Skip to main content
Top
Published in: BMC Cancer 1/2011

Open Access 01-12-2011 | Research article

WEE1 inhibition sensitizes osteosarcoma to radiotherapy

Authors: Jantine PosthumaDeBoer, Thomas Würdinger, Harm CA Graat, Victor W van Beusechem, Marco N Helder, Barend J van Royen, Gertjan JL Kaspers

Published in: BMC Cancer | Issue 1/2011

Login to get access

Abstract

Background

The use of radiotherapy in osteosarcoma (OS) is controversial due to its radioresistance. OS patients currently treated with radiotherapy generally are inoperable, have painful skeletal metastases, refuse surgery or have undergone an intralesional resection of the primary tumor. After irradiation-induced DNA damage, OS cells sustain a prolonged G2 cell cycle checkpoint arrest allowing DNA repair and evasion of cell death. Inhibition of WEE1 kinase leads to abrogation of the G2 arrest and could sensitize OS cells to irradiation induced cell death.

Methods

WEE1 expression in OS was investigated by gene-expression data analysis and immunohistochemistry of tumor samples. WEE1 expression in OS cell lines and human osteoblasts was investigated by Western blot. The effect of WEE1 inhibition on the radiosensitivity of OS cells was assessed by cell viability and caspase activation analyses after combination treatment. The presence of DNA damage was visualized using immunofluorescence microscopy. Cell cycle effects were investigated by flow cytometry and WEE1 kinase regulation was analyzed by Western blot.

Results

WEE1 expression is found in the majority of tested OS tissue samples. Small molecule drug PD0166285 inhibits WEE1 kinase activity. In the presence of WEE1-inhibitor, irradiated cells fail to repair their damaged DNA, and show higher levels of caspase activation. The inhibition of WEE1 effectively abrogates the irradiation-induced G2 arrest in OS cells, forcing the cells into premature, catastrophic mitosis, thus enhancing cell death after irradiation treatment.

Conclusion

We show that PD0166285, a small molecule WEE1 kinase inhibitor, can abrogate the G2 checkpoint in OS cells, pushing them into mitotic catastrophe and thus sensitizing OS cells to irradiation-induced cell death. This suggests that WEE1 inhibition may be a promising strategy to enhance the radiotherapy effect in patients with OS.
Appendix
Available only for authorised users
Literature
1.
go back to reference Delaney TF, Park L, Goldberg SI, Hug EB, Liebsch NJ, Munzenrider JE, et al: Radiotherapy for local control of osteosarcoma. Int J Radiat Oncol Biol Phys. 2005, 61: 492-498. 10.1016/j.ijrobp.2004.05.051.CrossRefPubMed Delaney TF, Park L, Goldberg SI, Hug EB, Liebsch NJ, Munzenrider JE, et al: Radiotherapy for local control of osteosarcoma. Int J Radiat Oncol Biol Phys. 2005, 61: 492-498. 10.1016/j.ijrobp.2004.05.051.CrossRefPubMed
2.
go back to reference Machak GN, Tkachev SI, Solovyev YN, Sinyukov PA, Ivanov SM, Kochergina NV, et al: Neoadjuvant chemotherapy and local radiotherapy for high-grade osteosarcoma of the extremities. Mayo Clin Proc. 2003, 78: 147-155. 10.4065/78.2.147.CrossRefPubMed Machak GN, Tkachev SI, Solovyev YN, Sinyukov PA, Ivanov SM, Kochergina NV, et al: Neoadjuvant chemotherapy and local radiotherapy for high-grade osteosarcoma of the extremities. Mayo Clin Proc. 2003, 78: 147-155. 10.4065/78.2.147.CrossRefPubMed
3.
go back to reference Schwarz R, Bruland O, Cassoni A, Schomberg P, Bielack S: The role of radiotherapy in oseosarcoma. Cancer Treat Res. 2010, 152: 147-164.CrossRef Schwarz R, Bruland O, Cassoni A, Schomberg P, Bielack S: The role of radiotherapy in oseosarcoma. Cancer Treat Res. 2010, 152: 147-164.CrossRef
4.
go back to reference Anderson PM: Effectiveness of radiotherapy for osteosarcoma that responds to chemotherapy. Mayo Clin Proc. 2003, 78: 145-146. 10.4065/78.2.145.CrossRefPubMed Anderson PM: Effectiveness of radiotherapy for osteosarcoma that responds to chemotherapy. Mayo Clin Proc. 2003, 78: 145-146. 10.4065/78.2.145.CrossRefPubMed
5.
go back to reference Anderson PM, Wiseman GA, Erlandson L, Rodriguez V, Trotz B, Dubansky SA, et al: Gemcitabine radiosensitization after high-dose samarium for osteoblastic osteosarcoma. Clin Cancer Res. 2005, 11: 6895-6900. 10.1158/1078-0432.CCR-05-0628.CrossRefPubMed Anderson PM, Wiseman GA, Erlandson L, Rodriguez V, Trotz B, Dubansky SA, et al: Gemcitabine radiosensitization after high-dose samarium for osteoblastic osteosarcoma. Clin Cancer Res. 2005, 11: 6895-6900. 10.1158/1078-0432.CCR-05-0628.CrossRefPubMed
6.
go back to reference Bielack SS, Kempf-Bielack B, Delling G, Exner GU, Flege S, Helmke K, et al: Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol. 2002, 20: 776-790. 10.1200/JCO.20.3.776.CrossRefPubMed Bielack SS, Kempf-Bielack B, Delling G, Exner GU, Flege S, Helmke K, et al: Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol. 2002, 20: 776-790. 10.1200/JCO.20.3.776.CrossRefPubMed
7.
go back to reference Bielack SS, Carrle D, Hardes J, Schuck A, Paulussen M: Bone tumors in adolescents and young adults. Curr Treat Options Oncol. 2008, 9: 67-80. 10.1007/s11864-008-0057-1.CrossRefPubMed Bielack SS, Carrle D, Hardes J, Schuck A, Paulussen M: Bone tumors in adolescents and young adults. Curr Treat Options Oncol. 2008, 9: 67-80. 10.1007/s11864-008-0057-1.CrossRefPubMed
8.
go back to reference Hundsdoerfer P, Albrecht M, Ruhl U, Fengler R, Kulozik AE, Henze G: Long-term outcome after polychemotherapy and intensive local radiation therapy of high-grade osteosarcoma. Eur J Cancer. 2009, 45: 2447-2451. 10.1016/j.ejca.2009.06.006.CrossRefPubMed Hundsdoerfer P, Albrecht M, Ruhl U, Fengler R, Kulozik AE, Henze G: Long-term outcome after polychemotherapy and intensive local radiation therapy of high-grade osteosarcoma. Eur J Cancer. 2009, 45: 2447-2451. 10.1016/j.ejca.2009.06.006.CrossRefPubMed
9.
go back to reference Mahajan A, Woo SY, Kornguth DG, Hughes D, Huh W, Chang EL, et al: Multimodality treatment of osteosarcoma: radiation in a high-risk cohort. Pediatr Blood Cancer. 2008, 50: 976-982. 10.1002/pbc.21451.CrossRefPubMed Mahajan A, Woo SY, Kornguth DG, Hughes D, Huh W, Chang EL, et al: Multimodality treatment of osteosarcoma: radiation in a high-risk cohort. Pediatr Blood Cancer. 2008, 50: 976-982. 10.1002/pbc.21451.CrossRefPubMed
10.
go back to reference Wagner TD, Kobayashi W, Dean S, Goldberg SI, Kirsch DG, Suit HD, et al: Combination short-course preoperative irradiation, surgical resection, and reduced-field high-dose postoperative irradiation in the treatment of tumors involving the bone. Int J Radiat Oncol Biol Phys. 2009, 73: 259-266. 10.1016/j.ijrobp.2008.03.074.CrossRefPubMed Wagner TD, Kobayashi W, Dean S, Goldberg SI, Kirsch DG, Suit HD, et al: Combination short-course preoperative irradiation, surgical resection, and reduced-field high-dose postoperative irradiation in the treatment of tumors involving the bone. Int J Radiat Oncol Biol Phys. 2009, 73: 259-266. 10.1016/j.ijrobp.2008.03.074.CrossRefPubMed
11.
go back to reference Blattmann C, Oertel S, Schulz-Ertner D, Rieken S, Haufe S, Ewerbeck V, et al: Non-randomized therapy trial to determine the safety and efficacy of heavy ion radiotherapy in patients with non-resectable osteosarcoma. BMC Cancer. 2010, 10: 96-10.1186/1471-2407-10-96.CrossRefPubMedPubMedCentral Blattmann C, Oertel S, Schulz-Ertner D, Rieken S, Haufe S, Ewerbeck V, et al: Non-randomized therapy trial to determine the safety and efficacy of heavy ion radiotherapy in patients with non-resectable osteosarcoma. BMC Cancer. 2010, 10: 96-10.1186/1471-2407-10-96.CrossRefPubMedPubMedCentral
12.
go back to reference Kamada T, Tsujii H, Tsuji H, Yanagi T, Mizoe JE, Miyamoto T, et al: Efficacy and safety of carbon ion radiotherapy in bone and soft tissue sarcomas. J Clin Oncol. 2002, 20: 4466-4471. 10.1200/JCO.2002.10.050.CrossRefPubMed Kamada T, Tsujii H, Tsuji H, Yanagi T, Mizoe JE, Miyamoto T, et al: Efficacy and safety of carbon ion radiotherapy in bone and soft tissue sarcomas. J Clin Oncol. 2002, 20: 4466-4471. 10.1200/JCO.2002.10.050.CrossRefPubMed
13.
go back to reference Anderson P, Aguilera D, Pearson M, Woo S: Outpatient chemotherapy plus radiotherapy in sarcomas: improving cancer control with radiosensitizing agents. Cancer Control. 2008, 15: 38-46.PubMed Anderson P, Aguilera D, Pearson M, Woo S: Outpatient chemotherapy plus radiotherapy in sarcomas: improving cancer control with radiosensitizing agents. Cancer Control. 2008, 15: 38-46.PubMed
14.
go back to reference Hughes DP: How the NOTCH Pathway Contributes to the Ability of Osteosarcoma Cells to Metastasize. Cancer Treat Res. 2010, 152: 479-496.CrossRef Hughes DP: How the NOTCH Pathway Contributes to the Ability of Osteosarcoma Cells to Metastasize. Cancer Treat Res. 2010, 152: 479-496.CrossRef
15.
go back to reference Anderson P, Kopp L, Anderson N, Cornelius K, Herzog C, Hughes D, et al: Novel bone cancer drugs: investigational agents and control paradigms for primary bone sarcomas (Ewing's sarcoma and osteosarcoma). Expert Opin Investig Drugs. 2008, 17: 1703-1715. 10.1517/13543784.17.11.1703.CrossRefPubMed Anderson P, Kopp L, Anderson N, Cornelius K, Herzog C, Hughes D, et al: Novel bone cancer drugs: investigational agents and control paradigms for primary bone sarcomas (Ewing's sarcoma and osteosarcoma). Expert Opin Investig Drugs. 2008, 17: 1703-1715. 10.1517/13543784.17.11.1703.CrossRefPubMed
16.
go back to reference Kawabe T: G2 checkpoint abrogators as anticancer drugs. Mol Cancer Ther. 2004, 3: 513-519.PubMed Kawabe T: G2 checkpoint abrogators as anticancer drugs. Mol Cancer Ther. 2004, 3: 513-519.PubMed
17.
go back to reference Castedo M, Perfettini JL, Roumier T, Andreau K, Medema R, Kroemer G: Cell death by mitotic catastrophe: a molecular definition. Oncogene. 2004, 23: 2825-2837. 10.1038/sj.onc.1207528.CrossRefPubMed Castedo M, Perfettini JL, Roumier T, Andreau K, Medema R, Kroemer G: Cell death by mitotic catastrophe: a molecular definition. Oncogene. 2004, 23: 2825-2837. 10.1038/sj.onc.1207528.CrossRefPubMed
18.
go back to reference Hirai H, Iwasawa Y, Okada M, Arai T, Nishibata T, Kobayashi M, et al: Small-molecule inhibition of Wee1 kinase by MK-1775 selectively sensitizes p53-deficient tumor cells to DNA-damaging agents. Mol Cancer Ther. 2009, 8: 2992-3000. 10.1158/1535-7163.MCT-09-0463.CrossRefPubMed Hirai H, Iwasawa Y, Okada M, Arai T, Nishibata T, Kobayashi M, et al: Small-molecule inhibition of Wee1 kinase by MK-1775 selectively sensitizes p53-deficient tumor cells to DNA-damaging agents. Mol Cancer Ther. 2009, 8: 2992-3000. 10.1158/1535-7163.MCT-09-0463.CrossRefPubMed
19.
go back to reference Kim MJ, Lee JY, Lee SJ: Transient suppression of nuclear Cdc2 activity in response to ionizing radiation. Oncol Rep. 2008, 19: 1323-1329.PubMed Kim MJ, Lee JY, Lee SJ: Transient suppression of nuclear Cdc2 activity in response to ionizing radiation. Oncol Rep. 2008, 19: 1323-1329.PubMed
20.
go back to reference Reinhardt HC, Aslanian AS, Lees JA, Yaffe MB: p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage. Cancer Cell. 2007, 11: 175-189. 10.1016/j.ccr.2006.11.024.CrossRefPubMedPubMedCentral Reinhardt HC, Aslanian AS, Lees JA, Yaffe MB: p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage. Cancer Cell. 2007, 11: 175-189. 10.1016/j.ccr.2006.11.024.CrossRefPubMedPubMedCentral
21.
go back to reference Mir SE, De Witt Hamer PC, Krawczyk PM, Balaj L, Claes A, Niers JM, et al: In Silico Analysis of Kinase Expression Identifies WEE1 as a Gatekeeper against Mitotic Catastrophe in Glioblastoma. Cancer Cell. 2010, 18: 244-257. 10.1016/j.ccr.2010.08.011.CrossRefPubMedPubMedCentral Mir SE, De Witt Hamer PC, Krawczyk PM, Balaj L, Claes A, Niers JM, et al: In Silico Analysis of Kinase Expression Identifies WEE1 as a Gatekeeper against Mitotic Catastrophe in Glioblastoma. Cancer Cell. 2010, 18: 244-257. 10.1016/j.ccr.2010.08.011.CrossRefPubMedPubMedCentral
22.
go back to reference Jiang H, Reinhardt HC, Bartkova J, Tommiska J, Blomqvist C, Nevanlinna H, et al: The combined status of ATM and p53 link tumor development with therapeutic response. Genes Dev. 2009, 23: 1895-1909. 10.1101/gad.1815309.CrossRefPubMedPubMedCentral Jiang H, Reinhardt HC, Bartkova J, Tommiska J, Blomqvist C, Nevanlinna H, et al: The combined status of ATM and p53 link tumor development with therapeutic response. Genes Dev. 2009, 23: 1895-1909. 10.1101/gad.1815309.CrossRefPubMedPubMedCentral
23.
go back to reference Raleigh JM, O'Connell MJ: The G(2) DNA damage checkpoint targets both Wee1 and Cdc25. J Cell Sci. 2000, 113 (Pt 10): 1727-1736.PubMed Raleigh JM, O'Connell MJ: The G(2) DNA damage checkpoint targets both Wee1 and Cdc25. J Cell Sci. 2000, 113 (Pt 10): 1727-1736.PubMed
24.
go back to reference Gorlick R, Anderson P, Andrulis I, Arndt C, Beardsley GP, Bernstein M, et al: Biology of childhood osteogenic sarcoma and potential targets for therapeutic development: meeting summary. Clin Cancer Res. 2003, 9: 5442-5453.PubMed Gorlick R, Anderson P, Andrulis I, Arndt C, Beardsley GP, Bernstein M, et al: Biology of childhood osteogenic sarcoma and potential targets for therapeutic development: meeting summary. Clin Cancer Res. 2003, 9: 5442-5453.PubMed
25.
go back to reference Hayden JB, Hoang BH: Osteosarcoma: basic science and clinical implications. Orthop Clin North Am. 2006, 37: 1-7. 10.1016/j.ocl.2005.06.004.CrossRefPubMed Hayden JB, Hoang BH: Osteosarcoma: basic science and clinical implications. Orthop Clin North Am. 2006, 37: 1-7. 10.1016/j.ocl.2005.06.004.CrossRefPubMed
26.
go back to reference Nyberg KA, Michelson RJ, Putnam CW, Weinert TA: Toward maintaining the genome: DNA damage and replication checkpoints. Annu Rev Genet. 2002, 36: 617-656. 10.1146/annurev.genet.36.060402.113540.CrossRefPubMed Nyberg KA, Michelson RJ, Putnam CW, Weinert TA: Toward maintaining the genome: DNA damage and replication checkpoints. Annu Rev Genet. 2002, 36: 617-656. 10.1146/annurev.genet.36.060402.113540.CrossRefPubMed
27.
go back to reference Stathis A, Oza A: Targeting Wee1-like protein kinase to treat cancer. Drug News Perspect. 2010, 23: 425-429.PubMed Stathis A, Oza A: Targeting Wee1-like protein kinase to treat cancer. Drug News Perspect. 2010, 23: 425-429.PubMed
28.
go back to reference Wang Y, Li J, Booher RN, Kraker A, Lawrence T, Leopold WR, et al: Radiosensitization of p53 mutant cells by PD0166285, a novel G(2) checkpoint abrogator. Cancer Res. 2001, 61: 8211-8217.PubMed Wang Y, Li J, Booher RN, Kraker A, Lawrence T, Leopold WR, et al: Radiosensitization of p53 mutant cells by PD0166285, a novel G(2) checkpoint abrogator. Cancer Res. 2001, 61: 8211-8217.PubMed
29.
go back to reference Hashimoto O, Shinkawa M, Torimura T, Nakamura T, Selvendiran K, Sakamoto M, et al: Cell cycle regulation by the Wee1 inhibitor PD0166285 pyrido [2,3-d] pyimidine, in the B16 mouse melanoma cell line. BMC Cancer. 2006, 6: 292-10.1186/1471-2407-6-292.CrossRefPubMedPubMedCentral Hashimoto O, Shinkawa M, Torimura T, Nakamura T, Selvendiran K, Sakamoto M, et al: Cell cycle regulation by the Wee1 inhibitor PD0166285 pyrido [2,3-d] pyimidine, in the B16 mouse melanoma cell line. BMC Cancer. 2006, 6: 292-10.1186/1471-2407-6-292.CrossRefPubMedPubMedCentral
30.
go back to reference Syljuasen RG, Jensen S, Bartek J, Lukas J: Adaptation to the ionizing radiation-induced G2 checkpoint occurs in human cells and depends on checkpoint kinase 1 and Polo-like kinase 1 kinases. Cancer Res. 2006, 66: 10253-10257. 10.1158/0008-5472.CAN-06-2144.CrossRefPubMed Syljuasen RG, Jensen S, Bartek J, Lukas J: Adaptation to the ionizing radiation-induced G2 checkpoint occurs in human cells and depends on checkpoint kinase 1 and Polo-like kinase 1 kinases. Cancer Res. 2006, 66: 10253-10257. 10.1158/0008-5472.CAN-06-2144.CrossRefPubMed
31.
go back to reference Wells NJ, Watanabe N, Tokusumi T, Jiang W, Verdecia MA, Hunter T: The C-terminal domain of the Cdc2 inhibitory kinase Myt1 interacts with Cdc2 complexes and is required for inhibition of G(2)/M progression. J Cell Sci. 1999, 112 (Pt 19): 3361-3371.PubMed Wells NJ, Watanabe N, Tokusumi T, Jiang W, Verdecia MA, Hunter T: The C-terminal domain of the Cdc2 inhibitory kinase Myt1 interacts with Cdc2 complexes and is required for inhibition of G(2)/M progression. J Cell Sci. 1999, 112 (Pt 19): 3361-3371.PubMed
32.
go back to reference Iurisci I, Filipski E, Reinhardt J, Bach S, Gianella-Borradori A, Iacobelli S, et al: Improved tumor control through circadian clock induction by Seliciclib, a cyclin-dependent kinase inhibitor. Cancer Res. 2006, 66: 10720-10728. 10.1158/0008-5472.CAN-06-2086.CrossRefPubMed Iurisci I, Filipski E, Reinhardt J, Bach S, Gianella-Borradori A, Iacobelli S, et al: Improved tumor control through circadian clock induction by Seliciclib, a cyclin-dependent kinase inhibitor. Cancer Res. 2006, 66: 10720-10728. 10.1158/0008-5472.CAN-06-2086.CrossRefPubMed
34.
go back to reference R2. Microarray Analysis and Visualisation Platform: Edited by: Jan Koster. 2010, Human Genetics Department, Academic Medical Center, Amsterdam, the Netherlands, 3-9-2010. Ref Type: Electronic Citation, [http://r2.amc.nl] R2. Microarray Analysis and Visualisation Platform: Edited by: Jan Koster. 2010, Human Genetics Department, Academic Medical Center, Amsterdam, the Netherlands, 3-9-2010. Ref Type: Electronic Citation, [http://​r2.​amc.​nl]
35.
go back to reference Mollapour M, Tsutsumi S, Donnelly AC, Beebe K, Tokita MJ, Lee MJ, et al: Swe1Wee1-dependent tyrosine phosphorylation of Hsp90 regulates distinct facets of chaperone function. Mol Cell. 2010, 37: 333-343. 10.1016/j.molcel.2010.01.005.CrossRefPubMedPubMedCentral Mollapour M, Tsutsumi S, Donnelly AC, Beebe K, Tokita MJ, Lee MJ, et al: Swe1Wee1-dependent tyrosine phosphorylation of Hsp90 regulates distinct facets of chaperone function. Mol Cell. 2010, 37: 333-343. 10.1016/j.molcel.2010.01.005.CrossRefPubMedPubMedCentral
36.
go back to reference Garcia K, Stumpff J, Duncan T, Su TT: Tyrosines in the kinesin-5 head domain are necessary for phosphorylation by Wee1 and for mitotic spindle integrity. Curr Biol. 2009, 19: 1670-1676. 10.1016/j.cub.2009.08.013.CrossRefPubMedPubMedCentral Garcia K, Stumpff J, Duncan T, Su TT: Tyrosines in the kinesin-5 head domain are necessary for phosphorylation by Wee1 and for mitotic spindle integrity. Curr Biol. 2009, 19: 1670-1676. 10.1016/j.cub.2009.08.013.CrossRefPubMedPubMedCentral
Metadata
Title
WEE1 inhibition sensitizes osteosarcoma to radiotherapy
Authors
Jantine PosthumaDeBoer
Thomas Würdinger
Harm CA Graat
Victor W van Beusechem
Marco N Helder
Barend J van Royen
Gertjan JL Kaspers
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2011
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-11-156

Other articles of this Issue 1/2011

BMC Cancer 1/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine