O, Chang HY: Long noncoding RNAs and human disease. Trends Cell Biol. 2011, 21: 354-361. 10.1016/j.tcb.2011.04.001CrossRefPubMed Wapinski O, Chang HY: Long noncoding RNAs and human disease. Trends Cell Biol. 2011, 21: 354-361. 10.1016/j.tcb.2011.04.001CrossRefPubMed
49.
go back to reference Nagano T, Fraser P: Emerging similarities in epigenetic gene silencing by long noncoding RNAs. Mamm Genome. 2009, 20: 557-562. 10.1007/s00335-009-9218-1CrossRefPubMed Nagano T, Fraser P: Emerging similarities in epigenetic gene silencing by long noncoding RNAs. Mamm Genome. 2009, 20: 557-562. 10.1007/s00335-009-9218-1CrossRefPubMed
50.
go back to reference Sossey-Alaoui K, Kitamura E, Head K, Cowell JK: Characterization of FAM10A4, a member of the ST13 tumor suppressor gene family that maps to the 13q14.3 region associated with B-Cell leukemia, multiple myeloma, and prostate cancer. Genomics. 2002, 80: 5-7. 10.1006/geno.2002.6792CrossRefPubMed Sossey-Alaoui K, Kitamura E, Head K, Cowell JK: Characterization of FAM10A4, a member of the ST13 tumor suppressor gene family that maps to the 13q14.3 region associated with B-Cell leukemia, multiple myeloma, and prostate cancer. Genomics. 2002, 80: 5-7. 10.1006/geno.2002.6792CrossRefPubMed
51.
go back to reference Sossey-Alaoui K, Ranalli TA, Li X, Bakin AV, Cowell JK: WAVE3 promotes cell motility and invasion through the regulation of MMP-1, MMP-3, and MMP-9 expression. Exp Cell Res. 2005, 308: 135-145. 10.1016/j.yexcr.2005.04.011CrossRefPubMed Sossey-Alaoui K, Ranalli TA, Li X, Bakin AV, Cowell JK: WAVE3 promotes cell motility and invasion through the regulation of MMP-1, MMP-3, and MMP-9 expression. Exp Cell Res. 2005, 308: 135-145. 10.1016/j.yexcr.2005.04.011CrossRefPubMed
52.
go back to reference Sossey-Alaoui K, Li X, Cowell JK: c-Abl-mediated phosphorylation of WAVE3 is required for lamellipodia formation and cell migration. J Biol Chem. 2007, 282: 26257-26265. 10.1074/jbc.M701484200CrossRefPubMed Sossey-Alaoui K, Li X, Cowell JK: c-Abl-mediated phosphorylation of WAVE3 is required for lamellipodia formation and cell migration. J Biol Chem. 2007, 282: 26257-26265. 10.1074/jbc.M701484200CrossRefPubMed
53.
go back to reference Schmittgen TD, Livak KJ: Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008, 3: 1101-1108. 10.1038/nprot.2008.73CrossRefPubMed Schmittgen TD, Livak KJ: Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008, 3: 1101-1108. 10.1038/nprot.2008.73CrossRefPubMed
Metadata
Title
miR-31 and its host gene lncRNA LOC554202 are regulated by promoter hypermethylation in triple-negative breast cancer
Authors
Katarzyna Augoff
Brian McCue
Edward F Plow
Khalid Sossey-Alaoui
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2012
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-11-5

Other articles of this Issue 1/2012

Molecular Cancer 1/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine