Skip to main content
Top
Published in: Malaria Journal 1/2009

Open Access 01-12-2009 | Methodology

Limitation of using synthetic human odours to test mosquito repellents

Authors: Fredros O Okumu, Emmanuel Titus, Edgar Mbeyela, Gerry F Killeen, Sarah J Moore

Published in: Malaria Journal | Issue 1/2009

Login to get access

Abstract

Background

Gold-standard tests of mosquito repellents involve exposing human volunteers to host-seeking mosquitoes, to assess the protective efficacy of the repellents. These techniques are not exposure-free and cannot be performed prior to toxicological evaluation. It is postulated that synthetic lures could provide a useful assay that mimics in-vivo conditions for use in high-throughput screening for mosquito repellents.

Methods

This paper reports on a semi-field evaluation of repellents using a synthetic blend of human derived attractants for the malaria vector, Anopheles gambiae sensu stricto Different concentrations of known repellents, N, N diethyl-3-methylbenzamide (deet) and Para-methane-3, 8, diol (PMD) were added into traps baited with the synthetic blend, and resulting changes in mosquito catches were measured.

Results

All test concentrations of deet (0.001% to 100%) reduced the attractiveness of the synthetic blend. However, PMD was repellent only at 0.25%. Above this concentration, it significantly increased the attractiveness of the blend. There was no relationship between the repellent concentrations and the change in mosquito catches when either deet (r2 = 0.033, P = 0.302) or PMD (r2 = 0.020, P = 0.578) was used.

Conclusion

It is concluded that while some repellents may reduce the attractiveness of synthetic human odours, others may instead increase their attractiveness. Such inconsistencies indicate that even though the synthetic attractants may provide exposure-free and consistent test media for repellents, careful selection and multiple-repellent tests are necessary to ascertain their suitability for use in repellent screening. The synthetic odour blend tested here is not yet sufficiently refined to serve as replacement for humans in repellent testing, but may be developed further and evaluated in different formats for exposure free repellent testing purposes.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bernier UR, Kline DL, Posey HP: Human emanations and related natural compounds that inhibit mosquito host finding abilities. Insect Repellents: Principles, Methods and Uses. Edited by: Debboun M, Frances SP, Strickman D. 2007, New York: CRC Press Taylor and Francis Group, 77-100. Bernier UR, Kline DL, Posey HP: Human emanations and related natural compounds that inhibit mosquito host finding abilities. Insect Repellents: Principles, Methods and Uses. Edited by: Debboun M, Frances SP, Strickman D. 2007, New York: CRC Press Taylor and Francis Group, 77-100.
2.
go back to reference Gupta RK, Rutledge L: Role of repellents in vector control and disease prevention. Am J Trop Med Hyg. 1994, 50: 82-86.PubMed Gupta RK, Rutledge L: Role of repellents in vector control and disease prevention. Am J Trop Med Hyg. 1994, 50: 82-86.PubMed
3.
go back to reference Govere JM, Durrheim DN: Techniques for evaluating repellents. Insect Repellents: Principles, Methods and Uses. Edited by: Debboun M, Frances SP, Strickman D. 2007, New York: CRC Press Taylor and Francis Group, 147-159. Govere JM, Durrheim DN: Techniques for evaluating repellents. Insect Repellents: Principles, Methods and Uses. Edited by: Debboun M, Frances SP, Strickman D. 2007, New York: CRC Press Taylor and Francis Group, 147-159.
4.
go back to reference Barnard DR: Global collaboration for development of pesticides for public health: repellents and toxicants for personal protection. 2000, Geneva: World Health Organization Barnard DR: Global collaboration for development of pesticides for public health: repellents and toxicants for personal protection. 2000, Geneva: World Health Organization
5.
go back to reference Takken W, Knols BG: Odor-mediated behavior of Afrotropical malaria mosquitoes. Annu Rev Entomol. 1999, 44: 131-157. 10.1146/annurev.ento.44.1.131.CrossRefPubMed Takken W, Knols BG: Odor-mediated behavior of Afrotropical malaria mosquitoes. Annu Rev Entomol. 1999, 44: 131-157. 10.1146/annurev.ento.44.1.131.CrossRefPubMed
6.
go back to reference Knols BG, de Jong R, Takken W: Differential attractiveness of isolated humans to mosquitoes in Tanzania. Trans R Soc Trop Med Hyg. 1995, 89: 604-606. 10.1016/0035-9203(95)90406-9.CrossRefPubMed Knols BG, de Jong R, Takken W: Differential attractiveness of isolated humans to mosquitoes in Tanzania. Trans R Soc Trop Med Hyg. 1995, 89: 604-606. 10.1016/0035-9203(95)90406-9.CrossRefPubMed
7.
8.
go back to reference Khan AA, Maibach HI, Skidmore DL: A study of insect repellents 2. Effect of temperature on protection time. J Econ Entomol. 1973, 66: 437-439.CrossRef Khan AA, Maibach HI, Skidmore DL: A study of insect repellents 2. Effect of temperature on protection time. J Econ Entomol. 1973, 66: 437-439.CrossRef
9.
go back to reference Okumu FO: Medium Range Olfactory Responses of the Malaria Vector, Anopheles gambiae s.s to synthetic odor blends. Masters Thesis. 2008, Nairobi: University of Nairobi Okumu FO: Medium Range Olfactory Responses of the Malaria Vector, Anopheles gambiae s.s to synthetic odor blends. Masters Thesis. 2008, Nairobi: University of Nairobi
10.
go back to reference Fradin MS, Day JF: Comparative efficacy of insect repellents against mosquito bites. NEJM. 2002, 347: 13-18. 10.1056/NEJMoa011699.CrossRefPubMed Fradin MS, Day JF: Comparative efficacy of insect repellents against mosquito bites. NEJM. 2002, 347: 13-18. 10.1056/NEJMoa011699.CrossRefPubMed
11.
go back to reference Fradin MS: Mosquitoes and mosquito repellents: a clinician's guide. Ann Int Med. 1998, 128: 931-940.CrossRefPubMed Fradin MS: Mosquitoes and mosquito repellents: a clinician's guide. Ann Int Med. 1998, 128: 931-940.CrossRefPubMed
13.
go back to reference Environmental Protection Agency: Reregistration Eligibility Decision (RED) DEET. 1998, Washington: Environmental Protection Agency Environmental Protection Agency: Reregistration Eligibility Decision (RED) DEET. 1998, Washington: Environmental Protection Agency
14.
go back to reference Schreck CE, Leonhardt BA: Efficacy assessment of Quwenling, a mosquito repellent from China. J Am Mosq Control Assoc. 1991, 7: 433-436.PubMed Schreck CE, Leonhardt BA: Efficacy assessment of Quwenling, a mosquito repellent from China. J Am Mosq Control Assoc. 1991, 7: 433-436.PubMed
15.
go back to reference Carroll SP, Loye J: PMD, A registered botanical mosquito repellent with DEET-like efficacy. J Am Mosq Control Assoc. 2006, 22: 507-514. 10.2987/8756-971X(2006)22[507:PARBMR]2.0.CO;2.CrossRefPubMed Carroll SP, Loye J: PMD, A registered botanical mosquito repellent with DEET-like efficacy. J Am Mosq Control Assoc. 2006, 22: 507-514. 10.2987/8756-971X(2006)22[507:PARBMR]2.0.CO;2.CrossRefPubMed
16.
go back to reference Dogan EB, Ayres JW, Rossignol PA: Behavioural mode of action of deet: inhibition of lactic acid attraction. Med Vet Entomol. 1999, 13: 97-100. 10.1046/j.1365-2915.1999.00145.x.CrossRefPubMed Dogan EB, Ayres JW, Rossignol PA: Behavioural mode of action of deet: inhibition of lactic acid attraction. Med Vet Entomol. 1999, 13: 97-100. 10.1046/j.1365-2915.1999.00145.x.CrossRefPubMed
17.
go back to reference Ferguson HM, Ng'habi KR, Walder T, Kadungula D, Moore SJ, Lyimo I, Russell TL, Urassa H, Mshinda H, Killeen GF, Knols BGJ: Establishment of a large semi-field system for experimental study of African malaria vector ecology and control in Tanzania. Malar J. 2008, 7: 158-10.1186/1475-2875-7-158.PubMedCentralCrossRefPubMed Ferguson HM, Ng'habi KR, Walder T, Kadungula D, Moore SJ, Lyimo I, Russell TL, Urassa H, Mshinda H, Killeen GF, Knols BGJ: Establishment of a large semi-field system for experimental study of African malaria vector ecology and control in Tanzania. Malar J. 2008, 7: 158-10.1186/1475-2875-7-158.PubMedCentralCrossRefPubMed
18.
go back to reference Njiru BN, Mukabana WR, Takken W, Knols BGJ: Trapping of the malaria vector Anopheles gambiae with odour-baited MM-X traps in semi-field conditions in western Kenya. Malar J. 2006, 5: 39-10.1186/1475-2875-5-39.PubMedCentralCrossRefPubMed Njiru BN, Mukabana WR, Takken W, Knols BGJ: Trapping of the malaria vector Anopheles gambiae with odour-baited MM-X traps in semi-field conditions in western Kenya. Malar J. 2006, 5: 39-10.1186/1475-2875-5-39.PubMedCentralCrossRefPubMed
19.
go back to reference Kline DL: Comparison of two American Biophysics mosquito traps: the professional and the new counter flow geometry trap. J Am Mosq Control Assoc. 1999, 15: 276-282.PubMed Kline DL: Comparison of two American Biophysics mosquito traps: the professional and the new counter flow geometry trap. J Am Mosq Control Assoc. 1999, 15: 276-282.PubMed
20.
go back to reference Curtis CF, Lines JD, Ijumba J, Callaghan A, Hill N, Karimzad MA: The relative efficacy of repellents against mosquito vectors of disease. Med Vet Entomol. 1987, 1: 109-119. 10.1111/j.1365-2915.1987.tb00331.x.CrossRefPubMed Curtis CF, Lines JD, Ijumba J, Callaghan A, Hill N, Karimzad MA: The relative efficacy of repellents against mosquito vectors of disease. Med Vet Entomol. 1987, 1: 109-119. 10.1111/j.1365-2915.1987.tb00331.x.CrossRefPubMed
21.
go back to reference Costantini C, Badolo A, Ilboudo-Sanogo E: Field evaluation of the efficacy and persistence of insect repellents DEET, IR and KBR 3023 against Anopheles gambiae complex and other Afrotropical vector mosquitoes. Trans R Soc Trop Med Hyg. 3535, 98: 644-652.CrossRef Costantini C, Badolo A, Ilboudo-Sanogo E: Field evaluation of the efficacy and persistence of insect repellents DEET, IR and KBR 3023 against Anopheles gambiae complex and other Afrotropical vector mosquitoes. Trans R Soc Trop Med Hyg. 3535, 98: 644-652.CrossRef
22.
go back to reference Lindsay SW, Janneh LM: Preliminary field trials of personal protection against mosquitoes in The Gambia using deet or permethrin in soap, compared with other methods. Med Vet Entomol. 1989, 3: 97-100. 10.1111/j.1365-2915.1989.tb00481.x.CrossRefPubMed Lindsay SW, Janneh LM: Preliminary field trials of personal protection against mosquitoes in The Gambia using deet or permethrin in soap, compared with other methods. Med Vet Entomol. 1989, 3: 97-100. 10.1111/j.1365-2915.1989.tb00481.x.CrossRefPubMed
23.
go back to reference Gibson G, Constantini C, Sagnon F, Torre A, Coluzzi M: The responses of Anopheles gambiae, and other mosquitoes in Burkina Faso, to CO2-the start of a search for synthetic human odour. Ann Trop Med Parasitol. 1997, 91: 123-124. 10.1080/00034989761445.CrossRef Gibson G, Constantini C, Sagnon F, Torre A, Coluzzi M: The responses of Anopheles gambiae, and other mosquitoes in Burkina Faso, to CO2-the start of a search for synthetic human odour. Ann Trop Med Parasitol. 1997, 91: 123-124. 10.1080/00034989761445.CrossRef
24.
go back to reference Sharma KR, Seenivasagan T, Rao AN, Ganesan K, Agrawal OP, Prakash S: Mediation of oviposition responses in the malaria mosquito Anopheles stephensi Liston by certain fatty acid esters. Parasitol Res. 2009, 104: 281-286. 10.1007/s00436-008-1189-8.CrossRefPubMed Sharma KR, Seenivasagan T, Rao AN, Ganesan K, Agrawal OP, Prakash S: Mediation of oviposition responses in the malaria mosquito Anopheles stephensi Liston by certain fatty acid esters. Parasitol Res. 2009, 104: 281-286. 10.1007/s00436-008-1189-8.CrossRefPubMed
25.
go back to reference Knight JC, Corbet SA: Compounds affecting mosquito oviposition: structure-activity relationships and concentration effects. J Am Mosq Control Assoc. 1991, 7: 37-41.PubMed Knight JC, Corbet SA: Compounds affecting mosquito oviposition: structure-activity relationships and concentration effects. J Am Mosq Control Assoc. 1991, 7: 37-41.PubMed
26.
go back to reference Gabel ML, Spencer IS, Akers WA: Evaporation rates and protection times of repellents. Mosq News. 1976, 36: 141-146. Gabel ML, Spencer IS, Akers WA: Evaporation rates and protection times of repellents. Mosq News. 1976, 36: 141-146.
27.
go back to reference Ditzen M, Pellegrino M, Vosshall LB: Insect Odorant Receptors Are Molecular Targets of the Insect Repellent DEET. Science. 2008, 319 (5871): 1838-1842. 10.1126/science.1153121.CrossRefPubMed Ditzen M, Pellegrino M, Vosshall LB: Insect Odorant Receptors Are Molecular Targets of the Insect Repellent DEET. Science. 2008, 319 (5871): 1838-1842. 10.1126/science.1153121.CrossRefPubMed
Metadata
Title
Limitation of using synthetic human odours to test mosquito repellents
Authors
Fredros O Okumu
Emmanuel Titus
Edgar Mbeyela
Gerry F Killeen
Sarah J Moore
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2009
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/1475-2875-8-150

Other articles of this Issue 1/2009

Malaria Journal 1/2009 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.