Skip to main content
Top
Published in: Cancer Cell International 1/2012

Open Access 01-12-2012 | Primary research

Unique functions of CHK1 and WEE1 underlie synergistic anti-tumor activity upon pharmacologic inhibition

Authors: Amy D Guertin, Melissa M Martin, Brian Roberts, Melissa Hurd, Xianlu Qu, Nathan R Miselis, Yaping Liu, Jing Li, Igor Feldman, Yair Benita, Andrew Bloecher, Carlo Toniatti, Stuart D Shumway

Published in: Cancer Cell International | Issue 1/2012

Login to get access

Abstract

Background

Inhibition of kinases involved in the DNA damage response sensitizes cells to genotoxic agents by abrogating checkpoint-induced cell cycle arrest. CHK1 and WEE1 act in a pathway upstream of CDK1 to inhibit cell cycle progression in response to damaged DNA. Therapeutic targeting of either CHK1 or WEE1, in combination with chemotherapy, is under clinical evaluation. These studies examine the overlap and potential for synergy when CHK1 and WEE1 are inhibited in cancer cell models.

Methods

Small molecules MK-8776 and MK-1775 were used to selectively and potently inhibit CHK1 and WEE1, respectively.

Results

In vitro, the combination of MK-8776 and MK-1775 induces up to 50-fold more DNA damage than either MK-8776 or MK-1775 alone at a fixed concentration. This requires aberrant cyclin-dependent kinase activity but does not appear to be dependent on p53 status alone. Furthermore, DNA damage takes place primarily in S-phase cells, implying disrupted DNA replication. When dosed together, the combination of MK-8776 and MK-1775 induced more intense and more durable DNA damage as well as anti-tumor efficacy than either MK-8776 or MK-1775 dosed alone. DNA damage induced by the combination was detected in up to 40% of cells in a treated xenograft tumor model.

Conclusions

These results highlight the roles of WEE1 and CHK1 in maintaining genomic integrity. Importantly, the strong synergy observed upon inhibition of both kinases suggests unique yet complimentary anti-tumor effects of WEE1 and CHK1 inhibition. This demonstration of DNA double strand breaks in the absence of a DNA damaging chemotherapeutic provides preclinical rationale for combining WEE1 and CHK1 inhibitors as a cancer treatment regimen.
Appendix
Available only for authorised users
Literature
1.
go back to reference Carrassa L, Damia G: Unleashing Chk1 in cancer therapy. Cell Cycle. 2011, 10: 2121-2128. 10.4161/cc.10.13.16398.CrossRefPubMed Carrassa L, Damia G: Unleashing Chk1 in cancer therapy. Cell Cycle. 2011, 10: 2121-2128. 10.4161/cc.10.13.16398.CrossRefPubMed
2.
go back to reference Ma CX, Janetka JW, Piwnica-Worms H: Death by releasing the breaks: CHK1 inhibitors as cancer therapeutics. Trends Mol Med. 2011, 17: 88-96. 10.1016/j.molmed.2010.10.009.CrossRefPubMed Ma CX, Janetka JW, Piwnica-Worms H: Death by releasing the breaks: CHK1 inhibitors as cancer therapeutics. Trends Mol Med. 2011, 17: 88-96. 10.1016/j.molmed.2010.10.009.CrossRefPubMed
3.
go back to reference Daud A, Pringett GM, Mendelson DS, Munster PN, Goldman JW, Strosberg JR: A phase I dose-escalation study of SCH 900776, a selective inhibitor of checkpoint kinase 1 (CHK1), in combination with gemcitabine (Gem) in subjects with advanced solid tumors (2010 ASCO Annual Meeting). J Clin Oncol. 2010, 28: 15s, 010-(suppl; abstr 3064) Daud A, Pringett GM, Mendelson DS, Munster PN, Goldman JW, Strosberg JR: A phase I dose-escalation study of SCH 900776, a selective inhibitor of checkpoint kinase 1 (CHK1), in combination with gemcitabine (Gem) in subjects with advanced solid tumors (2010 ASCO Annual Meeting). J Clin Oncol. 2010, 28: 15s, 010-(suppl; abstr 3064)
4.
go back to reference Schellens JHM, Shapiro G, Pavlick AC, Tibes R, Leijen S, Tolaney SM: Update on a phase I pharmacologic and pharmacodynamic study of MK-1775, a Wee1 tyrosine kinase inhibitor, in monotherapy and combination with gemcitabine, cisplatin, or carboplatin in patients with advanced solid tumors (2011 ASCO Annual Meeting). J Clin Oncol. 2011, 29: 2011 (suppl; abstr 3068) Schellens JHM, Shapiro G, Pavlick AC, Tibes R, Leijen S, Tolaney SM: Update on a phase I pharmacologic and pharmacodynamic study of MK-1775, a Wee1 tyrosine kinase inhibitor, in monotherapy and combination with gemcitabine, cisplatin, or carboplatin in patients with advanced solid tumors (2011 ASCO Annual Meeting). J Clin Oncol. 2011, 29: 2011 (suppl; abstr 3068)
5.
go back to reference Zhao H, Watkins JL, Piwnica-Worms H: Disruption of the checkpoint kinase 1/cell division cycle 25A pathway abrogates ionizing radiation-induced S and G(2) checkpoints. Proc Natl Acad Sci USA. 2002, 99: 14795-14800. 10.1073/pnas.182557299.PubMedCentralCrossRefPubMed Zhao H, Watkins JL, Piwnica-Worms H: Disruption of the checkpoint kinase 1/cell division cycle 25A pathway abrogates ionizing radiation-induced S and G(2) checkpoints. Proc Natl Acad Sci USA. 2002, 99: 14795-14800. 10.1073/pnas.182557299.PubMedCentralCrossRefPubMed
6.
go back to reference Sorensen CS, Syluasen RG, Falck J, Schroeder T, Ronnstrand L, Khanna KK: Chk1 regulates the S phase checkpoint by coupling the physiological turnover and ionizing radiation-induced accelerated proteolysis of Cdc25A. Cancer Cell. 2003, 3: 247-258. 10.1016/S1535-6108(03)00048-5.CrossRefPubMed Sorensen CS, Syluasen RG, Falck J, Schroeder T, Ronnstrand L, Khanna KK: Chk1 regulates the S phase checkpoint by coupling the physiological turnover and ionizing radiation-induced accelerated proteolysis of Cdc25A. Cancer Cell. 2003, 3: 247-258. 10.1016/S1535-6108(03)00048-5.CrossRefPubMed
7.
go back to reference Sanchez Y, Wong C, Thoma RS, Richman R, Wu RQ, Piwnicaworms H: Conservation of the Chk1 checkpoint pathway in mammals: Linkage of DNA damage to Cdk regulation through Cdc25. Science. 1997, 277: 1497-1501. 10.1126/science.277.5331.1497.CrossRefPubMed Sanchez Y, Wong C, Thoma RS, Richman R, Wu RQ, Piwnicaworms H: Conservation of the Chk1 checkpoint pathway in mammals: Linkage of DNA damage to Cdk regulation through Cdc25. Science. 1997, 277: 1497-1501. 10.1126/science.277.5331.1497.CrossRefPubMed
8.
go back to reference OConnell MJ, Raleigh JM, Verkade HM, Nurse P: Chk1 is a wee1 kinase in the G(2) DNA damage checkpoint inhibiting cdc2 by Y15 phosphorylation. EMBO J. 1997, 16: 545-554. 10.1093/emboj/16.3.545.CrossRef OConnell MJ, Raleigh JM, Verkade HM, Nurse P: Chk1 is a wee1 kinase in the G(2) DNA damage checkpoint inhibiting cdc2 by Y15 phosphorylation. EMBO J. 1997, 16: 545-554. 10.1093/emboj/16.3.545.CrossRef
9.
go back to reference Liu QH, Guntuku S, Cui XS, Matsuoka S, Cortez D, Tamai K: Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev. 2000, 14: 1448-1459.PubMedCentralCrossRefPubMed Liu QH, Guntuku S, Cui XS, Matsuoka S, Cortez D, Tamai K: Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev. 2000, 14: 1448-1459.PubMedCentralCrossRefPubMed
10.
go back to reference Petermann E, Maya-Mendoza A, Zachos G, Gillespie DAF, Jackson DA, Caldecott KW: Chk1 requirement for high global rates of replication fork progression during normal vertebrate S phase. Mol Cell Biol. 2006, 26: 3319-3326. 10.1128/MCB.26.8.3319-3326.2006.PubMedCentralCrossRefPubMed Petermann E, Maya-Mendoza A, Zachos G, Gillespie DAF, Jackson DA, Caldecott KW: Chk1 requirement for high global rates of replication fork progression during normal vertebrate S phase. Mol Cell Biol. 2006, 26: 3319-3326. 10.1128/MCB.26.8.3319-3326.2006.PubMedCentralCrossRefPubMed
11.
go back to reference Feijoo C, Hall-Jackson C, Wu R, Jenkins D, Leitch J, Gilbert DM: Activation of mammalian Chk1 during DNA replication arrest: a role for Chk1 in the intra-S phase checkpoint monitoring replication origin firing. J Cell Biol. 2001, 154: 913-923. 10.1083/jcb.200104099.PubMedCentralCrossRefPubMed Feijoo C, Hall-Jackson C, Wu R, Jenkins D, Leitch J, Gilbert DM: Activation of mammalian Chk1 during DNA replication arrest: a role for Chk1 in the intra-S phase checkpoint monitoring replication origin firing. J Cell Biol. 2001, 154: 913-923. 10.1083/jcb.200104099.PubMedCentralCrossRefPubMed
12.
go back to reference Petermann E, Woodcock M, Helleday T: Chk1 promotes replication fork progression by controlling replication initiation. Proc Natl Acad Sci USA. 2010, 107: 16090-16095. 10.1073/pnas.1005031107.PubMedCentralCrossRefPubMed Petermann E, Woodcock M, Helleday T: Chk1 promotes replication fork progression by controlling replication initiation. Proc Natl Acad Sci USA. 2010, 107: 16090-16095. 10.1073/pnas.1005031107.PubMedCentralCrossRefPubMed
13.
go back to reference Sorensen CS, Hansen LT, Dziegielewski J, Syljuasen RG, Lundin C, Bartek J: The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair. Nat Cell Biol. 2005, 7: 195-U121. 10.1038/ncb1212.CrossRefPubMed Sorensen CS, Hansen LT, Dziegielewski J, Syljuasen RG, Lundin C, Bartek J: The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair. Nat Cell Biol. 2005, 7: 195-U121. 10.1038/ncb1212.CrossRefPubMed
14.
go back to reference Hu BC, Wang HY, Wang X, Lu HR, Huang CF, Powell SN: Fhit and CHK1 have opposing effects on homologous recombination repair. Cancer Res. 2005, 65: 8613-8616. 10.1158/0008-5472.CAN-05-1966.CrossRefPubMed Hu BC, Wang HY, Wang X, Lu HR, Huang CF, Powell SN: Fhit and CHK1 have opposing effects on homologous recombination repair. Cancer Res. 2005, 65: 8613-8616. 10.1158/0008-5472.CAN-05-1966.CrossRefPubMed
15.
go back to reference Kramer A, Mailand N, Lukas C, Syljuasen RG, Wilkinson CJ, Nigg EA: Centrosome-associated Chk1 prevents premature activation of cyclin-B-Cdk1 kinase. Nat Cell Biol. 2004, 6: 884-U71. 10.1038/ncb1165.CrossRefPubMed Kramer A, Mailand N, Lukas C, Syljuasen RG, Wilkinson CJ, Nigg EA: Centrosome-associated Chk1 prevents premature activation of cyclin-B-Cdk1 kinase. Nat Cell Biol. 2004, 6: 884-U71. 10.1038/ncb1165.CrossRefPubMed
16.
go back to reference Lam MH, Liu QH, Elledge SJ, Rosen JM: Chk1 is haploinsufficient for multiple functions critical to tumor suppression. Canc Cell. 2004, 6: 45-59. 10.1016/j.ccr.2004.06.015.CrossRef Lam MH, Liu QH, Elledge SJ, Rosen JM: Chk1 is haploinsufficient for multiple functions critical to tumor suppression. Canc Cell. 2004, 6: 45-59. 10.1016/j.ccr.2004.06.015.CrossRef
17.
go back to reference Tominaga Y, Li C, Wang R-H, Deng C-X: Murine Wee1 Plays a Critical Role in Cell Cycle Regulation and Pre-Implantation Stages of Embryonic Development. Int J Biol Sci. 2006, 2: 161-170.PubMedCentralCrossRefPubMed Tominaga Y, Li C, Wang R-H, Deng C-X: Murine Wee1 Plays a Critical Role in Cell Cycle Regulation and Pre-Implantation Stages of Embryonic Development. Int J Biol Sci. 2006, 2: 161-170.PubMedCentralCrossRefPubMed
18.
go back to reference Raleigh JM, O’Connell MJ: The G(2) DNA damage checkpoint targets both Wee1 and Cdc25. J Cell Sci. 2000, 113: 1727-1736.PubMed Raleigh JM, O’Connell MJ: The G(2) DNA damage checkpoint targets both Wee1 and Cdc25. J Cell Sci. 2000, 113: 1727-1736.PubMed
19.
go back to reference Beck H, Nahse V, Larsen MSY, Groth P, Clancy T, Lees M: Regulators of cyclin-dependent kinases are crucial for maintaining genome integrity in S phase. J Cell Biol. 2010, 188: 629-638. 10.1083/jcb.200905059.PubMedCentralCrossRefPubMed Beck H, Nahse V, Larsen MSY, Groth P, Clancy T, Lees M: Regulators of cyclin-dependent kinases are crucial for maintaining genome integrity in S phase. J Cell Biol. 2010, 188: 629-638. 10.1083/jcb.200905059.PubMedCentralCrossRefPubMed
20.
go back to reference Dominguez-Kelly R, Martin Y, Koundrioukoff S, Tanenbaum ME, Smits VAJ, Medema RH: Wee1 controls genomic stability during replication by regulating the Mus81-Eme1 endonuclease. J Cell Biol. 2011, 194: 567-579. 10.1083/jcb.201101047.PubMedCentralCrossRefPubMed Dominguez-Kelly R, Martin Y, Koundrioukoff S, Tanenbaum ME, Smits VAJ, Medema RH: Wee1 controls genomic stability during replication by regulating the Mus81-Eme1 endonuclease. J Cell Biol. 2011, 194: 567-579. 10.1083/jcb.201101047.PubMedCentralCrossRefPubMed
21.
go back to reference Bridges KA, Hirai H, Buser CA, Brooks C, Liu HF, Buchholz TA: MK-1775, a Novel Wee1 Kinase Inhibitor, Radiosensitizes p53-Defective Human Tumor Cells. Clin Cancer Res. 2011, 17: 5638-5648. 10.1158/1078-0432.CCR-11-0650.PubMedCentralCrossRefPubMed Bridges KA, Hirai H, Buser CA, Brooks C, Liu HF, Buchholz TA: MK-1775, a Novel Wee1 Kinase Inhibitor, Radiosensitizes p53-Defective Human Tumor Cells. Clin Cancer Res. 2011, 17: 5638-5648. 10.1158/1078-0432.CCR-11-0650.PubMedCentralCrossRefPubMed
22.
go back to reference PosthumaDeBoer J, Wurdinger T, Graat HCA, Van Beusechem VW, Helder MN, Van Royen BJ: WEE1 inhibition sensitizes osteosarcoma to radiotherapy. BMC Cancer. 2011, 11: 156-10.1186/1471-2407-11-156.PubMedCentralCrossRefPubMed PosthumaDeBoer J, Wurdinger T, Graat HCA, Van Beusechem VW, Helder MN, Van Royen BJ: WEE1 inhibition sensitizes osteosarcoma to radiotherapy. BMC Cancer. 2011, 11: 156-10.1186/1471-2407-11-156.PubMedCentralCrossRefPubMed
23.
go back to reference Rajeshkumar NV, De Oliveira E, Ottenhof N, Watters J, Brooks D, Demuth T: MK-1775, a Potent Wee1 Inhibitor, Synergizes with Gemcitabine to Achieve Tumor Regressions, Selectively in p53-Deficient Pancreatic Cancer Xenografts. Clin Cancer Res. 2011, 17: 2799-2806. 10.1158/1078-0432.CCR-10-2580.PubMedCentralCrossRefPubMed Rajeshkumar NV, De Oliveira E, Ottenhof N, Watters J, Brooks D, Demuth T: MK-1775, a Potent Wee1 Inhibitor, Synergizes with Gemcitabine to Achieve Tumor Regressions, Selectively in p53-Deficient Pancreatic Cancer Xenografts. Clin Cancer Res. 2011, 17: 2799-2806. 10.1158/1078-0432.CCR-10-2580.PubMedCentralCrossRefPubMed
24.
go back to reference Mir SE, Hamer PCD, Krawczyk PM, Balaj L, Claes A, Niers JM: In Silico Analysis of Kinase Expression Identifies WEE1 as a Gatekeeper against Mitotic Catastrophe in Glioblastoma. Canc Cell. 2010, 18: 244-257. 10.1016/j.ccr.2010.08.011.CrossRef Mir SE, Hamer PCD, Krawczyk PM, Balaj L, Claes A, Niers JM: In Silico Analysis of Kinase Expression Identifies WEE1 as a Gatekeeper against Mitotic Catastrophe in Glioblastoma. Canc Cell. 2010, 18: 244-257. 10.1016/j.ccr.2010.08.011.CrossRef
25.
go back to reference Hirai H, Arai T, Okada M, Nishibata T, Kobayashi M, Sakai N: MK-1775, a small molecule Wee1 inhibitor, enhances antitumor efficacy of various DNA-damaging agents, including 5-fluorouracil. Canc Biol Ther. 2010, 9: 514-522. 10.4161/cbt.9.7.11115.CrossRef Hirai H, Arai T, Okada M, Nishibata T, Kobayashi M, Sakai N: MK-1775, a small molecule Wee1 inhibitor, enhances antitumor efficacy of various DNA-damaging agents, including 5-fluorouracil. Canc Biol Ther. 2010, 9: 514-522. 10.4161/cbt.9.7.11115.CrossRef
26.
go back to reference Hirai H, Iwasawa Y, Okada M, Arai T, Nishibata T, Kobayashi M: Small-molecule inhibition of Wee1 kinase by MK-1775 selectively sensitizes p53-deficient tumor cells to DNA-damaging agents. Mol Cancer Ther. 2009, 8: 2992-3000. 10.1158/1535-7163.MCT-09-0463.CrossRefPubMed Hirai H, Iwasawa Y, Okada M, Arai T, Nishibata T, Kobayashi M: Small-molecule inhibition of Wee1 kinase by MK-1775 selectively sensitizes p53-deficient tumor cells to DNA-damaging agents. Mol Cancer Ther. 2009, 8: 2992-3000. 10.1158/1535-7163.MCT-09-0463.CrossRefPubMed
27.
go back to reference Murrow LM, Garimella SV, Jones TL, Caplen NJ, Lipkowitz S: Identification of WEE1 as a potential molecular target in cancer cells by RNAi screening of the human tyrosine kinome. Breast Canc Res Treat. 2010, 122: 347-357. 10.1007/s10549-009-0571-2.CrossRef Murrow LM, Garimella SV, Jones TL, Caplen NJ, Lipkowitz S: Identification of WEE1 as a potential molecular target in cancer cells by RNAi screening of the human tyrosine kinome. Breast Canc Res Treat. 2010, 122: 347-357. 10.1007/s10549-009-0571-2.CrossRef
28.
go back to reference Iorns E, Lord CJ, Grigoriadis A, McDonald S, Fenwick K, Mackay A: Integrated Functional, Gene Expression and Genomic Analysis for the Identification of Cancer Targets. PLoS One. 2009, 4 (4): e5120-10.1371/journal.pone.0005120.PubMedCentralCrossRefPubMed Iorns E, Lord CJ, Grigoriadis A, McDonald S, Fenwick K, Mackay A: Integrated Functional, Gene Expression and Genomic Analysis for the Identification of Cancer Targets. PLoS One. 2009, 4 (4): e5120-10.1371/journal.pone.0005120.PubMedCentralCrossRefPubMed
29.
go back to reference Parry D, Guzi T, Shanahan F, Davis N, Prabhavalkar D, Wiswell D: Dinaciclib (SCH 727965), a Novel and Potent Cyclin-Dependent Kinase Inhibitor. Mol Cancer Ther. 2010, 9: 2344-2353. 10.1158/1535-7163.MCT-10-0324.CrossRefPubMed Parry D, Guzi T, Shanahan F, Davis N, Prabhavalkar D, Wiswell D: Dinaciclib (SCH 727965), a Novel and Potent Cyclin-Dependent Kinase Inhibitor. Mol Cancer Ther. 2010, 9: 2344-2353. 10.1158/1535-7163.MCT-10-0324.CrossRefPubMed
30.
go back to reference Davies KD, Humphries MJ, Sullivan FX, von Carlowitz I, Le Huerou Y, Mohr PJ: Single-Agent Inhibition of Chk1 Is Antiproliferative in Human Cancer Cell Lines In Vitro and Inhibits Tumor Xenograft Growth In Vivo. Oncol Res. 2011, 19: 349-363. 10.3727/096504011X13079697132961.CrossRefPubMed Davies KD, Humphries MJ, Sullivan FX, von Carlowitz I, Le Huerou Y, Mohr PJ: Single-Agent Inhibition of Chk1 Is Antiproliferative in Human Cancer Cell Lines In Vitro and Inhibits Tumor Xenograft Growth In Vivo. Oncol Res. 2011, 19: 349-363. 10.3727/096504011X13079697132961.CrossRefPubMed
31.
go back to reference Hamer PCD, Mir SE, Noske D, Van Noorden CJF, Wurdinger T: WEE1 Kinase Targeting Combined with DNA-Damaging Cancer Therapy Catalyzes Mitotic Catastrophe. Clin Cancer Res. 2011, 17: 4200-4207. 10.1158/1078-0432.CCR-10-2537.CrossRef Hamer PCD, Mir SE, Noske D, Van Noorden CJF, Wurdinger T: WEE1 Kinase Targeting Combined with DNA-Damaging Cancer Therapy Catalyzes Mitotic Catastrophe. Clin Cancer Res. 2011, 17: 4200-4207. 10.1158/1078-0432.CCR-10-2537.CrossRef
32.
go back to reference Xiao Z, Xue J, Gu WZ, Bui M, Li GQ, Tao ZF: Cyclin B1 is an efficacy-predicting biomarker for Chk1 inhibitors. Biomarkers. 2008, 13: 579-596. 10.1080/13547500802063240.CrossRefPubMed Xiao Z, Xue J, Gu WZ, Bui M, Li GQ, Tao ZF: Cyclin B1 is an efficacy-predicting biomarker for Chk1 inhibitors. Biomarkers. 2008, 13: 579-596. 10.1080/13547500802063240.CrossRefPubMed
33.
go back to reference Davies KD, Cable PL, Garrus JE, Sullivan FX, von Carlowitz I, Huerou YL: Chk1 inhibition and Wee1 inhibition combine synergistically to impede cellular proliferation. Canc Biol Ther. 2011, 12: 1-9. 10.4161/cbt.12.1.16607.CrossRef Davies KD, Cable PL, Garrus JE, Sullivan FX, von Carlowitz I, Huerou YL: Chk1 inhibition and Wee1 inhibition combine synergistically to impede cellular proliferation. Canc Biol Ther. 2011, 12: 1-9. 10.4161/cbt.12.1.16607.CrossRef
34.
go back to reference Carrassa L, Chila R, Lupi M, Ricci F, Celenza C, Mazzoletti M: Combined inhibition of Chk1 and Wee1 In vitro synergistic effect translates to tumor growth inhibition in vivo. Cell Cycle. 2012, 11: 2507-2517. 10.4161/cc.20899.CrossRefPubMed Carrassa L, Chila R, Lupi M, Ricci F, Celenza C, Mazzoletti M: Combined inhibition of Chk1 and Wee1 In vitro synergistic effect translates to tumor growth inhibition in vivo. Cell Cycle. 2012, 11: 2507-2517. 10.4161/cc.20899.CrossRefPubMed
35.
go back to reference Guzi TJ, Paruch K, Dwyer MP, Labroli M, Shanahan F, Davis N: Targeting the Replication Checkpoint Using SCH 900776, a Potent and Functionally Selective CHK1 Inhibitor Identified via High Content Screening. Mol Cancer Ther. 2011, 10: 591-602. 10.1158/1535-7163.MCT-10-0928.CrossRefPubMed Guzi TJ, Paruch K, Dwyer MP, Labroli M, Shanahan F, Davis N: Targeting the Replication Checkpoint Using SCH 900776, a Potent and Functionally Selective CHK1 Inhibitor Identified via High Content Screening. Mol Cancer Ther. 2011, 10: 591-602. 10.1158/1535-7163.MCT-10-0928.CrossRefPubMed
36.
go back to reference Bliss CI: The toxicity of poisons applied jointly. Ann Appl Biol. 1939, 26: 585-615. 10.1111/j.1744-7348.1939.tb06990.x.CrossRef Bliss CI: The toxicity of poisons applied jointly. Ann Appl Biol. 1939, 26: 585-615. 10.1111/j.1744-7348.1939.tb06990.x.CrossRef
Metadata
Title
Unique functions of CHK1 and WEE1 underlie synergistic anti-tumor activity upon pharmacologic inhibition
Authors
Amy D Guertin
Melissa M Martin
Brian Roberts
Melissa Hurd
Xianlu Qu
Nathan R Miselis
Yaping Liu
Jing Li
Igor Feldman
Yair Benita
Andrew Bloecher
Carlo Toniatti
Stuart D Shumway
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2012
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/1475-2867-12-45

Other articles of this Issue 1/2012

Cancer Cell International 1/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine