Skip to main content
Top
Published in: Cancer Cell International 1/2012

Open Access 01-12-2012 | Primary research

Lycorine induces cell-cycle arrest in the G0/G1 phase in K562 cells via HDAC inhibition

Authors: Lv Li, Hong-Juan Dai, Mao Ye, Shu-Ling Wang, Xiao-Juan Xiao, Jie Zheng, Hui-Yong Chen, Yu-hao Luo, Jing Liu

Published in: Cancer Cell International | Issue 1/2012

Login to get access

Abstract

Background

Lycorine, a natural alkaloid extracted from Amaryllidaceae, has shown various pharmacological effects. Recent studies have focused on the potential antitumor activity of lycorine. In our previous study, we found that lycorine decrease the cell viability of leukemia HL-60 cells and multiple myeloma KM3 cells and induces cell apoptosis. However, the effect and molecular mechanism of lycorine on human chronic myelocytic leukemia cells has yet to be determined.

Methods

Human chronic myelocytic leukemia cells K562 were treated with lycorine. Cell viability was monitored using the method of CCK-8. The histone deacetylase (HDAC) enzymatic activity was detected by HDAC colorimetric assay, and the cell cycle was analyzed by flow cytometry. The expression of cell-cycle related proteins were identified using Western blot.

Results

In the present study, we further revealed that lycorine can inhibit the proliferation of K562 cells. Analysis of HDAC activity showed that lycroine decreases HDAC enzymatic activities in K562 cells in a dose-dependent manner. Inhibition of HDAC activity has been associated with cell-cycle arrest and growth inhibition. We evaluated the cell cycle distribution after lycorine treatment and found that lycorine causes cell-cycle arrest in the G0/G1 phase. To investigate the mechanism behind this cell cycle arrest, G1-related proteins were assayed by Western blot. After lycorine treatment, cyclin D1 and cyclin-dependent kinase 4 expressions were inhibited and retinoblastoma protein phosphorylation was reduced. Lycorine treatment also significantly upregulated the expression of p53 and its target gene product, p21.

Conclusions

These results suggest that inhibition of HDAC activity is responsible for at least part of the induction of cell-cycle arrest in the G0/G1 phase by lycorine and provide a mechanistic framework for further exploring the use of lycorine as a novel antitumor agent.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, Sawyers CL: Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science. 2001, 293 (5531): 876-880. 10.1126/science.1062538.CrossRefPubMed Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, Sawyers CL: Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science. 2001, 293 (5531): 876-880. 10.1126/science.1062538.CrossRefPubMed
2.
go back to reference Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL, Kuriyan J, Sawyers CL: Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor Imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell. 2002, 2 (2): 117-125. 10.1016/S1535-6108(02)00096-X.CrossRefPubMed Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL, Kuriyan J, Sawyers CL: Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor Imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell. 2002, 2 (2): 117-125. 10.1016/S1535-6108(02)00096-X.CrossRefPubMed
3.
go back to reference Marks PA, Richon VM, Rifkind RA: Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst. 2000, 92 (15): 1210-1216. 10.1093/jnci/92.15.1210.CrossRefPubMed Marks PA, Richon VM, Rifkind RA: Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst. 2000, 92 (15): 1210-1216. 10.1093/jnci/92.15.1210.CrossRefPubMed
4.
go back to reference Chopin V, Toillon RA, Jouy N, Le Bourhis X: P21(WAF1/CIP1) Is dispensable for G1 arrest, but indispensable for apoptosis induced by sodium butyrate in MCF-7 breast cancer cells. Oncogene. 2004, 23 (1): 21-29. 10.1038/sj.onc.1207020.CrossRefPubMed Chopin V, Toillon RA, Jouy N, Le Bourhis X: P21(WAF1/CIP1) Is dispensable for G1 arrest, but indispensable for apoptosis induced by sodium butyrate in MCF-7 breast cancer cells. Oncogene. 2004, 23 (1): 21-29. 10.1038/sj.onc.1207020.CrossRefPubMed
5.
go back to reference Hagelkruys A, Sawicka A, Rennmayr M, Seiser C: The biology of HDAC in cancer: the nuclear and epigenetic components. Handb Exp Pharmacol. 2011, 206: 13-37. 10.1007/978-3-642-21631-2_2.CrossRefPubMed Hagelkruys A, Sawicka A, Rennmayr M, Seiser C: The biology of HDAC in cancer: the nuclear and epigenetic components. Handb Exp Pharmacol. 2011, 206: 13-37. 10.1007/978-3-642-21631-2_2.CrossRefPubMed
6.
go back to reference Berkov S, Codina C, Viladomat F, Bastida J: Alkaloids from galanthus nivalis. Phytochemistry. 2007, 68 (13): 1791-1798. 10.1016/j.phytochem.2007.03.025.CrossRefPubMed Berkov S, Codina C, Viladomat F, Bastida J: Alkaloids from galanthus nivalis. Phytochemistry. 2007, 68 (13): 1791-1798. 10.1016/j.phytochem.2007.03.025.CrossRefPubMed
7.
go back to reference Li SY, Chen C, Zhang HQ, Guo HY, Wang H, Wang L, Zhang X, Hua SN, Yu J, Xiao PG: Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res. 2005, 67 (1): 18-23. 10.1016/j.antiviral.2005.02.007.CrossRefPubMed Li SY, Chen C, Zhang HQ, Guo HY, Wang H, Wang L, Zhang X, Hua SN, Yu J, Xiao PG: Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res. 2005, 67 (1): 18-23. 10.1016/j.antiviral.2005.02.007.CrossRefPubMed
8.
go back to reference Lamoral-Theys D, Andolfi A, Van Goietsenoven G, Cimmino A, Le Calve B, Wauthoz N, Megalizzi V, Gras T, Bruyere C, Dubois J: Lycorine, the main phenanthridine amaryllidaceae alkaloid, exhibits significant antitumor activity in cancer cells that display resistance to proapoptotic stimuli: an investigation of structure-activity relationship and mechanistic insight. J Med Chem. 2009, 52 (20): 6244-6256. 10.1021/jm901031h.PubMedCentralCrossRefPubMed Lamoral-Theys D, Andolfi A, Van Goietsenoven G, Cimmino A, Le Calve B, Wauthoz N, Megalizzi V, Gras T, Bruyere C, Dubois J: Lycorine, the main phenanthridine amaryllidaceae alkaloid, exhibits significant antitumor activity in cancer cells that display resistance to proapoptotic stimuli: an investigation of structure-activity relationship and mechanistic insight. J Med Chem. 2009, 52 (20): 6244-6256. 10.1021/jm901031h.PubMedCentralCrossRefPubMed
9.
go back to reference Liu J, Hu WX, He LF, Ye M, Li Y: Effects of lycorine on HL-60 cells via arresting cell cycle and inducing apoptosis. FEBS Lett. 2004, 578 (3): 245-250. 10.1016/j.febslet.2004.10.095.CrossRefPubMed Liu J, Hu WX, He LF, Ye M, Li Y: Effects of lycorine on HL-60 cells via arresting cell cycle and inducing apoptosis. FEBS Lett. 2004, 578 (3): 245-250. 10.1016/j.febslet.2004.10.095.CrossRefPubMed
10.
go back to reference Li Y, Liu J, Tang LJ, Shi YW, Ren W, Hu WX: Apoptosis induced by lycorine in KM3 cells is associated with the G0/G1 cell cycle arrest. Oncol Rep. 2007, 17 (2): 377-384.PubMed Li Y, Liu J, Tang LJ, Shi YW, Ren W, Hu WX: Apoptosis induced by lycorine in KM3 cells is associated with the G0/G1 cell cycle arrest. Oncol Rep. 2007, 17 (2): 377-384.PubMed
11.
go back to reference Liu XS, Jiang J, Jiao XY, Wu YE, Lin JH, Cai YM: Lycorine induces apoptosis and down-regulation of Mcl-1 in human leukemia cells. Cancer Lett. 2009, 274 (1): 16-24. 10.1016/j.canlet.2008.08.029.CrossRefPubMed Liu XS, Jiang J, Jiao XY, Wu YE, Lin JH, Cai YM: Lycorine induces apoptosis and down-regulation of Mcl-1 in human leukemia cells. Cancer Lett. 2009, 274 (1): 16-24. 10.1016/j.canlet.2008.08.029.CrossRefPubMed
13.
go back to reference Timmermann S, Lehrmann H, Polesskaya A, Harel-Bellan A: Histone acetylation and disease. Cell Mol Life Sci. 2001, 58 (5–6): 728-736.CrossRefPubMed Timmermann S, Lehrmann H, Polesskaya A, Harel-Bellan A: Histone acetylation and disease. Cell Mol Life Sci. 2001, 58 (5–6): 728-736.CrossRefPubMed
14.
go back to reference Pandolfi PP: Transcription therapy for cancer. Oncogene. 2001, 20 (24): 3116-3127. 10.1038/sj.onc.1204299.CrossRefPubMed Pandolfi PP: Transcription therapy for cancer. Oncogene. 2001, 20 (24): 3116-3127. 10.1038/sj.onc.1204299.CrossRefPubMed
15.
go back to reference Bi G, Jiang G: The molecular mechanism of HDAC inhibitors in anticancer effects. Cell Mol Immunol. 2006, 3 (4): 285-290.PubMed Bi G, Jiang G: The molecular mechanism of HDAC inhibitors in anticancer effects. Cell Mol Immunol. 2006, 3 (4): 285-290.PubMed
16.
go back to reference Marks PA, Dokmanovic M: Histone deacetylase inhibitors: discovery and development as anticancer agents. Expert Opin Investig Drugs. 2005, 14 (12): 1497-1511. 10.1517/13543784.14.12.1497.CrossRefPubMed Marks PA, Dokmanovic M: Histone deacetylase inhibitors: discovery and development as anticancer agents. Expert Opin Investig Drugs. 2005, 14 (12): 1497-1511. 10.1517/13543784.14.12.1497.CrossRefPubMed
17.
go back to reference Kim YB, Ki SW, Yoshida M, Horinouchi S: Mechanism of cell cycle arrest caused by histone deacetylase inhibitors in human carcinoma cells. J Antibiot (Tokyo). 2000, 53 (10): 1191-1200. 10.7164/antibiotics.53.1191.CrossRef Kim YB, Ki SW, Yoshida M, Horinouchi S: Mechanism of cell cycle arrest caused by histone deacetylase inhibitors in human carcinoma cells. J Antibiot (Tokyo). 2000, 53 (10): 1191-1200. 10.7164/antibiotics.53.1191.CrossRef
Metadata
Title
Lycorine induces cell-cycle arrest in the G0/G1 phase in K562 cells via HDAC inhibition
Authors
Lv Li
Hong-Juan Dai
Mao Ye
Shu-Ling Wang
Xiao-Juan Xiao
Jie Zheng
Hui-Yong Chen
Yu-hao Luo
Jing Liu
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2012
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/1475-2867-12-49

Other articles of this Issue 1/2012

Cancer Cell International 1/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine