Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 1/2012

Open Access 01-12-2012 | Technical advance

Non-linear dynamical signal characterization for prediction of defibrillation success through machine learning

Authors: Sharad Shandilya, Kevin Ward, Michael Kurz, Kayvan Najarian

Published in: BMC Medical Informatics and Decision Making | Issue 1/2012

Login to get access

Abstract

Background

Ventricular Fibrillation (VF) is a common presenting dysrhythmia in the setting of cardiac arrest whose main treatment is defibrillation through direct current countershock to achieve return of spontaneous circulation. However, often defibrillation is unsuccessful and may even lead to the transition of VF to more nefarious rhythms such as asystole or pulseless electrical activity. Multiple methods have been proposed for predicting defibrillation success based on examination of the VF waveform. To date, however, no analytical technique has been widely accepted. We developed a unique approach of computational VF waveform analysis, with and without addition of the signal of end-tidal carbon dioxide (PetCO2), using advanced machine learning algorithms. We compare these results with those obtained using the Amplitude Spectral Area (AMSA) technique.

Methods

A total of 90 pre-countershock ECG signals were analyzed form an accessible preshosptial cardiac arrest database. A unified predictive model, based on signal processing and machine learning, was developed with time-series and dual-tree complex wavelet transform features. Upon selection of correlated variables, a parametrically optimized support vector machine (SVM) model was trained for predicting outcomes on the test sets. Training and testing was performed with nested 10-fold cross validation and 6–10 features for each test fold.

Results

The integrative model performs real-time, short-term (7.8 second) analysis of the Electrocardiogram (ECG). For a total of 90 signals, 34 successful and 56 unsuccessful defibrillations were classified with an average Accuracy and Receiver Operator Characteristic (ROC) Area Under the Curve (AUC) of 82.2% and 85%, respectively. Incorporation of the end-tidal carbon dioxide signal boosted Accuracy and ROC AUC to 83.3% and 93.8%, respectively, for a smaller dataset containing 48 signals. VF analysis using AMSA resulted in accuracy and ROC AUC of 64.6% and 60.9%, respectively.

Conclusion

We report the development and first-use of a nontraditional non-linear method of analyzing the VF ECG signal, yielding high predictive accuracies of defibrillation success. Furthermore, incorporation of features from the PetCO2 signal noticeably increased model robustness. These predictive capabilities should further improve with the availability of a larger database.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lloyd-Jones D: American heart association statistics committee and stroke statistics subcommittee. Heart disease and stroke statistics–2010 update: a report from the American heart association. Circulation. 2010, 121: e46-e215.CrossRefPubMed Lloyd-Jones D: American heart association statistics committee and stroke statistics subcommittee. Heart disease and stroke statistics–2010 update: a report from the American heart association. Circulation. 2010, 121: e46-e215.CrossRefPubMed
2.
go back to reference Nichol G, Thomas E, Callaway CW: Regional variation in out-of-hospital cardiac arrest incidence and outcome. J Am Med Assoc. 2008, 300: 1423-1431. 10.1001/jama.300.12.1423.CrossRef Nichol G, Thomas E, Callaway CW: Regional variation in out-of-hospital cardiac arrest incidence and outcome. J Am Med Assoc. 2008, 300: 1423-1431. 10.1001/jama.300.12.1423.CrossRef
3.
go back to reference Nadkarni VM, Larkin GL, Peberdy MA, Carey SM, Kaye W, Mancini ME, Nichol G, Lane-Truitt T, Potts J, Ornato JP, Berg RA: First documented rhythm and clinical outcome from in-hospital cardiac arrest among children and adults. JAMA. 2006, 295: 50-57. 10.1001/jama.295.1.50.CrossRefPubMed Nadkarni VM, Larkin GL, Peberdy MA, Carey SM, Kaye W, Mancini ME, Nichol G, Lane-Truitt T, Potts J, Ornato JP, Berg RA: First documented rhythm and clinical outcome from in-hospital cardiac arrest among children and adults. JAMA. 2006, 295: 50-57. 10.1001/jama.295.1.50.CrossRefPubMed
4.
go back to reference Valenzuela TD, Roe DJ, Cretin S, Spaite DW, Larsen MP: Estimating effectiveness of cardiac arrest interventions: a logistic regression survival model. Circulation. 1997, 96: 3308-3313. 10.1161/01.CIR.96.10.3308.CrossRefPubMed Valenzuela TD, Roe DJ, Cretin S, Spaite DW, Larsen MP: Estimating effectiveness of cardiac arrest interventions: a logistic regression survival model. Circulation. 1997, 96: 3308-3313. 10.1161/01.CIR.96.10.3308.CrossRefPubMed
5.
go back to reference Weisfeldt ML, Becker LB: Resuscitation after cardiac arrest: a 3-phase time-sensitive model. JAMA. 2002, 288 (23): 3008-3013. 10.1001/jama.288.23.3008.CrossRef Weisfeldt ML, Becker LB: Resuscitation after cardiac arrest: a 3-phase time-sensitive model. JAMA. 2002, 288 (23): 3008-3013. 10.1001/jama.288.23.3008.CrossRef
6.
go back to reference Strohmenger H: Predicting defibrillation success. Cardiopulmonary Resuscitation. 2008, 14: 311-316. Strohmenger H: Predicting defibrillation success. Cardiopulmonary Resuscitation. 2008, 14: 311-316.
7.
go back to reference Zaitsev AV, Berenfeld O, SF M, Jalife J, Pertsov AM: “Distribution of excitation frequencies on the epicardial and endocardial surfaces of fibrillating ventricular wall of the sheep heart”. Circ Res. 2000, 86: 408-417. 10.1161/01.RES.86.4.408.CrossRefPubMed Zaitsev AV, Berenfeld O, SF M, Jalife J, Pertsov AM: “Distribution of excitation frequencies on the epicardial and endocardial surfaces of fibrillating ventricular wall of the sheep heart”. Circ Res. 2000, 86: 408-417. 10.1161/01.RES.86.4.408.CrossRefPubMed
8.
go back to reference Weiss JN, Qu Z, Chen PS, Lin SF, Karagueuzian HS, Hayashi H, Garfinkel A, Karma A: “The dynamics of cardiac fibrillation”. Circulation. 2005, 112: 1232-1240. 10.1161/CIRCULATIONAHA.104.529545.CrossRefPubMed Weiss JN, Qu Z, Chen PS, Lin SF, Karagueuzian HS, Hayashi H, Garfinkel A, Karma A: “The dynamics of cardiac fibrillation”. Circulation. 2005, 112: 1232-1240. 10.1161/CIRCULATIONAHA.104.529545.CrossRefPubMed
9.
go back to reference Eilevstjonn J, Kramer-Johansen J, Sunde K: “Shock outcome is related to prior rhythm and duration of ventricular fibrillation”. Resuscitation. 2007, 75: 60-66. 10.1016/j.resuscitation.2007.02.014.CrossRefPubMed Eilevstjonn J, Kramer-Johansen J, Sunde K: “Shock outcome is related to prior rhythm and duration of ventricular fibrillation”. Resuscitation. 2007, 75: 60-66. 10.1016/j.resuscitation.2007.02.014.CrossRefPubMed
10.
go back to reference Ristagno G, Gullo A, Berlot G, Lucangelo U, Geheb F, Bisera J: “Prediction of successful defibrillation in human victims of out-of-hospital cardiac arrest: a retrospective electrocardiographic analysis”. Anaesth Intensive Care. 2008, 36: 46-50.PubMed Ristagno G, Gullo A, Berlot G, Lucangelo U, Geheb F, Bisera J: “Prediction of successful defibrillation in human victims of out-of-hospital cardiac arrest: a retrospective electrocardiographic analysis”. Anaesth Intensive Care. 2008, 36: 46-50.PubMed
11.
go back to reference Watson JN, Uchaipichat N, Addison PS, Clegg GR, Robertson CE, Eftestol T, Steen PA: Improved prediction of defibrillation success for out-of-hospital VF cardiac arrest using wavelet transform methods. Resuscitation. 2004, 63: 269-275. 10.1016/j.resuscitation.2004.06.012.CrossRefPubMed Watson JN, Uchaipichat N, Addison PS, Clegg GR, Robertson CE, Eftestol T, Steen PA: Improved prediction of defibrillation success for out-of-hospital VF cardiac arrest using wavelet transform methods. Resuscitation. 2004, 63: 269-275. 10.1016/j.resuscitation.2004.06.012.CrossRefPubMed
12.
go back to reference Neurauter A, Eftestøl T, Strohmenger H-U: “Prediction of countershock success using single features from multiple ventricular fibrillation frequency bands and feature combinations using neural networks”. Resuscitation. 2007, 73: 253-263. 10.1016/j.resuscitation.2006.10.002.CrossRefPubMed Neurauter A, Eftestøl T, Strohmenger H-U: “Prediction of countershock success using single features from multiple ventricular fibrillation frequency bands and feature combinations using neural networks”. Resuscitation. 2007, 73: 253-263. 10.1016/j.resuscitation.2006.10.002.CrossRefPubMed
13.
go back to reference Gundersen K: Identifying approaches to improve the accuracy of shock outcome prediction for out-of-hospital cardiac arrest. Resuscitation. 2008, 76 (2): 279-284. 10.1016/j.resuscitation.2007.07.019.CrossRefPubMed Gundersen K: Identifying approaches to improve the accuracy of shock outcome prediction for out-of-hospital cardiac arrest. Resuscitation. 2008, 76 (2): 279-284. 10.1016/j.resuscitation.2007.07.019.CrossRefPubMed
14.
go back to reference Berg RA: Part 5: Adult Basic Life support: 2010 AHA guidleines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2010, 122: S685-S705. 10.1161/CIRCULATIONAHA.110.970939.CrossRefPubMed Berg RA: Part 5: Adult Basic Life support: 2010 AHA guidleines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2010, 122: S685-S705. 10.1161/CIRCULATIONAHA.110.970939.CrossRefPubMed
15.
go back to reference Shandilya S, Kurz MC, Ward KR, Najarian K: Predicting defibrillation success with a multiple-domain model using machine learning. IEEE Compl Med Eng. 2011,: 9-14. Shandilya S, Kurz MC, Ward KR, Najarian K: Predicting defibrillation success with a multiple-domain model using machine learning. IEEE Compl Med Eng. 2011,: 9-14.
16.
go back to reference Savitzky A, Golay MJE: “Smoothing and differentiation of data by simplified least squares procedures”. Anal Chem. 1964, 36 (8): 1627-1639. 10.1021/ac60214a047.CrossRef Savitzky A, Golay MJE: “Smoothing and differentiation of data by simplified least squares procedures”. Anal Chem. 1964, 36 (8): 1627-1639. 10.1021/ac60214a047.CrossRef
17.
go back to reference Kingsbury NG: “The dual-tree complex wavelet transform: A new efficient tool for image restoration and enhancement”. 1998, Rhodes: Proc European Signal Processing Conf, 319-322. Kingsbury NG: “The dual-tree complex wavelet transform: A new efficient tool for image restoration and enhancement”. 1998, Rhodes: Proc European Signal Processing Conf, 319-322.
18.
go back to reference Box MS: Shock outcome prediction before and after CPR: a comparative study of manual and automated active compression-decompression CPR. Resuscitation. 2008, 78: 265-274. 10.1016/j.resuscitation.2008.03.225.CrossRefPubMed Box MS: Shock outcome prediction before and after CPR: a comparative study of manual and automated active compression-decompression CPR. Resuscitation. 2008, 78: 265-274. 10.1016/j.resuscitation.2008.03.225.CrossRefPubMed
19.
go back to reference Kantz H, Schreiber T: Nonlinear Time Series Analysis. 1999, Cambridge; New York: Cambridge University Press, new edition Kantz H, Schreiber T: Nonlinear Time Series Analysis. 1999, Cambridge; New York: Cambridge University Press, new edition
20.
go back to reference Kohavi R, John G: “Wrappers for feature subset selection”. Artif Intell. 1997, 97: 273-324. 10.1016/S0004-3702(97)00043-X.CrossRef Kohavi R, John G: “Wrappers for feature subset selection”. Artif Intell. 1997, 97: 273-324. 10.1016/S0004-3702(97)00043-X.CrossRef
21.
go back to reference Guyon I, Weston J, Barnhill S, Vapnik V: Gene selection for cancer classification using support vector machines. Mach Learn. 2002, 46: 389-422. 10.1023/A:1012487302797.CrossRef Guyon I, Weston J, Barnhill S, Vapnik V: Gene selection for cancer classification using support vector machines. Mach Learn. 2002, 46: 389-422. 10.1023/A:1012487302797.CrossRef
22.
go back to reference Najarian K, Davies MS, Dumont GA, Heckman NE: PAC learning in non-linear FIR models. Int J Adapt Control Signal Process. 2001, 15 (1): 37-52. 10.1002/1099-1115(200102)15:1<37::AID-ACS626>3.0.CO;2-7.CrossRef Najarian K, Davies MS, Dumont GA, Heckman NE: PAC learning in non-linear FIR models. Int J Adapt Control Signal Process. 2001, 15 (1): 37-52. 10.1002/1099-1115(200102)15:1<37::AID-ACS626>3.0.CO;2-7.CrossRef
23.
go back to reference Najarian K: Learning-based complexity evaluation of radial basis function networks. Neural Process Lett. 2002, 16 (2): 137-150. 10.1023/A:1019999408474.CrossRef Najarian K: Learning-based complexity evaluation of radial basis function networks. Neural Process Lett. 2002, 16 (2): 137-150. 10.1023/A:1019999408474.CrossRef
24.
go back to reference Quinlan R: C4.5: Programs for Machine Learning. 1993, San Mateo, CA: Morgan Kaufmann Publishers Quinlan R: C4.5: Programs for Machine Learning. 1993, San Mateo, CA: Morgan Kaufmann Publishers
25.
go back to reference Becker LB, Ostrander MP, Barrett J, Kindus GT: “Outcome of CPR in a large metropolitan area—where are the survivors?”. Ann Emerg Med. 1991, 20: 355-361. 10.1016/S0196-0644(05)81654-3.CrossRefPubMed Becker LB, Ostrander MP, Barrett J, Kindus GT: “Outcome of CPR in a large metropolitan area—where are the survivors?”. Ann Emerg Med. 1991, 20: 355-361. 10.1016/S0196-0644(05)81654-3.CrossRefPubMed
26.
go back to reference Watson JN, Addison PS, Clegg GR, Steen PA, Robertson CE: Practical issues in the evaluation of methods for the prediction of shock outcome success in out-of-hospital cardiac arrest patients. Resuscitation. 2006, 68 (1): 51-59. 10.1016/j.resuscitation.2005.06.013.CrossRefPubMed Watson JN, Addison PS, Clegg GR, Steen PA, Robertson CE: Practical issues in the evaluation of methods for the prediction of shock outcome success in out-of-hospital cardiac arrest patients. Resuscitation. 2006, 68 (1): 51-59. 10.1016/j.resuscitation.2005.06.013.CrossRefPubMed
27.
go back to reference Little MA, McSharry PE, Roberts SJ, Costello DA, Moroz IM: “Exploiting Nonlinear recurrence and Fractal scaling properties for voice disorder detection”. Biomed Eng Online. 2007, 6: 23-10.1186/1475-925X-6-23.CrossRefPubMedPubMedCentral Little MA, McSharry PE, Roberts SJ, Costello DA, Moroz IM: “Exploiting Nonlinear recurrence and Fractal scaling properties for voice disorder detection”. Biomed Eng Online. 2007, 6: 23-10.1186/1475-925X-6-23.CrossRefPubMedPubMedCentral
28.
go back to reference Ward KR, Yealy DM: End-tidal carbon dioxide monitoring in emergency medicine: basic principles. AcadEmerg Med. 1998, 5: 628-636. Ward KR, Yealy DM: End-tidal carbon dioxide monitoring in emergency medicine: basic principles. AcadEmerg Med. 1998, 5: 628-636.
29.
go back to reference Ward KR, Yealy DM: End-tidal carbon dioxide monitoring in emergency medicine: clinical applications. AcadEmerg Med. 1998, 5: 637-646. Ward KR, Yealy DM: End-tidal carbon dioxide monitoring in emergency medicine: clinical applications. AcadEmerg Med. 1998, 5: 637-646.
Metadata
Title
Non-linear dynamical signal characterization for prediction of defibrillation success through machine learning
Authors
Sharad Shandilya
Kevin Ward
Michael Kurz
Kayvan Najarian
Publication date
01-12-2012
Publisher
BioMed Central
Published in
BMC Medical Informatics and Decision Making / Issue 1/2012
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/1472-6947-12-116

Other articles of this Issue 1/2012

BMC Medical Informatics and Decision Making 1/2012 Go to the issue