Skip to main content
Top
Published in: Malaria Journal 1/2005

Open Access 01-12-2005 | Opinion

Host microsatellite alleles in malaria predisposition?

Authors: Sonali Gaikwad, Richa Ashma, Nirbhay Kumar, Rajni Trivedi, VK Kashyap

Published in: Malaria Journal | Issue 1/2005

Login to get access

Abstract

Background

Malaria is a serious, sometimes fatal, disease caused by Plasmodium infection of human red blood cells. The host-parasite co-evolutionary processes are well understood by the association of coding variations such as G6PD, Duffy blood group receptor, HLA, and beta-globin gene variants with malaria resistance. The profound genetic diversity in host is attributed to polymorphic microsatellites loci. The microsatellite alleles in bacterial species are known to have aided their survival in fatal environmental conditions. The fascinating question is whether microsatellites are genomic cushion in the human genome to combat disease stress and has cause-effect relationships with infections.

Presentation of the hypothesis

It is hypothesized that repeat units or alleles of microsatellites TH01 and D5S818, located in close proximity to beta-globin gene and immune regulatory region in human play a role in malaria predisposition. Association of alleles at aforesaid microsatellites with malaria infection was analysed. To overrule the false association in unrecognized population stratification, structure analysis and AMOVA were performed among the sampled groups.

Testing of hypothesis

Associations of microsatellite alleles with malaria infection were verified using recombination rate, Chi-square, and powerful likelihood tests. Further investigation of population genetic structure, and AMOVA was done to rule out the confounding effects of population stratification in interpretation of association studies.

Implication of the hypothesis

Lower recombination rate (θ) between microsatellites and genes implicated in host fitness; positive association between alleles -13 (D5S818), 9 (TH01) and strong susceptibility to Plasmodium falciparum; and alleles-12 (D5S818) and 6 (TH01) rendering resistance to human host were evident. The interesting fact emerging from the study was that while predisposition to malaria was a prehistoric attribute, among TH01 alleles; evolution of resistant allele-6 was a recent phenomenon, which could conceivably be driven by infection related selective forces. The host's microsatellite allelic associations with malaria infection were valid in the light of low genetic variance between sampled groups and no population stratification.
Appendix
Available only for authorised users
Literature
1.
go back to reference Haldane JBS: The rate of mutation of human genes. Hereditas. 1949, 35 (suppl): 267-273. Haldane JBS: The rate of mutation of human genes. Hereditas. 1949, 35 (suppl): 267-273.
2.
go back to reference Hastings IM, Paget-McNicol S, Saul A: Can mutations and selection explain virulence in human P. falciparum infections?. Malar J. 2004, 3: 2-10.1186/1475-2875-3-2.PubMedCentralCrossRefPubMed Hastings IM, Paget-McNicol S, Saul A: Can mutations and selection explain virulence in human P. falciparum infections?. Malar J. 2004, 3: 2-10.1186/1475-2875-3-2.PubMedCentralCrossRefPubMed
3.
go back to reference Jobling MA, Hurles M, Tyler-Smith C: Health implications of our evolutionary heritage. Human Evolutionary Genetics Origins, peoples and Disease. 2004, New York: Garland Science, Taylor and Francis group, 439-471. Jobling MA, Hurles M, Tyler-Smith C: Health implications of our evolutionary heritage. Human Evolutionary Genetics Origins, peoples and Disease. 2004, New York: Garland Science, Taylor and Francis group, 439-471.
4.
go back to reference Mourant AE, Kopec AC, Domaniewska-Sobczak K: Blood groups and Diseases. 1978, Oxford: Oxford University Press Mourant AE, Kopec AC, Domaniewska-Sobczak K: Blood groups and Diseases. 1978, Oxford: Oxford University Press
5.
go back to reference Hill AV: The immunogenetics of resistance to malaria. Proc Assoc Am Physicians. 1999, 111: 272-277. 10.1046/j.1525-1381.1999.99234.x.CrossRefPubMed Hill AV: The immunogenetics of resistance to malaria. Proc Assoc Am Physicians. 1999, 111: 272-277. 10.1046/j.1525-1381.1999.99234.x.CrossRefPubMed
7.
go back to reference Sambrook J, Fritsch EF, Maniatis T: Molecular cloning: a laboratorymanual. 1989, Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 2 Sambrook J, Fritsch EF, Maniatis T: Molecular cloning: a laboratorymanual. 1989, Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 2
8.
go back to reference Snounou G, Viriyakosol S, Zhu XP, Jarra W, Pinheiro L, Rosario VE, Thaithong S, Brown KN: High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parasitol. 1993, 61: 315-320. 10.1016/0166-6851(93)90077-B.CrossRefPubMed Snounou G, Viriyakosol S, Zhu XP, Jarra W, Pinheiro L, Rosario VE, Thaithong S, Brown KN: High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parasitol. 1993, 61: 315-320. 10.1016/0166-6851(93)90077-B.CrossRefPubMed
9.
go back to reference Varawalla NY, Old JM, Sarkar R, Venkatesan R, Weatherall DJ: The spectrum of β thalassemia mutations on the Indian subcontinent: the basis for prenatal diagnosis. Br J Haematol. 1991, 78: 242-247.CrossRefPubMed Varawalla NY, Old JM, Sarkar R, Venkatesan R, Weatherall DJ: The spectrum of β thalassemia mutations on the Indian subcontinent: the basis for prenatal diagnosis. Br J Haematol. 1991, 78: 242-247.CrossRefPubMed
10.
go back to reference Kashyap VK, Ashma R: Microsatellite diversity in HbS carrier and normal individuals of tribal populations of malaria infested regions. Int Hum Genet. 2003, 3: 197-203. Kashyap VK, Ashma R: Microsatellite diversity in HbS carrier and normal individuals of tribal populations of malaria infested regions. Int Hum Genet. 2003, 3: 197-203.
11.
go back to reference Pritchard JK, Stephens M, Donnelly P: Inference of population structure using multilocus genotype data. Genetics. 2000, 155: 945-959.PubMedCentralPubMed Pritchard JK, Stephens M, Donnelly P: Inference of population structure using multilocus genotype data. Genetics. 2000, 155: 945-959.PubMedCentralPubMed
12.
go back to reference Schneider S, Roessli D, Excoffier L: Arlequin ver. 2.000 A software for population genetics data analysis. 2000, Genetics and Biometry Laboratory, University of Geneva, Switzerland Schneider S, Roessli D, Excoffier L: Arlequin ver. 2.000 A software for population genetics data analysis. 2000, Genetics and Biometry Laboratory, University of Geneva, Switzerland
13.
go back to reference Haldane JBS: The combination of linkage values and the calculation of distance between the loci of linked factors. J Genet. 1919, 8: 299-309.CrossRef Haldane JBS: The combination of linkage values and the calculation of distance between the loci of linked factors. J Genet. 1919, 8: 299-309.CrossRef
14.
go back to reference Rihet P, Traore Y, Abel L, Aucan C, Traore-Leroux T, Fumoux F: Malaria in humans: Plasmodium falciparum blood infection levels are linked to chromosome 5q31-q33. Am J Hum Genet. 1998, 63: 498-505. 10.1086/301967.PubMedCentralCrossRefPubMed Rihet P, Traore Y, Abel L, Aucan C, Traore-Leroux T, Fumoux F: Malaria in humans: Plasmodium falciparum blood infection levels are linked to chromosome 5q31-q33. Am J Hum Genet. 1998, 63: 498-505. 10.1086/301967.PubMedCentralCrossRefPubMed
15.
go back to reference Terwilliger JD: A powerful likelihood method for the analysis of linkage disequilibrium between trait loci and one or more polymorphic marker loci. Am J Hum Genet. 1995, 56: 777-787.PubMedCentralPubMed Terwilliger JD: A powerful likelihood method for the analysis of linkage disequilibrium between trait loci and one or more polymorphic marker loci. Am J Hum Genet. 1995, 56: 777-787.PubMedCentralPubMed
16.
17.
go back to reference Slatkin M, Rannala B: Estimating allele age. Annu Rev Genomics Hum Genet. 2000, 1: 225-249. 10.1146/annurev.genom.1.1.225.CrossRefPubMed Slatkin M, Rannala B: Estimating allele age. Annu Rev Genomics Hum Genet. 2000, 1: 225-249. 10.1146/annurev.genom.1.1.225.CrossRefPubMed
18.
go back to reference Payseur BA, Nachman MW: Microsatellite variation and recombination rate in the human genome. Genetics. 2000, 156: 1285-1298.PubMedCentralPubMed Payseur BA, Nachman MW: Microsatellite variation and recombination rate in the human genome. Genetics. 2000, 156: 1285-1298.PubMedCentralPubMed
19.
go back to reference Zapata C, Rodriguez S, Visedo G, Sacristan F: Spectrum of nonrandomassociation between microstellite loci on human chromosome 11p15. Genetics. 2001, 158: 1235-1251.PubMedCentralPubMed Zapata C, Rodriguez S, Visedo G, Sacristan F: Spectrum of nonrandomassociation between microstellite loci on human chromosome 11p15. Genetics. 2001, 158: 1235-1251.PubMedCentralPubMed
21.
go back to reference Deka R, Shriver MD, Yu LM, Heidreich EM, Jin L, Zhong Y, McGarvey ST, Agrawal SS, Bunker CH, Miki T, Hundrieser J, Yin SJ, Raskin S, Barrantes R, Ferrell RE, Chakraborty R: Genetic variation at twenty-three microsatellite loci in sixteen human population. J Genet. 1999, 78: 99-121.CrossRef Deka R, Shriver MD, Yu LM, Heidreich EM, Jin L, Zhong Y, McGarvey ST, Agrawal SS, Bunker CH, Miki T, Hundrieser J, Yin SJ, Raskin S, Barrantes R, Ferrell RE, Chakraborty R: Genetic variation at twenty-three microsatellite loci in sixteen human population. J Genet. 1999, 78: 99-121.CrossRef
Metadata
Title
Host microsatellite alleles in malaria predisposition?
Authors
Sonali Gaikwad
Richa Ashma
Nirbhay Kumar
Rajni Trivedi
VK Kashyap
Publication date
01-12-2005
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2005
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/1475-2875-4-50

Other articles of this Issue 1/2005

Malaria Journal 1/2005 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.