Skip to main content
Top
Published in: Molecular Cancer 1/2011

Open Access 01-12-2011 | Research

Nuclear and cytoplasmic LIMK1 enhances human breast cancer progression

Authors: Brice V McConnell, Karen Koto, Arthur Gutierrez-Hartmann

Published in: Molecular Cancer | Issue 1/2011

Login to get access

Abstract

Background

LIM kinase 1 (LIMK1) is expressed in both cytoplasmic and nuclear compartments, and is a key regulator of cytoskeletal organization involved in cell migration and proliferation. LIMK1 levels are increased in several human cancers, with LIMK1 over-expression in prostate and breast cancer cells leading to tumor progression. While it has been presumed that the mechanism by which LIMK1 promotes cancer progression is via its cytoplasmic effects, the role of nuclear vs cytoplasmic LIMK1 in the tumorigenic process has not been examined.

Results

To determine if cytoplasmic or nuclear LIMK1 expression correlated with breast cancer, we performed immunohistochemical (IHC) analysis of breast tissue microarrays (TMAs), The IHC analysis of breast TMAs revealed that 76% of malignant breast tissue samples strongly expressed LIMK1 in the cytoplasm, with 52% of these specimens also expressing nuclear LIMK1. Only 48% of benign breast samples displayed strong cytoplasmic LIMK1 expression and 27% of these expressed nuclear LIMK1. To investigate the respective roles of cytoplamsic and nuclear LIMK1 in breast cancer progression, we targeted GFP-LIMK1 to cytoplasmic and nuclear subcellular compartments by fusing nuclear export signals (NESs) or nuclear localization sequences (NLS), respectively, to the amino-terminus of GFP-LIMK1. Stable pools of MDA-MB-231 cells were generated by retroviral transduction, and fluorescence microscopy revealed that GFP alone (control) and GFP-LIMK1 were each expressed in both the cytoplasm and nucleus of MDA-MB-231 cells, whereas NLS-GFP-LIMK1 was expressed in the nucleus and NES-GFP-LIMK1 was expressed in the cytoplasm. Western blot analyses revealed equal expression of GFP-LIMK1 and NES-GFP-LIMK1, with NLS-GFP-LIMK1 expression being less but equal to endogenous LIMK1. Also, Western blotting revealed increased levels of phospho-cofilin, phospho-FAK, phospho-paxillin, phospho-Src, phospho-AKT, and phospho-Erk1/2 in cells expressing all GFP-LIMK1 fusions, compared to GFP alone. Invasion assays revealed that all GFP-LIMK1 fusions increased MDA-MB-231 cell invasion ~1.5-fold, compared to GFP-only control cells. Tumor xenograft studies in nude mice revealed that MDA-MB-231 cells stably expressing GFP-LIMK, NLS-GFP-LIMK1 and NES-GFP-LIMK1 enhanced tumor growth 2.5-, 1.6- and 4.7-fold, respectively, compared to GFP-alone.

Conclusion

Taken together, these data demonstrate that LIMK1 activity in both the cytoplasmic and nuclear compartments promotes breast cancer progression, underscoring that nuclear LIMK1 contributes to the transforming function of LIMK1.
Appendix
Available only for authorised users
Literature
1.
go back to reference Arber S, Barbayannis FA, Hanser H, Schneider C, Stanyon CA, Bernard O, Caroni P: Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature. 1998, 393: 805-809. 10.1038/31729CrossRefPubMed Arber S, Barbayannis FA, Hanser H, Schneider C, Stanyon CA, Bernard O, Caroni P: Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature. 1998, 393: 805-809. 10.1038/31729CrossRefPubMed
2.
go back to reference Cheng AK, Robertson EJ: The murine LIM-kinase gene (limk) encodes a novel serine threonine kinase expressed predominantly in trophoblast giant cells and the developing nervous system. Mech Dev. 1995, 52: 187-197. 10.1016/0925-4773(95)00400-UCrossRefPubMed Cheng AK, Robertson EJ: The murine LIM-kinase gene (limk) encodes a novel serine threonine kinase expressed predominantly in trophoblast giant cells and the developing nervous system. Mech Dev. 1995, 52: 187-197. 10.1016/0925-4773(95)00400-UCrossRefPubMed
3.
go back to reference Ohashi K, Nagata K, Maekawa M, Ishizaki T, Narumiya S, Mizuno K: Rho-associated kinase ROCK activates LIM-kinase 1 by phosphorylation at threonine 508 within the activation loop. J Biol Chem. 2000, 275: 3577-3582. 10.1074/jbc.275.5.3577CrossRefPubMed Ohashi K, Nagata K, Maekawa M, Ishizaki T, Narumiya S, Mizuno K: Rho-associated kinase ROCK activates LIM-kinase 1 by phosphorylation at threonine 508 within the activation loop. J Biol Chem. 2000, 275: 3577-3582. 10.1074/jbc.275.5.3577CrossRefPubMed
4.
go back to reference Sumi T, Matsumoto K, Shibuya A, Nakamura T: Activation of LIM kinases by myotonic dystrophy kinase-related Cdc42-binding kinase alpha. J Biol Chem. 2001, 276: 23092-23096. 10.1074/jbc.C100196200CrossRefPubMed Sumi T, Matsumoto K, Shibuya A, Nakamura T: Activation of LIM kinases by myotonic dystrophy kinase-related Cdc42-binding kinase alpha. J Biol Chem. 2001, 276: 23092-23096. 10.1074/jbc.C100196200CrossRefPubMed
5.
go back to reference Dan C, Kelly A, Bernard O, Minden A: Cytoskeletal changes regulated by the PAK4 serine/threonine kinase are mediated by LIM kinase 1 and cofilin. J Biol Chem. 2001, 276: 32115-32121. 10.1074/jbc.M100871200CrossRefPubMed Dan C, Kelly A, Bernard O, Minden A: Cytoskeletal changes regulated by the PAK4 serine/threonine kinase are mediated by LIM kinase 1 and cofilin. J Biol Chem. 2001, 276: 32115-32121. 10.1074/jbc.M100871200CrossRefPubMed
6.
go back to reference Edwards DC, Sanders LC, Bokoch GM, Gill GN: Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol. 1999, 1: 253-259. 10.1038/12963CrossRefPubMed Edwards DC, Sanders LC, Bokoch GM, Gill GN: Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol. 1999, 1: 253-259. 10.1038/12963CrossRefPubMed
7.
go back to reference Yang N, Higuchi O, Ohashi K, Nagata K, Wada A, Kangawa K, Nishida E, Mizuno K: Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature. 1998, 393: 809-812. 10.1038/31735CrossRefPubMed Yang N, Higuchi O, Ohashi K, Nagata K, Wada A, Kangawa K, Nishida E, Mizuno K: Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature. 1998, 393: 809-812. 10.1038/31735CrossRefPubMed
8.
go back to reference Niwa R, Nagata-Ohashi K, Takeichi M, Mizuno K, Uemura T: Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell. 2002, 108: 233-246. 10.1016/S0092-8674(01)00638-9CrossRefPubMed Niwa R, Nagata-Ohashi K, Takeichi M, Mizuno K, Uemura T: Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell. 2002, 108: 233-246. 10.1016/S0092-8674(01)00638-9CrossRefPubMed
9.
go back to reference Gohla A, Birkenfeld J, Bokoch GM: Chronophin, a novel HAD-type serine protein phosphatase, regulates cofilin-dependent actin dynamics. Nat Cell Biol. 2005, 7: 21-29. 10.1038/ncb1201CrossRefPubMed Gohla A, Birkenfeld J, Bokoch GM: Chronophin, a novel HAD-type serine protein phosphatase, regulates cofilin-dependent actin dynamics. Nat Cell Biol. 2005, 7: 21-29. 10.1038/ncb1201CrossRefPubMed
10.
go back to reference Lee-Hoeflich ST, Causing CG, Podkowa M, Zhao X, Wrana JL, Attisano L: Activation of LIMK1 by binding to the BMP receptor, BMPRII, regulates BMP-dependent dendritogenesis. EMBO J. 2004, 23: 4792-4801. 10.1038/sj.emboj.7600418PubMedCentralCrossRefPubMed Lee-Hoeflich ST, Causing CG, Podkowa M, Zhao X, Wrana JL, Attisano L: Activation of LIMK1 by binding to the BMP receptor, BMPRII, regulates BMP-dependent dendritogenesis. EMBO J. 2004, 23: 4792-4801. 10.1038/sj.emboj.7600418PubMedCentralCrossRefPubMed
11.
go back to reference Gorovoy M, Koga T, Shen X, Jia Z, Yue BY, Voyno-Yasenetskaya T: Downregulation of LIM kinase 1 suppresses ocular inflammation and fibrosis. Mol Vis. 2008, 14: 1951-1959.PubMedCentralPubMed Gorovoy M, Koga T, Shen X, Jia Z, Yue BY, Voyno-Yasenetskaya T: Downregulation of LIM kinase 1 suppresses ocular inflammation and fibrosis. Mol Vis. 2008, 14: 1951-1959.PubMedCentralPubMed
12.
go back to reference Nishita M, Tomizawa C, Yamamoto M, Horita Y, Ohashi K, Mizuno K: Spatial and temporal regulation of cofilin activity by LIM kinase and Slingshot is critical for directional cell migration. J Cell Biol. 2005, 171: 349-359. 10.1083/jcb.200504029PubMedCentralCrossRefPubMed Nishita M, Tomizawa C, Yamamoto M, Horita Y, Ohashi K, Mizuno K: Spatial and temporal regulation of cofilin activity by LIM kinase and Slingshot is critical for directional cell migration. J Cell Biol. 2005, 171: 349-359. 10.1083/jcb.200504029PubMedCentralCrossRefPubMed
13.
go back to reference Yoshioka K, Foletta V, Bernard O, Itoh K: A role for LIM kinase in cancer invasion. Proc Natl Acad Sci USA. 2003, 100: 7247-7252. 10.1073/pnas.1232344100PubMedCentralCrossRefPubMed Yoshioka K, Foletta V, Bernard O, Itoh K: A role for LIM kinase in cancer invasion. Proc Natl Acad Sci USA. 2003, 100: 7247-7252. 10.1073/pnas.1232344100PubMedCentralCrossRefPubMed
14.
go back to reference Mishima T, Naotsuka M, Horita Y, Sato M, Ohashi K, Mizuno K: LIM-kinase is critical for the mesenchymal-to-amoeboid cell morphological transition in 3D matrices. Biochemical and Biophysical Research Communications. 392: 577-581. Mishima T, Naotsuka M, Horita Y, Sato M, Ohashi K, Mizuno K: LIM-kinase is critical for the mesenchymal-to-amoeboid cell morphological transition in 3D matrices. Biochemical and Biophysical Research Communications. 392: 577-581.
15.
go back to reference Yang N, Mizuno K: Nuclear export of LIM-kinase 1, mediated by two leucine-rich nuclear-export signals within the PDZ domain. Biochem J. 1999, 338 (Pt 3): 793-798.PubMedCentralCrossRefPubMed Yang N, Mizuno K: Nuclear export of LIM-kinase 1, mediated by two leucine-rich nuclear-export signals within the PDZ domain. Biochem J. 1999, 338 (Pt 3): 793-798.PubMedCentralCrossRefPubMed
16.
go back to reference Foletta VC, Moussi N, Sarmiere PD, Bamburg JR, Bernard O: LIM kinase 1, a key regulator of actin dynamics, is widely expressed in embryonic and adult tissues. Exp Cell Res. 2004, 294: 392-405. 10.1016/j.yexcr.2003.11.024CrossRefPubMed Foletta VC, Moussi N, Sarmiere PD, Bamburg JR, Bernard O: LIM kinase 1, a key regulator of actin dynamics, is widely expressed in embryonic and adult tissues. Exp Cell Res. 2004, 294: 392-405. 10.1016/j.yexcr.2003.11.024CrossRefPubMed
17.
go back to reference Bagheri-Yarmand R, Mazumdar A, Sahin AA, Kumar R: LIM kinase 1 increases tumor metastasis of human breast cancer cells via regulation of the urokinase-type plasminogen activator system. Int J Cancer. 2006, 118: 2703-2710.CrossRefPubMed Bagheri-Yarmand R, Mazumdar A, Sahin AA, Kumar R: LIM kinase 1 increases tumor metastasis of human breast cancer cells via regulation of the urokinase-type plasminogen activator system. Int J Cancer. 2006, 118: 2703-2710.CrossRefPubMed
18.
go back to reference Ding Y, Milosavljevic T, Alahari SK: Nischarin inhibits LIM kinase to regulate cofilin phosphorylation and cell invasion. Mol Cell Biol. 2008, 28: 3742-3756. 10.1128/MCB.01832-07PubMedCentralCrossRefPubMed Ding Y, Milosavljevic T, Alahari SK: Nischarin inhibits LIM kinase to regulate cofilin phosphorylation and cell invasion. Mol Cell Biol. 2008, 28: 3742-3756. 10.1128/MCB.01832-07PubMedCentralCrossRefPubMed
19.
go back to reference Davila M, Jhala D, Ghosh D, Grizzle WE, Chakrabarti R: Expression of LIM kinase 1 is associated with reversible G1/S phase arrest, chromosomal instability and prostate cancer. Mol Cancer. 2007, 6: 40- 10.1186/1476-4598-6-40PubMedCentralCrossRefPubMed Davila M, Jhala D, Ghosh D, Grizzle WE, Chakrabarti R: Expression of LIM kinase 1 is associated with reversible G1/S phase arrest, chromosomal instability and prostate cancer. Mol Cancer. 2007, 6: 40- 10.1186/1476-4598-6-40PubMedCentralCrossRefPubMed
20.
go back to reference Vardouli L, Moustakas A, Stournaras C: LIM-kinase 2 and cofilin phosphorylation mediate actin cytoskeleton reorganization induced by transforming growth factor-beta. J Biol Chem. 2005, 280: 11448-11457. 10.1074/jbc.M402651200CrossRefPubMed Vardouli L, Moustakas A, Stournaras C: LIM-kinase 2 and cofilin phosphorylation mediate actin cytoskeleton reorganization induced by transforming growth factor-beta. J Biol Chem. 2005, 280: 11448-11457. 10.1074/jbc.M402651200CrossRefPubMed
21.
go back to reference Mendoza-Naranjo A, Gonzalez-Billault C, Maccioni RB: Abeta1-42 stimulates actin polymerization in hippocampal neurons through Rac1 and Cdc42 Rho GTPases. J Cell Sci. 2007, 120: 279-288. 10.1242/jcs.03323CrossRefPubMed Mendoza-Naranjo A, Gonzalez-Billault C, Maccioni RB: Abeta1-42 stimulates actin polymerization in hippocampal neurons through Rac1 and Cdc42 Rho GTPases. J Cell Sci. 2007, 120: 279-288. 10.1242/jcs.03323CrossRefPubMed
22.
go back to reference Davila M, Frost AR, Grizzle WE, Chakrabarti R: LIM kinase 1 is essential for the invasive growth of prostate epithelial cells: implications in prostate cancer. J Biol Chem. 2003, 278: 36868-36875. 10.1074/jbc.M306196200CrossRefPubMed Davila M, Frost AR, Grizzle WE, Chakrabarti R: LIM kinase 1 is essential for the invasive growth of prostate epithelial cells: implications in prostate cancer. J Biol Chem. 2003, 278: 36868-36875. 10.1074/jbc.M306196200CrossRefPubMed
23.
go back to reference Boisvert FM, Lam YW, Lamont D, Lamond AI: A quantitative proteomics analysis of subcellular proteome localization and changes induced by DNA damage. Mol Cell Proteomics. 9: 457-470. Boisvert FM, Lam YW, Lamont D, Lamond AI: A quantitative proteomics analysis of subcellular proteome localization and changes induced by DNA damage. Mol Cell Proteomics. 9: 457-470.
24.
go back to reference Borensztajn K, Peppelenbosch MP, Spek CA: Coagulation Factor Xa inhibits cancer cell migration via LIMK1-mediated cofilin inactivation. Thromb Res. 125: e323-328. Borensztajn K, Peppelenbosch MP, Spek CA: Coagulation Factor Xa inhibits cancer cell migration via LIMK1-mediated cofilin inactivation. Thromb Res. 125: e323-328.
26.
go back to reference Nebl G, Meuer SC, Samstag Y: Dephosphorylation of serine 3 regulates nuclear translocation of cofilin. J Biol Chem. 1996, 271: 26276-26280. 10.1074/jbc.271.42.26276CrossRefPubMed Nebl G, Meuer SC, Samstag Y: Dephosphorylation of serine 3 regulates nuclear translocation of cofilin. J Biol Chem. 1996, 271: 26276-26280. 10.1074/jbc.271.42.26276CrossRefPubMed
27.
go back to reference Samstag Y, Nebl G: Interaction of cofilin with the serine phosphatases PP1 and PP2A in normal and neoplastic human T lymphocytes. Adv Enzyme Regul. 2003, 43: 197-211. 10.1016/S0065-2571(02)00031-6CrossRefPubMed Samstag Y, Nebl G: Interaction of cofilin with the serine phosphatases PP1 and PP2A in normal and neoplastic human T lymphocytes. Adv Enzyme Regul. 2003, 43: 197-211. 10.1016/S0065-2571(02)00031-6CrossRefPubMed
28.
go back to reference Kadrmas JL, Beckerle MC: The LIM domain: from the cytoskeleton to the nucleus. Nat Rev Mol Cell Biol. 2004, 5: 920-931. 10.1038/nrm1499CrossRefPubMed Kadrmas JL, Beckerle MC: The LIM domain: from the cytoskeleton to the nucleus. Nat Rev Mol Cell Biol. 2004, 5: 920-931. 10.1038/nrm1499CrossRefPubMed
29.
go back to reference Geneste O, Copeland JW, Treisman R: LIM kinase and Diaphanous cooperate to regulate serum response factor and actin dynamics. J Cell Biol. 2002, 157: 831-838. 10.1083/jcb.200203126PubMedCentralCrossRefPubMed Geneste O, Copeland JW, Treisman R: LIM kinase and Diaphanous cooperate to regulate serum response factor and actin dynamics. J Cell Biol. 2002, 157: 831-838. 10.1083/jcb.200203126PubMedCentralCrossRefPubMed
30.
go back to reference Vlachos P, Joseph B: The Cdk inhibitor p57(Kip2) controls LIM-kinase 1 activity and regulates actin cytoskeleton dynamics. Oncogene. 2009, 28: 4175-4188. 10.1038/onc.2009.269CrossRefPubMed Vlachos P, Joseph B: The Cdk inhibitor p57(Kip2) controls LIM-kinase 1 activity and regulates actin cytoskeleton dynamics. Oncogene. 2009, 28: 4175-4188. 10.1038/onc.2009.269CrossRefPubMed
31.
go back to reference Guo H, Tian T, Nan K, Wang W: p57: A multifunctional protein in cancer (Review). Int J Oncol. 36: 1321-1329. Guo H, Tian T, Nan K, Wang W: p57: A multifunctional protein in cancer (Review). Int J Oncol. 36: 1321-1329.
32.
go back to reference Medjkane S, Perez-Sanchez C, Gaggioli C, Sahai E, Treisman R: Myocardin-related transcription factors and SRF are required for cytoskeletal dynamics and experimental metastasis. Nat Cell Biol. 2009, 11: 257-268. 10.1038/ncb1833CrossRefPubMed Medjkane S, Perez-Sanchez C, Gaggioli C, Sahai E, Treisman R: Myocardin-related transcription factors and SRF are required for cytoskeletal dynamics and experimental metastasis. Nat Cell Biol. 2009, 11: 257-268. 10.1038/ncb1833CrossRefPubMed
Metadata
Title
Nuclear and cytoplasmic LIMK1 enhances human breast cancer progression
Authors
Brice V McConnell
Karen Koto
Arthur Gutierrez-Hartmann
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2011
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-10-75

Other articles of this Issue 1/2011

Molecular Cancer 1/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine