Skip to main content
Top
Published in: Molecular Cancer 1/2011

Open Access 01-12-2011 | Research

Hyperactivation of NF-κB via the MEK signaling is indispensable for the inhibitory effect of cAMP on DNA damage-induced cell death

Authors: Martine M Kloster, Elin H Naderi, Harald Carlsen, Heidi K Blomhoff, Soheil Naderi

Published in: Molecular Cancer | Issue 1/2011

Login to get access

Abstract

With cAMP signaling having a profound inhibitory effect on DNA damage-induced apoptosis in B-cell precursor acute lymphoblastic leukemia (BCP-ALL) cells, understanding how this signaling pathway affects the survival capacity of the cell has important implications for cancer therapy. We have recently shown that p53 is critical for the inhibitory effect of cAMP on genotoxic agents-mediated apoptosis in BCP-ALLs. Here, we show that elevation of cAMP levels in cells exposed to DNA damage enhances the nuclear translocation and DNA binding of NF-κB by accelerating the phosphorylation of IKKβ and thereby phosphorylation and degradation of IκBα. Furthermore, we show that the ability of cAMP to potentiate the ionizing radiation-induced activation of NF-κB requires the activity of MEK. Importantly, pharmacological or genetic ablation of NF-κB reversed the inhibitory effect of cAMP on DNA damage-induced apoptosis, demonstrating that, in addition to p53, cAMP relies on the activity of NF-κB to provide cells with a survival advantage in the face of DNA damage. Collectively, our results uncover a novel and important interaction between the cAMP and NF-κB pathways that may have implications for the targeted treatment of lymphoid malignancies, such as BCP-ALL, in which aberrant NF-κB activity functions as a driving force for treatment resistance.
Appendix
Available only for authorised users
Literature
1.
go back to reference Green DR, Evan GI: A matter of life and death. Cancer Cell. 2002, 1: 19-30. 10.1016/S1535-6108(02)00024-7CrossRefPubMed Green DR, Evan GI: A matter of life and death. Cancer Cell. 2002, 1: 19-30. 10.1016/S1535-6108(02)00024-7CrossRefPubMed
2.
go back to reference Schmitt CA, Lowe SW: Apoptosis and therapy. J Pathol. 1999, 187: 127-137. 10.1002/(SICI)1096-9896(199901)187:1<127::AID-PATH251>3.0.CO;2-TCrossRefPubMed Schmitt CA, Lowe SW: Apoptosis and therapy. J Pathol. 1999, 187: 127-137. 10.1002/(SICI)1096-9896(199901)187:1<127::AID-PATH251>3.0.CO;2-TCrossRefPubMed
4.
go back to reference Igney FH, Krammer PH: Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer. 2002, 2: 277-288. 10.1038/nrc776CrossRefPubMed Igney FH, Krammer PH: Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer. 2002, 2: 277-288. 10.1038/nrc776CrossRefPubMed
5.
go back to reference Johnstone RW, Ruefli AA, Lowe SW: Apoptosis: a link between cancer genetics and chemotherapy. Cell. 2002, 108: 153-164. 10.1016/S0092-8674(02)00625-6CrossRefPubMed Johnstone RW, Ruefli AA, Lowe SW: Apoptosis: a link between cancer genetics and chemotherapy. Cell. 2002, 108: 153-164. 10.1016/S0092-8674(02)00625-6CrossRefPubMed
6.
go back to reference Vousden KH: Activation of the p53 tumor suppressor protein. Biochim Biophys Acta. 2002, 1602: 47-59.PubMed Vousden KH: Activation of the p53 tumor suppressor protein. Biochim Biophys Acta. 2002, 1602: 47-59.PubMed
7.
go back to reference Janssens S, Tschopp J: Signals from within: the DNA-damage-induced NF-kappaB response. Cell Death Differ. 2006, 13: 773-784. 10.1038/sj.cdd.4401843CrossRefPubMed Janssens S, Tschopp J: Signals from within: the DNA-damage-induced NF-kappaB response. Cell Death Differ. 2006, 13: 773-784. 10.1038/sj.cdd.4401843CrossRefPubMed
8.
go back to reference Hayden MS, Ghosh S: Shared principles in NF-kappaB signaling. Cell. 2008, 132: 344-362. 10.1016/j.cell.2008.01.020CrossRefPubMed Hayden MS, Ghosh S: Shared principles in NF-kappaB signaling. Cell. 2008, 132: 344-362. 10.1016/j.cell.2008.01.020CrossRefPubMed
9.
go back to reference Basseres DS, Baldwin AS: Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. Oncogene. 2006, 25: 6817-6830. 10.1038/sj.onc.1209942CrossRefPubMed Basseres DS, Baldwin AS: Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. Oncogene. 2006, 25: 6817-6830. 10.1038/sj.onc.1209942CrossRefPubMed
10.
go back to reference Kim HJ, Hawke N, Baldwin AS: NF-kappaB and IKK as therapeutic targets in cancer. Cell Death Differ. 2006, 13: 738-747. 10.1038/sj.cdd.4401877CrossRefPubMed Kim HJ, Hawke N, Baldwin AS: NF-kappaB and IKK as therapeutic targets in cancer. Cell Death Differ. 2006, 13: 738-747. 10.1038/sj.cdd.4401877CrossRefPubMed
11.
go back to reference Nakanishi C, Toi M: Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nat Rev Cancer. 2005, 5: 297-309. 10.1038/nrc1588CrossRefPubMed Nakanishi C, Toi M: Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nat Rev Cancer. 2005, 5: 297-309. 10.1038/nrc1588CrossRefPubMed
12.
go back to reference Packham G: The role of NF-kappaB in lymphoid malignancies. Br J Haematol. 2008, 143: 3-15. 10.1111/j.1365-2141.2008.07284.xCrossRefPubMed Packham G: The role of NF-kappaB in lymphoid malignancies. Br J Haematol. 2008, 143: 3-15. 10.1111/j.1365-2141.2008.07284.xCrossRefPubMed
13.
go back to reference Vousden KH, Lane DP: p53 in health and disease. Nat Rev Mol Cell Biol. 2007, 8: 275-283. 10.1038/nrm2147CrossRefPubMed Vousden KH, Lane DP: p53 in health and disease. Nat Rev Mol Cell Biol. 2007, 8: 275-283. 10.1038/nrm2147CrossRefPubMed
14.
go back to reference Vogelstein B, Lane D, Levine AJ: Surfing the p53 network. Nature. 2000, 408: 307-310. 10.1038/35042675CrossRefPubMed Vogelstein B, Lane D, Levine AJ: Surfing the p53 network. Nature. 2000, 408: 307-310. 10.1038/35042675CrossRefPubMed
15.
go back to reference Pettitt AR, Sherrington PD, Stewart G, Cowley JC, Taylor AM, Stankovic T: p53 dysfunction in B-cell chronic lymphocytic leukemia: inactivation of ATM as an alternative to TP53 mutation. Blood. 2001, 98: 814-822. 10.1182/blood.V98.3.814CrossRefPubMed Pettitt AR, Sherrington PD, Stewart G, Cowley JC, Taylor AM, Stankovic T: p53 dysfunction in B-cell chronic lymphocytic leukemia: inactivation of ATM as an alternative to TP53 mutation. Blood. 2001, 98: 814-822. 10.1182/blood.V98.3.814CrossRefPubMed
16.
go back to reference Fenaux P, Jonveaux P, Quiquandon I, Preudhomme C, Lai JL, Vanrumbeke M, Loucheux-Lefebvre MH, Bauters F, Berger R, Kerckaert JP: Mutations of the p53 gene in B-cell lymphoblastic acute leukemia: a report on 60 cases. Leukemia. 1992, 6: 42-46.PubMed Fenaux P, Jonveaux P, Quiquandon I, Preudhomme C, Lai JL, Vanrumbeke M, Loucheux-Lefebvre MH, Bauters F, Berger R, Kerckaert JP: Mutations of the p53 gene in B-cell lymphoblastic acute leukemia: a report on 60 cases. Leukemia. 1992, 6: 42-46.PubMed
17.
go back to reference Wada M, Bartram CR, Nakamura H, Hachiya M, Chen DL, Borenstein J, Miller CW, Ludwig L, Hansen-Hagge TE, Ludwig WD, Reiter A, Mizoguchi H, Koeffler HP: Analysis of p53 mutations in a large series of lymphoid hematologic malignancies of childhood. Blood. 1993, 82: 3163-3169.PubMed Wada M, Bartram CR, Nakamura H, Hachiya M, Chen DL, Borenstein J, Miller CW, Ludwig L, Hansen-Hagge TE, Ludwig WD, Reiter A, Mizoguchi H, Koeffler HP: Analysis of p53 mutations in a large series of lymphoid hematologic malignancies of childhood. Blood. 1993, 82: 3163-3169.PubMed
18.
go back to reference Peller S, Rotter V: TP53 in hematological cancer: low incidence of mutations with significant clinical relevance. Hum Mutat. 2003, 21: 277-284. 10.1002/humu.10190CrossRefPubMed Peller S, Rotter V: TP53 in hematological cancer: low incidence of mutations with significant clinical relevance. Hum Mutat. 2003, 21: 277-284. 10.1002/humu.10190CrossRefPubMed
19.
go back to reference Naderi EH, Findley HW, Ruud E, Blomhoff HK, Naderi S: Activation of cAMP signaling inhibits DNA damage-induced apoptosis in BCP-ALL cells through abrogation of p53 accumulation. Blood. 2009, 114: 608-618. 10.1182/blood-2009-02-204883CrossRefPubMed Naderi EH, Findley HW, Ruud E, Blomhoff HK, Naderi S: Activation of cAMP signaling inhibits DNA damage-induced apoptosis in BCP-ALL cells through abrogation of p53 accumulation. Blood. 2009, 114: 608-618. 10.1182/blood-2009-02-204883CrossRefPubMed
20.
go back to reference DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M: A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature. 1997, 388: 548-554. 10.1038/41493CrossRefPubMed DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M: A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature. 1997, 388: 548-554. 10.1038/41493CrossRefPubMed
21.
go back to reference Mercurio F, Zhu H, Murray BW, Shevchenko A, Bennett BL, Li J, Young DB, Barbosa M, Mann M, Manning A, Rao A: IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science. 1997, 278: 860-866. 10.1126/science.278.5339.860CrossRefPubMed Mercurio F, Zhu H, Murray BW, Shevchenko A, Bennett BL, Li J, Young DB, Barbosa M, Mann M, Manning A, Rao A: IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science. 1997, 278: 860-866. 10.1126/science.278.5339.860CrossRefPubMed
22.
go back to reference Delhase M, Hayakawa M, Chen Y, Karin M: Positive and negative regulation of IkappaB kinase activity through IKKbeta subunit phosphorylation. Science. 1999, 284: 309-313. 10.1126/science.284.5412.309CrossRefPubMed Delhase M, Hayakawa M, Chen Y, Karin M: Positive and negative regulation of IkappaB kinase activity through IKKbeta subunit phosphorylation. Science. 1999, 284: 309-313. 10.1126/science.284.5412.309CrossRefPubMed
23.
go back to reference Pahl HL: Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene. 1999, 18: 6853-6866. 10.1038/sj.onc.1203239CrossRefPubMed Pahl HL: Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene. 1999, 18: 6853-6866. 10.1038/sj.onc.1203239CrossRefPubMed
24.
go back to reference Burstein E, Duckett CS: Dying for NF-kappaB? Control of cell death by transcriptional regulation of the apoptotic machinery. Curr Opin Cell Biol. 2003, 15: 732-737. 10.1016/j.ceb.2003.10.005CrossRefPubMed Burstein E, Duckett CS: Dying for NF-kappaB? Control of cell death by transcriptional regulation of the apoptotic machinery. Curr Opin Cell Biol. 2003, 15: 732-737. 10.1016/j.ceb.2003.10.005CrossRefPubMed
25.
go back to reference Walsh DA, Perkins JP, Krebs EG: An adenosine 3', 5'-monophosphate-dependant protein kinase from rabbit skeletal muscle. J Biol Chem. 1968, 243: 3763-3765.PubMed Walsh DA, Perkins JP, Krebs EG: An adenosine 3', 5'-monophosphate-dependant protein kinase from rabbit skeletal muscle. J Biol Chem. 1968, 243: 3763-3765.PubMed
26.
go back to reference de Rooij J, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A, Bos JL: Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature. 1998, 396: 474-477. 10.1038/24884CrossRefPubMed de Rooij J, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A, Bos JL: Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature. 1998, 396: 474-477. 10.1038/24884CrossRefPubMed
27.
go back to reference Kawasaki H, Springett GM, Mochizuki N, Toki S, Nakaya M, Matsuda M, Housman DE, Graybiel AM: A family of cAMP-binding proteins that directly activate Rap1. Science. 1998, 282: 2275-2279.CrossRefPubMed Kawasaki H, Springett GM, Mochizuki N, Toki S, Nakaya M, Matsuda M, Housman DE, Graybiel AM: A family of cAMP-binding proteins that directly activate Rap1. Science. 1998, 282: 2275-2279.CrossRefPubMed
28.
go back to reference Enserink JM, Christensen AE, de Rooij J, van Triest M, Schwede F, Genieser HG, Døskeland SO, Blank JL, Bos JL: A novel Epac-specific cAMP analogue demonstrates independent regulation of Rap1 and ERK. Nat Cell Biol. 2002, 4: 901-906. 10.1038/ncb874CrossRefPubMed Enserink JM, Christensen AE, de Rooij J, van Triest M, Schwede F, Genieser HG, Døskeland SO, Blank JL, Bos JL: A novel Epac-specific cAMP analogue demonstrates independent regulation of Rap1 and ERK. Nat Cell Biol. 2002, 4: 901-906. 10.1038/ncb874CrossRefPubMed
29.
go back to reference Carlsen H, Moskaug JO, Fromm SH, Blomhoff R: In vivo imaging of NF-kappa B activity. J Immunol. 2002, 168: 1441-1446.CrossRefPubMed Carlsen H, Moskaug JO, Fromm SH, Blomhoff R: In vivo imaging of NF-kappa B activity. J Immunol. 2002, 168: 1441-1446.CrossRefPubMed
30.
go back to reference Arsura M, Mercurio F, Oliver AL, Thorgeirsson SS, Sonenshein GE: Role of the IkappaB kinase complex in oncogenic Ras- and Raf-mediated transformation of rat liver epithelial cells. Mol Cell Biol. 2000, 20: 5381-5391. 10.1128/MCB.20.15.5381-5391.2000PubMedCentralCrossRefPubMed Arsura M, Mercurio F, Oliver AL, Thorgeirsson SS, Sonenshein GE: Role of the IkappaB kinase complex in oncogenic Ras- and Raf-mediated transformation of rat liver epithelial cells. Mol Cell Biol. 2000, 20: 5381-5391. 10.1128/MCB.20.15.5381-5391.2000PubMedCentralCrossRefPubMed
31.
go back to reference Ryan KM, Ernst MK, Rice NR, Vousden KH: Role of NF-kappaB in p53-mediated programmed cell death. Nature. 2000, 404: 892-897. 10.1038/35009130CrossRefPubMed Ryan KM, Ernst MK, Rice NR, Vousden KH: Role of NF-kappaB in p53-mediated programmed cell death. Nature. 2000, 404: 892-897. 10.1038/35009130CrossRefPubMed
32.
go back to reference Tang D, Wu D, Hirao A, Lahti JM, Liu L, Mazza B, Kidd VJ, Mak TW, Ingram AJ: ERK activation mediates cell cycle arrest and apoptosis after DNA damage independently of p53. J Biol Chem. 2002, 277: 12710-12717. 10.1074/jbc.M111598200CrossRefPubMed Tang D, Wu D, Hirao A, Lahti JM, Liu L, Mazza B, Kidd VJ, Mak TW, Ingram AJ: ERK activation mediates cell cycle arrest and apoptosis after DNA damage independently of p53. J Biol Chem. 2002, 277: 12710-12717. 10.1074/jbc.M111598200CrossRefPubMed
33.
go back to reference Panta GR, Kaur S, Cavin LG, Cortés ML, Mercurio F, Lothstein L, Sweatman TW, Israel M, Arsura M: ATM and the catalytic subunit of DNA-dependent protein kinase activate NF-kappaB through a common MEK/extracellular signal-regulated kinase/p90(rsk) signaling pathway in response to distinct forms of DNA damage. Mol Cell Biol. 2004, 24: 1823-1835. 10.1128/MCB.24.5.1823-1835.2004PubMedCentralCrossRefPubMed Panta GR, Kaur S, Cavin LG, Cortés ML, Mercurio F, Lothstein L, Sweatman TW, Israel M, Arsura M: ATM and the catalytic subunit of DNA-dependent protein kinase activate NF-kappaB through a common MEK/extracellular signal-regulated kinase/p90(rsk) signaling pathway in response to distinct forms of DNA damage. Mol Cell Biol. 2004, 24: 1823-1835. 10.1128/MCB.24.5.1823-1835.2004PubMedCentralCrossRefPubMed
34.
go back to reference Shaul YD, Seger R: The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim Biophys Acta. 2007, 1773: 1213-1226. 10.1016/j.bbamcr.2006.10.005CrossRefPubMed Shaul YD, Seger R: The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim Biophys Acta. 2007, 1773: 1213-1226. 10.1016/j.bbamcr.2006.10.005CrossRefPubMed
35.
go back to reference Xia Y, Padre RC, De Mendoza TH, Bottero V, Tergaonkar VB, Verma IM: Phosphorylation of p53 by IkappaB kinase 2 promotes its degradation by beta-TrCP. Proc Natl Acad Sci USA. 2009, 106: 2629-2634. 10.1073/pnas.0812256106PubMedCentralCrossRefPubMed Xia Y, Padre RC, De Mendoza TH, Bottero V, Tergaonkar VB, Verma IM: Phosphorylation of p53 by IkappaB kinase 2 promotes its degradation by beta-TrCP. Proc Natl Acad Sci USA. 2009, 106: 2629-2634. 10.1073/pnas.0812256106PubMedCentralCrossRefPubMed
36.
go back to reference Yang PM, Huang WC, Lin YC, Huang WY, Wu HA, Chen WL, Chang YF, Chou CW, Tzeng CC, Chen YL, Chen CC: Loss of IKKbeta activity increases p53 stability and p21 expression leading to cell cycle arrest and apoptosis. J Cell Mol Med. 2010, 14: 687-698.PubMedCentralCrossRefPubMed Yang PM, Huang WC, Lin YC, Huang WY, Wu HA, Chen WL, Chang YF, Chou CW, Tzeng CC, Chen YL, Chen CC: Loss of IKKbeta activity increases p53 stability and p21 expression leading to cell cycle arrest and apoptosis. J Cell Mol Med. 2010, 14: 687-698.PubMedCentralCrossRefPubMed
39.
go back to reference Safa M, Zand H, Mousavizadeh K, Kazemi A, Bakhshayesh M, Hayat P: Elevation of cyclic AMP causes an imbalance between NF-kappaB and p53 in NALM-6 cells treated by doxorubicin. FEBS Lett. 2010, 584: 3492-3498. 10.1016/j.febslet.2010.07.009CrossRefPubMed Safa M, Zand H, Mousavizadeh K, Kazemi A, Bakhshayesh M, Hayat P: Elevation of cyclic AMP causes an imbalance between NF-kappaB and p53 in NALM-6 cells treated by doxorubicin. FEBS Lett. 2010, 584: 3492-3498. 10.1016/j.febslet.2010.07.009CrossRefPubMed
40.
go back to reference Baldwin AS: Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. J Clin Invest. 2001, 107: 241-246. 10.1172/JCI11991PubMedCentralCrossRefPubMed Baldwin AS: Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. J Clin Invest. 2001, 107: 241-246. 10.1172/JCI11991PubMedCentralCrossRefPubMed
41.
go back to reference Ramstad C, Sundvold V, Johansen HK, Lea T: cAMP-dependent protein kinase (PKA) inhibits T cell activation by phosphorylating ser-43 of raf-1 in the MAPK/ERK pathway. Cell Signal. 2000, 12: 557-563. 10.1016/S0898-6568(00)00097-8CrossRefPubMed Ramstad C, Sundvold V, Johansen HK, Lea T: cAMP-dependent protein kinase (PKA) inhibits T cell activation by phosphorylating ser-43 of raf-1 in the MAPK/ERK pathway. Cell Signal. 2000, 12: 557-563. 10.1016/S0898-6568(00)00097-8CrossRefPubMed
42.
go back to reference Dumaz N, Marais R: Integrating signals between cAMP and the RAS/RAF/MEK/ERK signalling pathways. Based on the anniversary prize of the Gesellschaft fur Biochemie und Molekularbiologie Lecture delivered on 5 July 2003 at the Special FEBS Meeting in Brussels. FEBS J. 2005, 272: 3491-3504. 10.1111/j.1742-4658.2005.04763.xCrossRefPubMed Dumaz N, Marais R: Integrating signals between cAMP and the RAS/RAF/MEK/ERK signalling pathways. Based on the anniversary prize of the Gesellschaft fur Biochemie und Molekularbiologie Lecture delivered on 5 July 2003 at the Special FEBS Meeting in Brussels. FEBS J. 2005, 272: 3491-3504. 10.1111/j.1742-4658.2005.04763.xCrossRefPubMed
43.
go back to reference Chen LF, Greene WC: Shaping the nuclear action of NF-kappaB. Nat Rev Mol Cell Biol. 2004, 5: 392-401. 10.1038/nrm1368CrossRefPubMed Chen LF, Greene WC: Shaping the nuclear action of NF-kappaB. Nat Rev Mol Cell Biol. 2004, 5: 392-401. 10.1038/nrm1368CrossRefPubMed
44.
go back to reference Zhong H, SuYang H, Erdjument-Bromage H, Tempst P, Ghosh S: The transcriptional activity of NF-kappaB is regulated by the IkappaB-associated PKAc subunit through a cyclic AMP-independent mechanism. Cell. 1997, 89: 413-424. 10.1016/S0092-8674(00)80222-6CrossRefPubMed Zhong H, SuYang H, Erdjument-Bromage H, Tempst P, Ghosh S: The transcriptional activity of NF-kappaB is regulated by the IkappaB-associated PKAc subunit through a cyclic AMP-independent mechanism. Cell. 1997, 89: 413-424. 10.1016/S0092-8674(00)80222-6CrossRefPubMed
45.
go back to reference Zhong H, Voll RE, Ghosh S: Phosphorylation of NF-kappa B p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol Cell. 1998, 1: 661-671. 10.1016/S1097-2765(00)80066-0CrossRefPubMed Zhong H, Voll RE, Ghosh S: Phosphorylation of NF-kappa B p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol Cell. 1998, 1: 661-671. 10.1016/S1097-2765(00)80066-0CrossRefPubMed
46.
go back to reference Zhong H, May MJ, Jimi E, Ghosh S: The phosphorylation status of nuclear NF-kappa B determines its association with CBP/p300 or HDAC-1. Mol Cell. 2002, 9: 625-636. 10.1016/S1097-2765(02)00477-XCrossRefPubMed Zhong H, May MJ, Jimi E, Ghosh S: The phosphorylation status of nuclear NF-kappa B determines its association with CBP/p300 or HDAC-1. Mol Cell. 2002, 9: 625-636. 10.1016/S1097-2765(02)00477-XCrossRefPubMed
47.
go back to reference Spooren A, Kolmus K, Vermeulen L, Van Wesemael K, Haegeman G, Gerlo S: Hunting for serine 276-phosphorylated p65. J Biomed Biotechnol. 2010, 2010: 275892-PubMedCentralCrossRefPubMed Spooren A, Kolmus K, Vermeulen L, Van Wesemael K, Haegeman G, Gerlo S: Hunting for serine 276-phosphorylated p65. J Biomed Biotechnol. 2010, 2010: 275892-PubMedCentralCrossRefPubMed
48.
go back to reference Kordes U, Krappmann D, Heissmeyer V, Ludwig WD, Scheidereit C: Transcription factor NF-kappaB is constitutively activated in acute lymphoblastic leukemia cells. Leukemia. 2000, 14: 399-402. 10.1038/sj.leu.2401705CrossRefPubMed Kordes U, Krappmann D, Heissmeyer V, Ludwig WD, Scheidereit C: Transcription factor NF-kappaB is constitutively activated in acute lymphoblastic leukemia cells. Leukemia. 2000, 14: 399-402. 10.1038/sj.leu.2401705CrossRefPubMed
49.
go back to reference Rosenfeld C, Goutner A, Venuat AM, Choquet C, Pico JL, Dore JF, Liabeuf A, Durandy A, Desgrange C, De The G: An effect human leukaemic cell line: Reh. Eur J Cancer. 1977, 13: 377-379.CrossRefPubMed Rosenfeld C, Goutner A, Venuat AM, Choquet C, Pico JL, Dore JF, Liabeuf A, Durandy A, Desgrange C, De The G: An effect human leukaemic cell line: Reh. Eur J Cancer. 1977, 13: 377-379.CrossRefPubMed
Metadata
Title
Hyperactivation of NF-κB via the MEK signaling is indispensable for the inhibitory effect of cAMP on DNA damage-induced cell death
Authors
Martine M Kloster
Elin H Naderi
Harald Carlsen
Heidi K Blomhoff
Soheil Naderi
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2011
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-10-45

Other articles of this Issue 1/2011

Molecular Cancer 1/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine