Skip to main content
Top
Published in: Molecular Cancer 1/2012

Open Access 01-12-2012 | Research

RhoA: A therapeutic target for chronic myeloid leukemia

Authors: Poonam R Molli, Madhura B Pradhan, Suresh H Advani, Nishigandha R Naik

Published in: Molecular Cancer | Issue 1/2012

Login to get access

Abstract

Background

Chronic Myeloid Leukemia (CML) is a malignant pluripotent stem cells disorder of myeloid cells. In CML patients, polymorphonuclear leukocytes (PMNL) the terminally differentiated cells of myeloid series exhibit defects in several actin dependent functions such as adhesion, motility, chemotaxis, agglutination, phagocytosis and microbicidal activities. A definite and global abnormality was observed in stimulation of actin polymerization in CML PMNL. Signalling molecules ras and rhoGTPases regulate spatial and temporal polymerization of actin and thus, a broad range of physiological processes. Therefore, status of these GTPases as well as actin was studied in resting and fMLP stimulated normal and CML PMNL.

Methods

To study expression of GTPases and actin, Western blotting and flow cytometry analysis were done, while spatial expression and colocalization of these proteins were studied by using laser confocal microscopy. To study effect of inhibitors on cell proliferation CCK-8 assay was done. Significance of differences in expression of proteins within the samples and between normal and CML was tested by using Wilcoxon signed rank test and Mann-Whitney test, respectively. Bivariate and partial correlation analyses were done to study relationship between all the parameters.

Results

In CML PMNL, actin expression and its architecture were altered and stimulation of actin polymerization was absent. Differences were also observed in expression, organization or stimulation of all the three GTPases in normal and CML PMNL. In normal PMNL, ras was the critical GTPase regulating expression of rhoGTPases and actin and actin polymerization. But in CML PMNL, rhoA took a central place. In accordance with these, treatment with rho/ROCK pathway inhibitors resulted in specific growth inhibition of CML cell lines.

Conclusions

RhoA has emerged as the key molecule responsible for functional defects in CML PMNL and therefore can be used as a therapeutic target in CML.
Appendix
Available only for authorised users
Literature
1.
go back to reference Shtivelman E, Lifshitz B, Gale RP, Canaani E: Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature. 1985, 315: 550-554. 10.1038/315550a0CrossRefPubMed Shtivelman E, Lifshitz B, Gale RP, Canaani E: Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature. 1985, 315: 550-554. 10.1038/315550a0CrossRefPubMed
2.
go back to reference Zingde S: The neutrophil in chronic myeloid leukaemia: molecular analysis of chemotaxis, endocytosis and adhesion. Cancer J. 1998, 11: 167-175. Zingde S: The neutrophil in chronic myeloid leukaemia: molecular analysis of chemotaxis, endocytosis and adhesion. Cancer J. 1998, 11: 167-175.
3.
go back to reference Van Aelst L, D'Souza-Schorey C: Rho GTPases and signaling networks. Genes Dev. 1997, 11: 2295-2322. 10.1101/gad.11.18.2295CrossRefPubMed Van Aelst L, D'Souza-Schorey C: Rho GTPases and signaling networks. Genes Dev. 1997, 11: 2295-2322. 10.1101/gad.11.18.2295CrossRefPubMed
4.
go back to reference Naik NR, Bhisey AN, Advani SH: Flow cytometric studies on actin polymerization in PMN cells from chronic myeloid leukemia (CML) patients. Leuk Res. 1990, 14: 921-930. 10.1016/0145-2126(90)90183-ACrossRefPubMed Naik NR, Bhisey AN, Advani SH: Flow cytometric studies on actin polymerization in PMN cells from chronic myeloid leukemia (CML) patients. Leuk Res. 1990, 14: 921-930. 10.1016/0145-2126(90)90183-ACrossRefPubMed
5.
go back to reference Jordan MA, Wilson L: Microtubules and actin filaments: dynamic targets for cancer chemotherapy. Curr Opin Cell Biol. 1998, 10: 123-130. 10.1016/S0955-0674(98)80095-1CrossRefPubMed Jordan MA, Wilson L: Microtubules and actin filaments: dynamic targets for cancer chemotherapy. Curr Opin Cell Biol. 1998, 10: 123-130. 10.1016/S0955-0674(98)80095-1CrossRefPubMed
6.
go back to reference Tarachandani A, Advani SH, Bhisey AN: Chronic myeloid leukemia granulocytes have lower amounts of cytoplasmic actin. Leuk Res. 1993, 17: 833-838. 10.1016/0145-2126(93)90148-ECrossRefPubMed Tarachandani A, Advani SH, Bhisey AN: Chronic myeloid leukemia granulocytes have lower amounts of cytoplasmic actin. Leuk Res. 1993, 17: 833-838. 10.1016/0145-2126(93)90148-ECrossRefPubMed
7.
go back to reference Ridley AJ: Historical overview of Rho GTPases. Methods Mol Biol. 2011, 827: 3-12.e-pubCrossRef Ridley AJ: Historical overview of Rho GTPases. Methods Mol Biol. 2011, 827: 3-12.e-pubCrossRef
8.
go back to reference Naik NR, Advani SH, Bhisey AN: PMN cells from chronic myeloid leukemia (CML) patients show defective chemotaxis in remission. Leuk Res. 1989, 13: 959-965. 10.1016/0145-2126(89)90002-7CrossRefPubMed Naik NR, Advani SH, Bhisey AN: PMN cells from chronic myeloid leukemia (CML) patients show defective chemotaxis in remission. Leuk Res. 1989, 13: 959-965. 10.1016/0145-2126(89)90002-7CrossRefPubMed
9.
go back to reference Heisterkamp N, Voncken JW, Senadheera D, Gonzalez-Gomez I, Reichert A, Haataja L, Reinikainen A, Pattengale PK, Groffen J: Reduced oncogenicity of p190 Bcr/Abl F-actin-binding domain mutants. Blood. 2000, 96: 2226-2232.PubMed Heisterkamp N, Voncken JW, Senadheera D, Gonzalez-Gomez I, Reichert A, Haataja L, Reinikainen A, Pattengale PK, Groffen J: Reduced oncogenicity of p190 Bcr/Abl F-actin-binding domain mutants. Blood. 2000, 96: 2226-2232.PubMed
10.
go back to reference McWhirter JR, Wang JY: An actin-binding function contributes to transformation by the Bcr-Abl oncoprotein of Philadelphia chromosome-positive human leukemias. Embo J. 1993, 12: 1533-1546.PubMedCentralPubMed McWhirter JR, Wang JY: An actin-binding function contributes to transformation by the Bcr-Abl oncoprotein of Philadelphia chromosome-positive human leukemias. Embo J. 1993, 12: 1533-1546.PubMedCentralPubMed
11.
go back to reference Salgia R, Brunkhorst B, Pisick E, Li JL, Lo SH, Chen LB, Griffin JD: Increased tyrosine phosphorylation of focal adhesion proteins in myeloid cell lines expressing p210BCR/ABL. Oncogene. 1995, 11: 1149-1155.PubMed Salgia R, Brunkhorst B, Pisick E, Li JL, Lo SH, Chen LB, Griffin JD: Increased tyrosine phosphorylation of focal adhesion proteins in myeloid cell lines expressing p210BCR/ABL. Oncogene. 1995, 11: 1149-1155.PubMed
12.
go back to reference Hernandez-Alcoceba R, del Peso L, Lacal JC: The Ras family of GTPases in cancer cell invasion. Cell Mol Life Sci. 2000, 57: 65-76. 10.1007/s000180050499CrossRefPubMed Hernandez-Alcoceba R, del Peso L, Lacal JC: The Ras family of GTPases in cancer cell invasion. Cell Mol Life Sci. 2000, 57: 65-76. 10.1007/s000180050499CrossRefPubMed
13.
go back to reference Hammond KD, Savage N, Littlewood M: Rhythmic patterns in the expression of the ras oncogene in proliferating and differentiating erythroleukaemia cells. Cell Biol Int. 2000, 24: 529-537. 10.1006/cbir.2000.0567CrossRefPubMed Hammond KD, Savage N, Littlewood M: Rhythmic patterns in the expression of the ras oncogene in proliferating and differentiating erythroleukaemia cells. Cell Biol Int. 2000, 24: 529-537. 10.1006/cbir.2000.0567CrossRefPubMed
14.
go back to reference Sasaki AT, Chun C, Takeda K, Firtel RA: Localized Ras signaling at the leading edge regulates PI3K, cell polarity, and directional cell movement. J Cell Biol. 2004, 167: 505-518. 10.1083/jcb.200406177PubMedCentralCrossRefPubMed Sasaki AT, Chun C, Takeda K, Firtel RA: Localized Ras signaling at the leading edge regulates PI3K, cell polarity, and directional cell movement. J Cell Biol. 2004, 167: 505-518. 10.1083/jcb.200406177PubMedCentralCrossRefPubMed
15.
go back to reference Kato M, Yamaguchi T, Tachibana A, Kimura H: Differential role of an atypical protein kinase C, PKC zeta, in regulation of human eosinophil and neutrophil functions. Int Arch Allergy Immunol. 2005, 137 (Suppl 1): 27-34.CrossRefPubMed Kato M, Yamaguchi T, Tachibana A, Kimura H: Differential role of an atypical protein kinase C, PKC zeta, in regulation of human eosinophil and neutrophil functions. Int Arch Allergy Immunol. 2005, 137 (Suppl 1): 27-34.CrossRefPubMed
16.
go back to reference Chodniewicz D, Zhelev DV: Chemoattractant receptor-stimulated F-actin polymerization in the human neutrophil is signaled by 2 distinct pathways. Blood. 2003, 101: 1181-1184. 10.1182/blood-2002-05-1435CrossRefPubMed Chodniewicz D, Zhelev DV: Chemoattractant receptor-stimulated F-actin polymerization in the human neutrophil is signaled by 2 distinct pathways. Blood. 2003, 101: 1181-1184. 10.1182/blood-2002-05-1435CrossRefPubMed
17.
go back to reference Keely PJ, Westwick JK, Whitehead IP, Der CJ, Parise LV: Cdc42 and Rac1 induce integrin-mediated cell motility and invasiveness through PI(3)K. Nature. 1997, 390: 632-636. 10.1038/37656CrossRefPubMed Keely PJ, Westwick JK, Whitehead IP, Der CJ, Parise LV: Cdc42 and Rac1 induce integrin-mediated cell motility and invasiveness through PI(3)K. Nature. 1997, 390: 632-636. 10.1038/37656CrossRefPubMed
18.
go back to reference Sander EE, ten Klooster JP, van Delft S, van der Kammen RA, Collard JG: Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J Cell Biol. 1999, 147: 1009-1022. 10.1083/jcb.147.5.1009PubMedCentralCrossRefPubMed Sander EE, ten Klooster JP, van Delft S, van der Kammen RA, Collard JG: Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J Cell Biol. 1999, 147: 1009-1022. 10.1083/jcb.147.5.1009PubMedCentralCrossRefPubMed
19.
go back to reference Radhika V, Thennarasu S, Naik NR, Kumar A, Advani SH, Bhisey AN: Granulocytes from chronic myeloid leukemia (CML) patients show differential response to different chemoattractants. Am J Hematol. 1996, 52: 155-164. 10.1002/(SICI)1096-8652(199607)52:3<155::AID-AJH4>3.0.CO;2-SCrossRefPubMed Radhika V, Thennarasu S, Naik NR, Kumar A, Advani SH, Bhisey AN: Granulocytes from chronic myeloid leukemia (CML) patients show differential response to different chemoattractants. Am J Hematol. 1996, 52: 155-164. 10.1002/(SICI)1096-8652(199607)52:3<155::AID-AJH4>3.0.CO;2-SCrossRefPubMed
20.
go back to reference Schnelzer A, Prechtel D, Knaus U, Dehne K, Gerhard M, Graeff H, Harbeck N, Schmitt M, Lengyel E: Rac1 in human breast cancer: overexpression, mutation analysis, and characterization of a new isoform, Rac1b. Oncogene. 2000, 19: 3013-3020. 10.1038/sj.onc.1203621CrossRefPubMed Schnelzer A, Prechtel D, Knaus U, Dehne K, Gerhard M, Graeff H, Harbeck N, Schmitt M, Lengyel E: Rac1 in human breast cancer: overexpression, mutation analysis, and characterization of a new isoform, Rac1b. Oncogene. 2000, 19: 3013-3020. 10.1038/sj.onc.1203621CrossRefPubMed
21.
go back to reference Matos P, Skaug J, Marques B, Beck S, Verissimo F, Gespach C, Boavida MG, Scherer SW, Jordan P: Small GTPase Rac1: structure, localization, and expression of the human gene. Biochem Biophys Res Commun. 2000, 277: 741-751. 10.1006/bbrc.2000.3743CrossRefPubMed Matos P, Skaug J, Marques B, Beck S, Verissimo F, Gespach C, Boavida MG, Scherer SW, Jordan P: Small GTPase Rac1: structure, localization, and expression of the human gene. Biochem Biophys Res Commun. 2000, 277: 741-751. 10.1006/bbrc.2000.3743CrossRefPubMed
22.
go back to reference Singh A, Karnoub AE, Palmby TR, Lengyel E, Sondek J, Der CJ: Rac1b, a tumor associated, constitutively active Rac1 splice variant, promotes cellular transformation. Oncogene. 2004, 23: 9369-9380. 10.1038/sj.onc.1208182CrossRefPubMed Singh A, Karnoub AE, Palmby TR, Lengyel E, Sondek J, Der CJ: Rac1b, a tumor associated, constitutively active Rac1 splice variant, promotes cellular transformation. Oncogene. 2004, 23: 9369-9380. 10.1038/sj.onc.1208182CrossRefPubMed
23.
go back to reference Boettner B, Van Aelst L: The role of Rho GTPases in disease development. Gene. 2002, 286: 155-174. 10.1016/S0378-1119(02)00426-2CrossRefPubMed Boettner B, Van Aelst L: The role of Rho GTPases in disease development. Gene. 2002, 286: 155-174. 10.1016/S0378-1119(02)00426-2CrossRefPubMed
24.
go back to reference Holstein SA, Wohlford-Lenane CL, Hohl RJ: Consequences of mevalonate depletion. Differential transcriptional, translational, and post-translational up-regulation of Ras, Rap1a, RhoA, and RhoB. J Biol Chem. 2002, 277: 10678-10682. 10.1074/jbc.M111369200CrossRefPubMed Holstein SA, Wohlford-Lenane CL, Hohl RJ: Consequences of mevalonate depletion. Differential transcriptional, translational, and post-translational up-regulation of Ras, Rap1a, RhoA, and RhoB. J Biol Chem. 2002, 277: 10678-10682. 10.1074/jbc.M111369200CrossRefPubMed
25.
go back to reference Song Y, Wong C, Chang DD: Overexpression of wild-type RhoA produces growth arrest by disrupting actin cytoskeleton and microtubules. J Cell Biochem. 2000, 80: 229-240.CrossRefPubMed Song Y, Wong C, Chang DD: Overexpression of wild-type RhoA produces growth arrest by disrupting actin cytoskeleton and microtubules. J Cell Biochem. 2000, 80: 229-240.CrossRefPubMed
26.
go back to reference Naik N, Rigaut JP, Advani S, Bhisey A: Differences in the microtubule organization between normal and cml granulocytes after stimulation with chemotactic peptide. Cell Biol Int. 2000, 24: 135-144. 10.1006/cbir.1999.0491CrossRefPubMed Naik N, Rigaut JP, Advani S, Bhisey A: Differences in the microtubule organization between normal and cml granulocytes after stimulation with chemotactic peptide. Cell Biol Int. 2000, 24: 135-144. 10.1006/cbir.1999.0491CrossRefPubMed
27.
go back to reference Radhika V, Naik NR, Advani SH, Bhisey AN: Actin polymerization in response to different chemoattractants is reduced in granulocytes from chronic myeloid leukemia patients. Cytometry. 2000, 42: 379-386. 10.1002/1097-0320(20001215)42:6<379::AID-CYTO1005>3.0.CO;2-QCrossRefPubMed Radhika V, Naik NR, Advani SH, Bhisey AN: Actin polymerization in response to different chemoattractants is reduced in granulocytes from chronic myeloid leukemia patients. Cytometry. 2000, 42: 379-386. 10.1002/1097-0320(20001215)42:6<379::AID-CYTO1005>3.0.CO;2-QCrossRefPubMed
28.
29.
go back to reference Benitah SA, Valeron PF, van Aelst L, Marshall CJ, Lacal JC: Rho GTPases in human cancer: an unresolved link to upstream and downstream transcriptional regulation. Biochim Biophys Acta. 2004, 1705: 121-132.PubMed Benitah SA, Valeron PF, van Aelst L, Marshall CJ, Lacal JC: Rho GTPases in human cancer: an unresolved link to upstream and downstream transcriptional regulation. Biochim Biophys Acta. 2004, 1705: 121-132.PubMed
30.
go back to reference Zondag GC, Evers EE, ten Klooster JP, Janssen L, van der Kammen RA, Collard JG: Oncogenic Ras downregulates Rac activity, which leads to increased Rho activity and epithelial-mesenchymal transition. J Cell Biol. 2000, 149: 775-782. 10.1083/jcb.149.4.775PubMedCentralCrossRefPubMed Zondag GC, Evers EE, ten Klooster JP, Janssen L, van der Kammen RA, Collard JG: Oncogenic Ras downregulates Rac activity, which leads to increased Rho activity and epithelial-mesenchymal transition. J Cell Biol. 2000, 149: 775-782. 10.1083/jcb.149.4.775PubMedCentralCrossRefPubMed
31.
go back to reference Keyomarsi K, Sandoval L, Band V, Pardee AB: Synchronization of tumor and normal cells from G1 to multiple cell cycles by lovastatin. Cancer Res. 1991, 51: 3602-3609.PubMed Keyomarsi K, Sandoval L, Band V, Pardee AB: Synchronization of tumor and normal cells from G1 to multiple cell cycles by lovastatin. Cancer Res. 1991, 51: 3602-3609.PubMed
32.
go back to reference Ridley AJ: The GTP-binding protein Rho. Int J Biochem Cell Biol. 1997, 29: 1225-1229. 10.1016/S1357-2725(97)00052-6CrossRefPubMed Ridley AJ: The GTP-binding protein Rho. Int J Biochem Cell Biol. 1997, 29: 1225-1229. 10.1016/S1357-2725(97)00052-6CrossRefPubMed
33.
go back to reference Ridley AJ: Rho proteins and cancer. Breast Cancer Res Treat. 2004, 84: 13-19. 10.1023/B:BREA.0000018423.47497.c6CrossRefPubMed Ridley AJ: Rho proteins and cancer. Breast Cancer Res Treat. 2004, 84: 13-19. 10.1023/B:BREA.0000018423.47497.c6CrossRefPubMed
34.
go back to reference Simpson KJ, Dugan AS, Mercurio AM: Functional analysis of the contribution of RhoA and RhoC GTPases to invasive breast carcinoma. Cancer Res. 2004, 64: 8694-8701. 10.1158/0008-5472.CAN-04-2247CrossRefPubMed Simpson KJ, Dugan AS, Mercurio AM: Functional analysis of the contribution of RhoA and RhoC GTPases to invasive breast carcinoma. Cancer Res. 2004, 64: 8694-8701. 10.1158/0008-5472.CAN-04-2247CrossRefPubMed
35.
go back to reference Fritz G, Just I, Kaina B: Rho GTPases are over-expressed in human tumors. Int J Cancer. 1999, 81: 682-687. 10.1002/(SICI)1097-0215(19990531)81:5<682::AID-IJC2>3.0.CO;2-BCrossRefPubMed Fritz G, Just I, Kaina B: Rho GTPases are over-expressed in human tumors. Int J Cancer. 1999, 81: 682-687. 10.1002/(SICI)1097-0215(19990531)81:5<682::AID-IJC2>3.0.CO;2-BCrossRefPubMed
36.
go back to reference Horiuchi A, Imai T, Wang C, Ohira S, Feng Y, Nikaido T, Konishi I: Up-regulation of small GTPases, RhoA and RhoC, is associated with tumor progression in ovarian carcinoma. Lab Invest. 2003, 83: 861-870.CrossRefPubMed Horiuchi A, Imai T, Wang C, Ohira S, Feng Y, Nikaido T, Konishi I: Up-regulation of small GTPases, RhoA and RhoC, is associated with tumor progression in ovarian carcinoma. Lab Invest. 2003, 83: 861-870.CrossRefPubMed
37.
go back to reference Gomez del Pulgar T, Benitah SA, Valeron PF, Espina C, Lacal JC: Rho GTPase expression in tumourigenesis: evidence for a significant link. Bioessays. 2005, 27: 602-613. 10.1002/bies.20238CrossRefPubMed Gomez del Pulgar T, Benitah SA, Valeron PF, Espina C, Lacal JC: Rho GTPase expression in tumourigenesis: evidence for a significant link. Bioessays. 2005, 27: 602-613. 10.1002/bies.20238CrossRefPubMed
38.
go back to reference Faried A, Nakajima M, Sohda M, Miyazaki T, Kato H, Kuwano H: Correlation between RhoA overexpression and tumour progression in esophageal squamous cell carcinoma. Eur J Surg Oncol. 2005, 31: 410-414. 10.1016/j.ejso.2004.12.014CrossRefPubMed Faried A, Nakajima M, Sohda M, Miyazaki T, Kato H, Kuwano H: Correlation between RhoA overexpression and tumour progression in esophageal squamous cell carcinoma. Eur J Surg Oncol. 2005, 31: 410-414. 10.1016/j.ejso.2004.12.014CrossRefPubMed
39.
go back to reference Fritz G, Brachetti C, Bahlmann F, Schmidt M, Kaina B: Rho GTPases in human breast tumours: expression and mutation analyses and correlation with clinical parameters. Br J Cancer. 2002, 87: 635-644. 10.1038/sj.bjc.6600510PubMedCentralCrossRefPubMed Fritz G, Brachetti C, Bahlmann F, Schmidt M, Kaina B: Rho GTPases in human breast tumours: expression and mutation analyses and correlation with clinical parameters. Br J Cancer. 2002, 87: 635-644. 10.1038/sj.bjc.6600510PubMedCentralCrossRefPubMed
40.
go back to reference Olson MF, Ashworth A, Hall A: An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science. 1995, 269: 1270-1272. 10.1126/science.7652575CrossRefPubMed Olson MF, Ashworth A, Hall A: An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science. 1995, 269: 1270-1272. 10.1126/science.7652575CrossRefPubMed
41.
go back to reference Kovary K, Bravo R: The jun and fos protein families are both required for cell cycle progression in fibroblasts. Mol Cell Biol. 1991, 11: 4466-4472.PubMedCentralPubMed Kovary K, Bravo R: The jun and fos protein families are both required for cell cycle progression in fibroblasts. Mol Cell Biol. 1991, 11: 4466-4472.PubMedCentralPubMed
42.
go back to reference Liu SY, Yen CY, Yang SC, Chiang WF, Chang KW: Overexpression of Rac-1 small GTPase binding protein in oral squamous cell carcinoma. J Oral Maxillofac Surg. 2004, 62: 702-707. 10.1016/j.joms.2004.02.002CrossRefPubMed Liu SY, Yen CY, Yang SC, Chiang WF, Chang KW: Overexpression of Rac-1 small GTPase binding protein in oral squamous cell carcinoma. J Oral Maxillofac Surg. 2004, 62: 702-707. 10.1016/j.joms.2004.02.002CrossRefPubMed
43.
go back to reference Burstein ES, Hesterberg DJ, Gutkind JS, Brann MR, Currier EA, Messier TL: The ras-related GTPase rac1 regulates a proliferative pathway selectively utilized by G-protein coupled receptors. Oncogene. 1998, 17: 1617-1623. 10.1038/sj.onc.1202067CrossRefPubMed Burstein ES, Hesterberg DJ, Gutkind JS, Brann MR, Currier EA, Messier TL: The ras-related GTPase rac1 regulates a proliferative pathway selectively utilized by G-protein coupled receptors. Oncogene. 1998, 17: 1617-1623. 10.1038/sj.onc.1202067CrossRefPubMed
44.
go back to reference Hirai A, Nakamura S, Noguchi Y, Yasuda T, Kitagawa M, Tatsuno I, Oeda T, Tahara K, Terano T, Narumiya S: Geranylgeranylated rho small GTPase(s) are essential for the degradation of p27Kip1 and facilitate the progression from G1 to S phase in growth-stimulated rat FRTL-5 cells. J Biol Chem. 1997, 272: 13-16. 10.1074/jbc.272.1.13CrossRefPubMed Hirai A, Nakamura S, Noguchi Y, Yasuda T, Kitagawa M, Tatsuno I, Oeda T, Tahara K, Terano T, Narumiya S: Geranylgeranylated rho small GTPase(s) are essential for the degradation of p27Kip1 and facilitate the progression from G1 to S phase in growth-stimulated rat FRTL-5 cells. J Biol Chem. 1997, 272: 13-16. 10.1074/jbc.272.1.13CrossRefPubMed
45.
go back to reference Bassermann F, Jahn T, Miething C, Seipel P, Bai RY, Coutinho S, Tybulewicz VL, Peschel C, Duyster J: Association of Bcr-Abl with the proto-oncogene Vav is implicated in activation of the Rac-1 pathway. J Biol Chem. 2002, 277: 12437-12445. 10.1074/jbc.M112397200CrossRefPubMed Bassermann F, Jahn T, Miething C, Seipel P, Bai RY, Coutinho S, Tybulewicz VL, Peschel C, Duyster J: Association of Bcr-Abl with the proto-oncogene Vav is implicated in activation of the Rac-1 pathway. J Biol Chem. 2002, 277: 12437-12445. 10.1074/jbc.M112397200CrossRefPubMed
46.
go back to reference Korus M, Mahon GM, Cheng L, Whitehead IP: p38 MAPK-mediated activation of NF-kappaB by the RhoGEF domain of Bcr. Oncogene. 2002, 21: 4601-4612. 10.1038/sj.onc.1205678CrossRefPubMed Korus M, Mahon GM, Cheng L, Whitehead IP: p38 MAPK-mediated activation of NF-kappaB by the RhoGEF domain of Bcr. Oncogene. 2002, 21: 4601-4612. 10.1038/sj.onc.1205678CrossRefPubMed
47.
go back to reference Ohmine K, Nagai T, Tarumoto T, Miyoshi T, Muroi K, Mano H, Komatsu N, Takaku F, Ozawa K: Analysis of gene expression profiles in an imatinib-resistant cell line, KCL22/SR. Stem cells. 2003, 21: 315-321. 10.1634/stemcells.21-3-315CrossRefPubMed Ohmine K, Nagai T, Tarumoto T, Miyoshi T, Muroi K, Mano H, Komatsu N, Takaku F, Ozawa K: Analysis of gene expression profiles in an imatinib-resistant cell line, KCL22/SR. Stem cells. 2003, 21: 315-321. 10.1634/stemcells.21-3-315CrossRefPubMed
48.
go back to reference Reuther GW, Lambert QT, Booden MA, Wennerberg K, Becknell B, Marcucci G, Sondek J, Caligiuri MA, Der CJ: Leukemia-associated Rho guanine nucleotide exchange factor, a Dbl family protein found mutated in leukemia, causes transformation by activation of RhoA. J Biol Chem. 2001, 276: 27145-27151. 10.1074/jbc.M103565200CrossRefPubMed Reuther GW, Lambert QT, Booden MA, Wennerberg K, Becknell B, Marcucci G, Sondek J, Caligiuri MA, Der CJ: Leukemia-associated Rho guanine nucleotide exchange factor, a Dbl family protein found mutated in leukemia, causes transformation by activation of RhoA. J Biol Chem. 2001, 276: 27145-27151. 10.1074/jbc.M103565200CrossRefPubMed
49.
go back to reference Sahay S, Pannucci NL, Mahon GM, Rodriguez PL, Megjugorac NJ, Kostenko EV, Ozer HL, Whitehead IP: The RhoGEF domain of p210 Bcr-Abl activates RhoA and is required for transformation. Oncogene. 2008, 27: 2064-2071. 10.1038/sj.onc.1210841PubMedCentralCrossRefPubMed Sahay S, Pannucci NL, Mahon GM, Rodriguez PL, Megjugorac NJ, Kostenko EV, Ozer HL, Whitehead IP: The RhoGEF domain of p210 Bcr-Abl activates RhoA and is required for transformation. Oncogene. 2008, 27: 2064-2071. 10.1038/sj.onc.1210841PubMedCentralCrossRefPubMed
50.
go back to reference Daubon T, Chasseriau J, Ali AE, Rivet J, Kitzis A, Constantin B, Bourmeyster N: Differential motility of p190bcr-abl- and p210bcr-abl-expressing cells: respective roles of Vav and Bcr-Abl GEFs. Oncogene. 2008, 27: 2673-2685. 10.1038/sj.onc.1210933CrossRefPubMed Daubon T, Chasseriau J, Ali AE, Rivet J, Kitzis A, Constantin B, Bourmeyster N: Differential motility of p190bcr-abl- and p210bcr-abl-expressing cells: respective roles of Vav and Bcr-Abl GEFs. Oncogene. 2008, 27: 2673-2685. 10.1038/sj.onc.1210933CrossRefPubMed
51.
go back to reference Unwin RD, Sternberg DW, Lu Y, Pierce A, Gilliland DG, Whetton AD: Global effects of BCR/ABL and TEL/PDGFRbeta expression on the proteome and phosphoproteome: identification of the Rho pathway as a target of BCR/ABL. J Biol Chem. 2005, 280: 6316-6326. 10.1074/jbc.M410598200CrossRefPubMed Unwin RD, Sternberg DW, Lu Y, Pierce A, Gilliland DG, Whetton AD: Global effects of BCR/ABL and TEL/PDGFRbeta expression on the proteome and phosphoproteome: identification of the Rho pathway as a target of BCR/ABL. J Biol Chem. 2005, 280: 6316-6326. 10.1074/jbc.M410598200CrossRefPubMed
52.
go back to reference Burthem J, Rees-Unwin K, Mottram R, Adams J, Lucas GS, Spooncer E, Whetton AD: The rho-kinase inhibitors Y-27632 and fasudil act synergistically with imatinib to inhibit the expansion of ex vivo CD34(+) CML progenitor cells. Leukemia. 2007, 21: 1708-1714. 10.1038/sj.leu.2404762CrossRefPubMed Burthem J, Rees-Unwin K, Mottram R, Adams J, Lucas GS, Spooncer E, Whetton AD: The rho-kinase inhibitors Y-27632 and fasudil act synergistically with imatinib to inhibit the expansion of ex vivo CD34(+) CML progenitor cells. Leukemia. 2007, 21: 1708-1714. 10.1038/sj.leu.2404762CrossRefPubMed
53.
go back to reference Mulloy JC, Cnacelas JA, Filippi MD, Kalfa TA, Guo F, Zheng Y: Rho GTPases in hematopoiesis and hemopathies. Blood. 2010, 115: 936-947. 10.1182/blood-2009-09-198127PubMedCentralCrossRefPubMed Mulloy JC, Cnacelas JA, Filippi MD, Kalfa TA, Guo F, Zheng Y: Rho GTPases in hematopoiesis and hemopathies. Blood. 2010, 115: 936-947. 10.1182/blood-2009-09-198127PubMedCentralCrossRefPubMed
54.
go back to reference Boyum A: Separation of blood leucocytes, granulocytes and lymphocytes. Tissue Antigens. 1974, 4: 269-274.CrossRefPubMed Boyum A: Separation of blood leucocytes, granulocytes and lymphocytes. Tissue Antigens. 1974, 4: 269-274.CrossRefPubMed
55.
go back to reference Cook: Dye exclusion method: Viability Measurements in Mammalian Cell Systems. Analytical Biochemistry. 1989, 179: 1-7. 10.1016/0003-2697(89)90191-7CrossRefPubMed Cook: Dye exclusion method: Viability Measurements in Mammalian Cell Systems. Analytical Biochemistry. 1989, 179: 1-7. 10.1016/0003-2697(89)90191-7CrossRefPubMed
Metadata
Title
RhoA: A therapeutic target for chronic myeloid leukemia
Authors
Poonam R Molli
Madhura B Pradhan
Suresh H Advani
Nishigandha R Naik
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2012
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-11-16

Other articles of this Issue 1/2012

Molecular Cancer 1/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine