Skip to main content
Top
Published in: Malaria Journal 1/2007

Open Access 01-12-2007 | Research

Sub-cellular localization and post-translational modifications of the Plasmodium yoelii enolase suggest moonlighting functions

Authors: Ipsita Pal-Bhowmick, Hardeep K Vora, Gotam K Jarori

Published in: Malaria Journal | Issue 1/2007

Login to get access

Abstract

Background

Enolase (2-Phospho-D-glycerate hydrolase; EC 4.2.1.11) is one of the glycolytic enzymes, whose levels are highly elevated in malaria parasite infected red blood cells. In several organisms, enolases have been shown to have diverse non glycolytic (moonlighting) biological functions. As functional diversity of a protein would require diverse sub-cellular localization, the possibility of involvement of Plasmodium enolase in moonlighting functions was examined by investigating its sub-cellular distribution in the murine malarial parasite, Plasmodium yoelii.

Methods

Cellular extracts of P. yoelii were fractionated in to soluble (cytosolic) and particulate (membranes, nuclear and cytoskeletal) fractions and were analysed by one and two-dimensional gel electrophoresis. These were probed by Western blotting using antibodies raised against recombinant Plasmodium falciparum enolase. Immunofluorescence assay was used for in situ localization. Fe+3 based metal affinity chromatography was used to isolate the phospho-proteome fraction from P. yoelii extracts.

Results

Apart from the expected presence of enolase in cytosol, this enzyme was also found to be associated with membranes, nuclei and cytoskeletal fractions. Nuclear presence was also confirmed by in situ immunofluorescence. Five different post translationally modified isoforms of enolase could be identified, of which at least three were due to the phosphorylation of the native form. in situ phosphorylation of enolase was also evident from the presence of enolase in purified phosphor-proteome of P. yoelli. Different sub-cellular fractions showed different isoform profiles.

Conclusion

Association of enolase with nuclei, cell membranes and cytoskeletal elements suggests non-glycolytic functions for this enzyme in P. yoelii. Sub-cellular fraction specific isoform profiles indicate the importance of post-translational modifications in diverse localization of enolase in P. yoelii. Further, it is suggested that post-translational modifications of enolase may govern the recruitment of enolase for non-glycolytic functions.
Appendix
Available only for authorised users
Literature
1.
go back to reference Pancholi V: Multifunctional alpha-enolase: its role in diseases. Cell Mol Life Sci. 2001, 58: 902-920.CrossRefPubMed Pancholi V: Multifunctional alpha-enolase: its role in diseases. Cell Mol Life Sci. 2001, 58: 902-920.CrossRefPubMed
2.
go back to reference Sriram G, Martinez JA, McCabe ER, Liao JC, Dipple KM: Single-gene disorders: what role could moonlighting enzymes play?. Am J Hum Genet. 2005, 76: 911-924.PubMedCentralCrossRefPubMed Sriram G, Martinez JA, McCabe ER, Liao JC, Dipple KM: Single-gene disorders: what role could moonlighting enzymes play?. Am J Hum Genet. 2005, 76: 911-924.PubMedCentralCrossRefPubMed
3.
go back to reference Bergmann S, Rohde M, Chhatwal GS, Hammerschmidt S: alpha-Enolase of Streptococcus pneumoniae is a plasmin(ogen)-binding protein displayed on the bacterial cell surface. Mol Microbiol. 2001, 40: 1273-1287.CrossRefPubMed Bergmann S, Rohde M, Chhatwal GS, Hammerschmidt S: alpha-Enolase of Streptococcus pneumoniae is a plasmin(ogen)-binding protein displayed on the bacterial cell surface. Mol Microbiol. 2001, 40: 1273-1287.CrossRefPubMed
4.
go back to reference Pancholi V, Fischetti VA: alpha-enolase, a novel strong plasmin(ogen) binding protein on the surface of pathogenic streptococci. J Biol Chem. 1998, 273: 14503-14515.CrossRefPubMed Pancholi V, Fischetti VA: alpha-enolase, a novel strong plasmin(ogen) binding protein on the surface of pathogenic streptococci. J Biol Chem. 1998, 273: 14503-14515.CrossRefPubMed
5.
go back to reference Ferguson DJ, Parmley SF, Tomavo S: Evidence for nuclear localisation of two stage-specific isoenzymes of enolase in Toxoplasma gondii correlates with active parasite replication. Int J Parasitol. 2002, 32: 1399-1410.CrossRefPubMed Ferguson DJ, Parmley SF, Tomavo S: Evidence for nuclear localisation of two stage-specific isoenzymes of enolase in Toxoplasma gondii correlates with active parasite replication. Int J Parasitol. 2002, 32: 1399-1410.CrossRefPubMed
6.
go back to reference Labbe M, Peroval M, Bourdieu C, Girard-Misguich F, Pery P: Eimeria tenella enolase and pyruvate kinase: A likely role in glycolysis and in others functions. Int J Parasitol. 2006, 36: 1443-52.CrossRefPubMed Labbe M, Peroval M, Bourdieu C, Girard-Misguich F, Pery P: Eimeria tenella enolase and pyruvate kinase: A likely role in glycolysis and in others functions. Int J Parasitol. 2006, 36: 1443-52.CrossRefPubMed
7.
go back to reference Lee H, Guo Y, Ohta M, Xiong L, Stevenson B, Zhu JK: LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase. Embo J. 2002, 21: 2692-2702.PubMedCentralCrossRefPubMed Lee H, Guo Y, Ohta M, Xiong L, Stevenson B, Zhu JK: LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase. Embo J. 2002, 21: 2692-2702.PubMedCentralCrossRefPubMed
8.
go back to reference Feo S, Arcuri D, Piddini E, Passantino R, Giallongo A: ENO1 gene product binds to the c-myc promoter and acts as a transcriptional repressor: relationship with Myc promoter-binding protein 1 (MBP-1). FEBS Lett. 2000, 473 (1): 47-52.CrossRefPubMed Feo S, Arcuri D, Piddini E, Passantino R, Giallongo A: ENO1 gene product binds to the c-myc promoter and acts as a transcriptional repressor: relationship with Myc promoter-binding protein 1 (MBP-1). FEBS Lett. 2000, 473 (1): 47-52.CrossRefPubMed
9.
go back to reference Subramanian A, Miller DM: Structural analysis of alpha-enolase. Mapping the functional domains involved in down-regulation of the c-myc protooncogene. J Biol Chem. 2000, 275: 5958-5965.CrossRefPubMed Subramanian A, Miller DM: Structural analysis of alpha-enolase. Mapping the functional domains involved in down-regulation of the c-myc protooncogene. J Biol Chem. 2000, 275: 5958-5965.CrossRefPubMed
10.
go back to reference Iida H, Yahara I: Yeast heat-shock protein of Mr 48,000 is an isoprotein of enolase. Nature. 1985, 315: 588-690.CrossRef Iida H, Yahara I: Yeast heat-shock protein of Mr 48,000 is an isoprotein of enolase. Nature. 1985, 315: 588-690.CrossRef
11.
go back to reference Wilkins JC, Homer KA, Beighton D: Analysis of Streptococcus mutans proteins modulated by culture under acidic conditions. Appl Environ Microbiol. 2002, 68: 2382-2390.PubMedCentralCrossRefPubMed Wilkins JC, Homer KA, Beighton D: Analysis of Streptococcus mutans proteins modulated by culture under acidic conditions. Appl Environ Microbiol. 2002, 68: 2382-2390.PubMedCentralCrossRefPubMed
12.
go back to reference Decker BL, Wickner WT: Enolase activates homotypic vacuole fusion and protein transport to the vacuole in yeast. J Biol Chem. 2006, 281: 14523-14528.CrossRefPubMed Decker BL, Wickner WT: Enolase activates homotypic vacuole fusion and protein transport to the vacuole in yeast. J Biol Chem. 2006, 281: 14523-14528.CrossRefPubMed
13.
go back to reference Brandina I, Graham J, Lemaitre-Guillier C, Entelis N, Krasheninnikov I, Sweetlove L, Tarassov I, Martin RP: Enolase takes part in a macromolecular complex associated to mitochondria in yeast. Biochim Biophys Acta. 2006, 1757: 1217-1228.CrossRefPubMed Brandina I, Graham J, Lemaitre-Guillier C, Entelis N, Krasheninnikov I, Sweetlove L, Tarassov I, Martin RP: Enolase takes part in a macromolecular complex associated to mitochondria in yeast. Biochim Biophys Acta. 2006, 1757: 1217-1228.CrossRefPubMed
14.
go back to reference Entelis N, Brandina I, Kamenski P, Krasheninnikov IA, Martin RP, Tarassov I: A glycolytic enzyme, enolase, is recruited as a cofactor of tRNA targeting toward mitochondria in Saccharomyces cerevisiae. Genes Dev. 2006, 20: 1609-1620.PubMedCentralCrossRefPubMed Entelis N, Brandina I, Kamenski P, Krasheninnikov IA, Martin RP, Tarassov I: A glycolytic enzyme, enolase, is recruited as a cofactor of tRNA targeting toward mitochondria in Saccharomyces cerevisiae. Genes Dev. 2006, 20: 1609-1620.PubMedCentralCrossRefPubMed
15.
go back to reference Mehta M, Sonawat HM, Sharma S: Malaria parasite-infected erythrocytes inhibit glucose utilization in uninfected red cells. FEBS Lett. 2005, 579: 6151-6158.CrossRefPubMed Mehta M, Sonawat HM, Sharma S: Malaria parasite-infected erythrocytes inhibit glucose utilization in uninfected red cells. FEBS Lett. 2005, 579: 6151-6158.CrossRefPubMed
16.
go back to reference Roth EF, Raventos-Suarez C, Perkins M, Nagel RL: Glutathione stability and oxidative stress in P. falciparum infection in vitro: responses of normal and G6PD deficient cells. Biochem Biophys Res Commun. 1982, 109: 355-362.CrossRefPubMed Roth EF, Raventos-Suarez C, Perkins M, Nagel RL: Glutathione stability and oxidative stress in P. falciparum infection in vitro: responses of normal and G6PD deficient cells. Biochem Biophys Res Commun. 1982, 109: 355-362.CrossRefPubMed
17.
go back to reference Roth EF, Calvin MC, Max-Audit I, Rosa J, Rosa R: The enzymes of the glycolytic pathway in erythrocytes infected with Plasmodium falciparum malaria parasites. Blood. 1988, 72: 1922-1925.PubMed Roth EF, Calvin MC, Max-Audit I, Rosa J, Rosa R: The enzymes of the glycolytic pathway in erythrocytes infected with Plasmodium falciparum malaria parasites. Blood. 1988, 72: 1922-1925.PubMed
18.
go back to reference Pal-Bhowmick I, Sadagopan K, Vora HK, Sehgal A, Sharma S, Jarori GK: Cloning, over-expression, purification and characterization of Plasmodium falciparum enolase. Eur J Biochem. 2004, 271: 4845-4854.CrossRefPubMed Pal-Bhowmick I, Sadagopan K, Vora HK, Sehgal A, Sharma S, Jarori GK: Cloning, over-expression, purification and characterization of Plasmodium falciparum enolase. Eur J Biochem. 2004, 271: 4845-4854.CrossRefPubMed
19.
go back to reference Ramsby ML, Makowski GG: Differential Detergent Fractionation of Eukaryotic Cells: Analysis by Two-Dimensional Gel Electrophoresis. Methods in Molecular Biology : 2D Proteome Analysis Protocols. Edited by: Link AJ. 1999, Humana Press Inc, Totawa, NJ, USA, 112: 53-66.CrossRef Ramsby ML, Makowski GG: Differential Detergent Fractionation of Eukaryotic Cells: Analysis by Two-Dimensional Gel Electrophoresis. Methods in Molecular Biology : 2D Proteome Analysis Protocols. Edited by: Link AJ. 1999, Humana Press Inc, Totawa, NJ, USA, 112: 53-66.CrossRef
20.
go back to reference Andersson L, Porath J: Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal Biochem. 1986, 154: 250-254.CrossRefPubMed Andersson L, Porath J: Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal Biochem. 1986, 154: 250-254.CrossRefPubMed
21.
go back to reference LaCount DJ, Vignali M, Chettier R, Phansalkar A, Bell R, Hesselberth JR, Schoenfeld LW, Ota I, Sahasrabudhe S, Kurschner C, Fields S, Hughes RE: A protein interaction network of the malaria parasite Plasmodium falciparum. Nature. 2005, 438: 103-107.CrossRefPubMed LaCount DJ, Vignali M, Chettier R, Phansalkar A, Bell R, Hesselberth JR, Schoenfeld LW, Ota I, Sahasrabudhe S, Kurschner C, Fields S, Hughes RE: A protein interaction network of the malaria parasite Plasmodium falciparum. Nature. 2005, 438: 103-107.CrossRefPubMed
22.
go back to reference Cortay JC, Rieul C, Duclos B, Cozzone AJ: Characterization of the phosphoproteins of Escherichia coli cells by electrophoretic analysis. Eur J Biochem. 1986, 159: 227-237.CrossRefPubMed Cortay JC, Rieul C, Duclos B, Cozzone AJ: Characterization of the phosphoproteins of Escherichia coli cells by electrophoretic analysis. Eur J Biochem. 1986, 159: 227-237.CrossRefPubMed
23.
go back to reference Trojanek JB, Klimecka MM, Fraser A, Dobrowolska G, Muszynska G: Characterization of dual specificity protein kinase from maize seedlings. Acta Biochim Pol. 2004, 51 (3): 635-647.PubMed Trojanek JB, Klimecka MM, Fraser A, Dobrowolska G, Muszynska G: Characterization of dual specificity protein kinase from maize seedlings. Acta Biochim Pol. 2004, 51 (3): 635-647.PubMed
24.
go back to reference Hirayama T, Oka A: Novel protein kinase of Arabidopsis thaliana (APK1) that phosphorylates tyrosine, serine and threonine. Plant Mol Biol. 1992, 20 (4): 653-662.CrossRefPubMed Hirayama T, Oka A: Novel protein kinase of Arabidopsis thaliana (APK1) that phosphorylates tyrosine, serine and threonine. Plant Mol Biol. 1992, 20 (4): 653-662.CrossRefPubMed
25.
go back to reference Cooper JA, Esch FS, Taylor SS, Hunter T: Phosphorylation sites in enolase and lactate dehydrogenase utilized by tyrosine protein kinases in vivo and in vitro. J Biol Chem. 1984, 259: 7835-7841.PubMed Cooper JA, Esch FS, Taylor SS, Hunter T: Phosphorylation sites in enolase and lactate dehydrogenase utilized by tyrosine protein kinases in vivo and in vitro. J Biol Chem. 1984, 259: 7835-7841.PubMed
26.
go back to reference Cooper JA, Reiss NA, Schwartz RJ, Hunter T: Three glycolytic enzymes are phosphorylated at tyrosine in cells transformed by Rous sarcoma virus. Nature. 1983, 302: 218-223.CrossRefPubMed Cooper JA, Reiss NA, Schwartz RJ, Hunter T: Three glycolytic enzymes are phosphorylated at tyrosine in cells transformed by Rous sarcoma virus. Nature. 1983, 302: 218-223.CrossRefPubMed
27.
go back to reference Gorlich D, Kutay U: Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol. 1999, 15: 607-660.CrossRefPubMed Gorlich D, Kutay U: Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol. 1999, 15: 607-660.CrossRefPubMed
Metadata
Title
Sub-cellular localization and post-translational modifications of the Plasmodium yoelii enolase suggest moonlighting functions
Authors
Ipsita Pal-Bhowmick
Hardeep K Vora
Gotam K Jarori
Publication date
01-12-2007
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2007
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/1475-2875-6-45

Other articles of this Issue 1/2007

Malaria Journal 1/2007 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.