Skip to main content
Top
Published in: Malaria Journal 1/2012

Open Access 01-12-2012 | Methodology

High-throughput sorting of mosquito larvae for laboratory studies and for future vector control interventions

Authors: Eric Marois, Christina Scali, Julien Soichot, Christine Kappler, Elena A Levashina, Flaminia Catteruccia

Published in: Malaria Journal | Issue 1/2012

Login to get access

Abstract

Background

Mosquito transgenesis offers new promises for the genetic control of vector-borne infectious diseases such as malaria and dengue fever. Genetic control strategies require the release of large number of male mosquitoes into field populations, whether they are based on the use of sterile males (sterile insect technique, SIT) or on introducing genetic traits conferring refractoriness to disease transmission (population replacement). However, the current absence of high-throughput techniques for sorting different mosquito populations impairs the application of these control measures.

Methods

A method was developed to generate large mosquito populations of the desired sex and genotype. This method combines flow cytometry and the use of Anopheles gambiae transgenic lines that differentially express fluorescent markers in males and females.

Results

Fluorescence-assisted sorting allowed single-step isolation of homozygous transgenic mosquitoes from a mixed population. This method was also used to select wild-type males only with high efficiency and accuracy, a highly desirable tool for genetic control strategies where the release of transgenic individuals may be problematic. Importantly, sorted males showed normal mating ability compared to their unsorted brothers.

Conclusions

The developed method will greatly facilitate both laboratory studies of mosquito vectorial capacity requiring high-throughput approaches and future field interventions in the fight against infectious disease vectors.
Appendix
Available only for authorised users
Literature
2.
go back to reference Hendrichs J, Robinson A: Sterile Insect Technique. Encyclopedia of Insects. Edited by: Resh VH, Carde RT. 2009, New York and San Diego: Elsevier Science, London, Oxford, Boston, 953-957.CrossRef Hendrichs J, Robinson A: Sterile Insect Technique. Encyclopedia of Insects. Edited by: Resh VH, Carde RT. 2009, New York and San Diego: Elsevier Science, London, Oxford, Boston, 953-957.CrossRef
3.
go back to reference Benedict M, Robinson AS, Knol BGJ: Development of the sterile insect technique for African malaria vectors. Malar J. 2009, Suppl 2: 8- Benedict M, Robinson AS, Knol BGJ: Development of the sterile insect technique for African malaria vectors. Malar J. 2009, Suppl 2: 8-
4.
go back to reference Alphey L, Benedict M, Bellini R, Clark GG, Dame DA, Service MW, Dobson SL: Sterile-insect methods for control of mosquito-borne diseases: an analysis. Vector Borne Zoonotic Dis. 2010, 10: 295-311. 10.1089/vbz.2009.0014.PubMedCentralCrossRefPubMed Alphey L, Benedict M, Bellini R, Clark GG, Dame DA, Service MW, Dobson SL: Sterile-insect methods for control of mosquito-borne diseases: an analysis. Vector Borne Zoonotic Dis. 2010, 10: 295-311. 10.1089/vbz.2009.0014.PubMedCentralCrossRefPubMed
5.
go back to reference Nolan T, Papathanos P, Windbichler N, Magnusson K, Benton J, Catteruccia F, Crisanti A: Developing transgenic Anopheles mosquitoes for the sterile insect technique. Genetica. 2011, 139: 33-39. 10.1007/s10709-010-9482-8.CrossRefPubMed Nolan T, Papathanos P, Windbichler N, Magnusson K, Benton J, Catteruccia F, Crisanti A: Developing transgenic Anopheles mosquitoes for the sterile insect technique. Genetica. 2011, 139: 33-39. 10.1007/s10709-010-9482-8.CrossRefPubMed
6.
go back to reference Tripet F, Toure YT, Dolo G, Lanzaro GC: Frequency of multiple inseminations in field-collected Anopheles gambiae females revealed by DNA analysis of transferred sperm. Am J Trop Med Hyg. 2003, 68: 1-5.PubMed Tripet F, Toure YT, Dolo G, Lanzaro GC: Frequency of multiple inseminations in field-collected Anopheles gambiae females revealed by DNA analysis of transferred sperm. Am J Trop Med Hyg. 2003, 68: 1-5.PubMed
7.
go back to reference Holt RA: The genome sequence of the malaria mosquito Anopheles gambiae. Science. 2002, 298: 129-149. 10.1126/science.1076181.CrossRefPubMed Holt RA: The genome sequence of the malaria mosquito Anopheles gambiae. Science. 2002, 298: 129-149. 10.1126/science.1076181.CrossRefPubMed
8.
go back to reference Catteruccia F, Nolan T, Loukeris TG, Blass C, Savakis C, Kafatos FC, Crisanti A: Stable germline transformation of the malaria mosquito Anopheles stephensi. Nature. 2000, 405: 959-962. 10.1038/35016096.CrossRefPubMed Catteruccia F, Nolan T, Loukeris TG, Blass C, Savakis C, Kafatos FC, Crisanti A: Stable germline transformation of the malaria mosquito Anopheles stephensi. Nature. 2000, 405: 959-962. 10.1038/35016096.CrossRefPubMed
9.
go back to reference Blandin S, Moita LF, Köcher T, Wilm M, Kafatos FC, Levashina EA: Reverse genetics in the mosquito Anopheles gambiae: targeted disruption of the Defensin gene. EMBO Rep. 2002, 3: 852-856. 10.1093/embo-reports/kvf180.PubMedCentralCrossRefPubMed Blandin S, Moita LF, Köcher T, Wilm M, Kafatos FC, Levashina EA: Reverse genetics in the mosquito Anopheles gambiae: targeted disruption of the Defensin gene. EMBO Rep. 2002, 3: 852-856. 10.1093/embo-reports/kvf180.PubMedCentralCrossRefPubMed
10.
go back to reference Fu G, Lees RS, Nimmo D, Aw D, Jin L, Gray P, Berendonk TU, White-Cooper H, Scaife S: Kim Phuc H, Marinotti O, Jasinskiene N, James AA, Alphey L: Female-specific flightless phenotype for mosquito control. Proc Natl Acad Sci U S A. 2010, 107: 4550-4554. 10.1073/pnas.1000251107.PubMedCentralCrossRefPubMed Fu G, Lees RS, Nimmo D, Aw D, Jin L, Gray P, Berendonk TU, White-Cooper H, Scaife S: Kim Phuc H, Marinotti O, Jasinskiene N, James AA, Alphey L: Female-specific flightless phenotype for mosquito control. Proc Natl Acad Sci U S A. 2010, 107: 4550-4554. 10.1073/pnas.1000251107.PubMedCentralCrossRefPubMed
11.
go back to reference Black WC, Alphey L, James AA: Why RIDL is not SIT. Trends Parasitol. 2011, 27: 362-370. 10.1016/j.pt.2011.04.004.CrossRefPubMed Black WC, Alphey L, James AA: Why RIDL is not SIT. Trends Parasitol. 2011, 27: 362-370. 10.1016/j.pt.2011.04.004.CrossRefPubMed
12.
go back to reference Yoshida S, Shimada Y, Kondoh D, Kouzuma Y, Ghosh AK, Jacobs-Lorena M, Sinden RE: Hemolytic C-type lectin CEL-III from sea cucumber expressed in transgenic mosquitoes impairs malaria parasite development. PLoS Pathog. 2007, 3: e192-10.1371/journal.ppat.0030192.PubMedCentralCrossRefPubMed Yoshida S, Shimada Y, Kondoh D, Kouzuma Y, Ghosh AK, Jacobs-Lorena M, Sinden RE: Hemolytic C-type lectin CEL-III from sea cucumber expressed in transgenic mosquitoes impairs malaria parasite development. PLoS Pathog. 2007, 3: e192-10.1371/journal.ppat.0030192.PubMedCentralCrossRefPubMed
13.
go back to reference Meredith JM, Basu S, Nimmo DD, Larget-Thiery I, Warr EL, Underhill A, McArthur CC, Carter V, Hurd H, Bourgouin C, Eggleston P: Site-specific integration and expression of an anti-malarial gene in transgenic Anopheles gambiae significantly reduces Plasmodium infections. PLoS One. 2011, 6: e14587-10.1371/journal.pone.0014587.PubMedCentralCrossRefPubMed Meredith JM, Basu S, Nimmo DD, Larget-Thiery I, Warr EL, Underhill A, McArthur CC, Carter V, Hurd H, Bourgouin C, Eggleston P: Site-specific integration and expression of an anti-malarial gene in transgenic Anopheles gambiae significantly reduces Plasmodium infections. PLoS One. 2011, 6: e14587-10.1371/journal.pone.0014587.PubMedCentralCrossRefPubMed
14.
go back to reference Dong Y, Das S, Cirimotich C, Souza-Neto JA, McLean KJ, Dimopoulos G: Engineered anopheles immunity to Plasmodium infection. PLoS Pathog. 2011, 7: e1002458-10.1371/journal.ppat.1002458.PubMedCentralCrossRefPubMed Dong Y, Das S, Cirimotich C, Souza-Neto JA, McLean KJ, Dimopoulos G: Engineered anopheles immunity to Plasmodium infection. PLoS Pathog. 2011, 7: e1002458-10.1371/journal.ppat.1002458.PubMedCentralCrossRefPubMed
15.
go back to reference Marshall JM, Hay BA: Inverse Medea as a novel gene drive system for local population replacement: a theoretical analysis. J Hered. 2011, 102: 336-341. 10.1093/jhered/esr019.PubMedCentralCrossRefPubMed Marshall JM, Hay BA: Inverse Medea as a novel gene drive system for local population replacement: a theoretical analysis. J Hered. 2011, 102: 336-341. 10.1093/jhered/esr019.PubMedCentralCrossRefPubMed
16.
go back to reference Marshall JM, Pittman GW, Buchman AB, Hay BA: Semele: a killer-male, rescue-female system for suppression and replacement of insect disease vector populations. Genetics. 2011, 187: 535-551. 10.1534/genetics.110.124479.PubMedCentralCrossRefPubMed Marshall JM, Pittman GW, Buchman AB, Hay BA: Semele: a killer-male, rescue-female system for suppression and replacement of insect disease vector populations. Genetics. 2011, 187: 535-551. 10.1534/genetics.110.124479.PubMedCentralCrossRefPubMed
17.
go back to reference Catteruccia F, Benton JP, Crisanti A: An Anopheles transgenic sexing strain for vector control. Nat Biotechnol. 2005, 23: 1414-1417. 10.1038/nbt1152.CrossRefPubMed Catteruccia F, Benton JP, Crisanti A: An Anopheles transgenic sexing strain for vector control. Nat Biotechnol. 2005, 23: 1414-1417. 10.1038/nbt1152.CrossRefPubMed
18.
go back to reference Magnusson K, Mendes AM, Windbichler N, Papathanos PA, Nolan T, Dottorini T, Rizzi E, Christophides GK, Crisanti A: Transcription regulation of sex-biased genes during ontogeny in the malaria vector Anopheles gambiae. PLoS One. 2011, 6: e21572-10.1371/journal.pone.0021572.PubMedCentralCrossRefPubMed Magnusson K, Mendes AM, Windbichler N, Papathanos PA, Nolan T, Dottorini T, Rizzi E, Christophides GK, Crisanti A: Transcription regulation of sex-biased genes during ontogeny in the malaria vector Anopheles gambiae. PLoS One. 2011, 6: e21572-10.1371/journal.pone.0021572.PubMedCentralCrossRefPubMed
19.
go back to reference Sheng G, Thouvenot E, Schmucker D, Wilson DS, Desplan C: Direct regulation of rhodopsin 1 by Pax-6/eyeless in Drosophila: evidence for a conserved function in photoreceptors. Genes Dev. 1997, 11: 1122-1131. 10.1101/gad.11.9.1122.CrossRefPubMed Sheng G, Thouvenot E, Schmucker D, Wilson DS, Desplan C: Direct regulation of rhodopsin 1 by Pax-6/eyeless in Drosophila: evidence for a conserved function in photoreceptors. Genes Dev. 1997, 11: 1122-1131. 10.1101/gad.11.9.1122.CrossRefPubMed
20.
go back to reference Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A: A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol. 2002, 20: 87-90. 10.1038/nbt0102-87.CrossRefPubMed Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A: A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol. 2002, 20: 87-90. 10.1038/nbt0102-87.CrossRefPubMed
21.
go back to reference Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY: Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol. 2004, 22: 1567-1572. 10.1038/nbt1037.CrossRefPubMed Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY: Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol. 2004, 22: 1567-1572. 10.1038/nbt1037.CrossRefPubMed
22.
go back to reference Rogers DW, Whitten MM, Thailayil J, Soichot J, Levashina EA, Catteruccia F: Molecular and cellular components of the mating machinery in Anopheles gambiae females. Proc Natl Acad Sci U S A. 2008, 105: 19390-19395. 10.1073/pnas.0809723105.PubMedCentralCrossRefPubMed Rogers DW, Whitten MM, Thailayil J, Soichot J, Levashina EA, Catteruccia F: Molecular and cellular components of the mating machinery in Anopheles gambiae females. Proc Natl Acad Sci U S A. 2008, 105: 19390-19395. 10.1073/pnas.0809723105.PubMedCentralCrossRefPubMed
23.
go back to reference Thailayil J, Magnusson K, Godfray HC, Crisanti A, Catteruccia F: Spermless males elicit large-scale female responses to mating in the malaria mosquito Anopheles gambiae. Proc Natl Acad Sci U S A. 2011, 108: 13677-13681. 10.1073/pnas.1104738108.PubMedCentralCrossRefPubMed Thailayil J, Magnusson K, Godfray HC, Crisanti A, Catteruccia F: Spermless males elicit large-scale female responses to mating in the malaria mosquito Anopheles gambiae. Proc Natl Acad Sci U S A. 2011, 108: 13677-13681. 10.1073/pnas.1104738108.PubMedCentralCrossRefPubMed
24.
go back to reference Benedict MQ, Robinson AS: The first releases of transgenic mosquitoes: an argument for the sterile insect technique. Trends Parasitol. 2003, 19: 349-355. 10.1016/S1471-4922(03)00144-2.CrossRefPubMed Benedict MQ, Robinson AS: The first releases of transgenic mosquitoes: an argument for the sterile insect technique. Trends Parasitol. 2003, 19: 349-355. 10.1016/S1471-4922(03)00144-2.CrossRefPubMed
Metadata
Title
High-throughput sorting of mosquito larvae for laboratory studies and for future vector control interventions
Authors
Eric Marois
Christina Scali
Julien Soichot
Christine Kappler
Elena A Levashina
Flaminia Catteruccia
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2012
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/1475-2875-11-302

Other articles of this Issue 1/2012

Malaria Journal 1/2012 Go to the issue