Skip to main content
Top
Published in: BMC Urology 1/2013

Open Access 01-12-2013 | Research article

Dysregulated methylation at imprinted genes in prostate tumor tissue detected by methylation microarray

Authors: Daniel I Jacobs, Yingying Mao, Alan Fu, William Kevin Kelly, Yong Zhu

Published in: BMC Urology | Issue 1/2013

Login to get access

Abstract

Background

Imprinting is an important epigenetic regulator of gene expression that is often disrupted in cancer. While loss of imprinting (LOI) has been reported for two genes in prostate cancer (IGF2 and TFPI2), disease-related changes in methylation across all imprinted gene regions has not been investigated.

Methods

Using an Illumina Infinium Methylation Assay, we analyzed methylation of 396 CpG sites in the promoter regions of 56 genes in a pooled sample of 12 pairs of prostate tumor and adjacent normal tissue. Selected LOI identified from the array was validated using the Sequenom EpiTYPER assay for individual samples and further confirmed by expression data from publicly available datasets.

Results

Methylation significantly increased in 52 sites and significantly decreased in 17 sites across 28 unique genes (P < 0.05), and the strongest evidence for loss of imprinting was demonstrated in tumor suppressor genes DLK1, PLAGL1, SLC22A18, TP73, and WT1. Differential expression of these five genes in prostate tumor versus normal tissue using array data from a publicly available database were consistent with the observed LOI patterns, and WT1 hypermethylation was confirmed using quantitative DNA methylation analysis.

Conclusions

Together, these findings suggest a more widespread dysregulation of genetic imprinting in prostate cancer than previously reported and warrant further investigation.
Appendix
Available only for authorised users
Literature
2.
go back to reference Fang F, Hodges E, Molaro A, Dean M, Hannon GJ, Smith AD: Genomic landscape of human allele-specific DNA methylation. P Natl Acad Sci. 2012, 109 (19): 7332-7337. 10.1073/pnas.1201310109.CrossRef Fang F, Hodges E, Molaro A, Dean M, Hannon GJ, Smith AD: Genomic landscape of human allele-specific DNA methylation. P Natl Acad Sci. 2012, 109 (19): 7332-7337. 10.1073/pnas.1201310109.CrossRef
3.
4.
go back to reference Feinberg AP, Cui H, Ohlsson R: DNA methylation and genomic imprinting: insights from cancer into epigenetic mechanisms. Semin Cancer Biol. 2002, 12 (5): 389-398. 10.1016/S1044-579X(02)00059-7.CrossRefPubMed Feinberg AP, Cui H, Ohlsson R: DNA methylation and genomic imprinting: insights from cancer into epigenetic mechanisms. Semin Cancer Biol. 2002, 12 (5): 389-398. 10.1016/S1044-579X(02)00059-7.CrossRefPubMed
5.
go back to reference Sawan C, Vaissière T, Murr R, Herceg Z: Epigenetic drivers and genetic passengers on the road to cancer. Mutat Res Fundam Mol Mech Mutagen. 2008, 642 (1–2): 1-13.CrossRef Sawan C, Vaissière T, Murr R, Herceg Z: Epigenetic drivers and genetic passengers on the road to cancer. Mutat Res Fundam Mol Mech Mutagen. 2008, 642 (1–2): 1-13.CrossRef
6.
go back to reference Ravenel JD, Broman KW, Perlman EJ, Niemitz EL, Jayawardena TM, Bell DW, Haber DA, Uejima H, Feinberg AP: Loss of Imprinting of Insulin-Like Growth Factor-II (IGF2) Gene in Distinguishing Specific Biologic Subtypes of Wilms Tumor. J Natl Cancer Inst. 2001, 93 (22): 1698-1703. 10.1093/jnci/93.22.1698.CrossRefPubMed Ravenel JD, Broman KW, Perlman EJ, Niemitz EL, Jayawardena TM, Bell DW, Haber DA, Uejima H, Feinberg AP: Loss of Imprinting of Insulin-Like Growth Factor-II (IGF2) Gene in Distinguishing Specific Biologic Subtypes of Wilms Tumor. J Natl Cancer Inst. 2001, 93 (22): 1698-1703. 10.1093/jnci/93.22.1698.CrossRefPubMed
7.
go back to reference Jarrard DF, Bussemakers MJ, Bova GS, Isaacs WB: Regional loss of imprinting of the insulin-like growth factor II gene occurs in human prostate tissues. Clin Cancer Res. 1995, 1 (12): 1471-1478.PubMed Jarrard DF, Bussemakers MJ, Bova GS, Isaacs WB: Regional loss of imprinting of the insulin-like growth factor II gene occurs in human prostate tissues. Clin Cancer Res. 1995, 1 (12): 1471-1478.PubMed
8.
go back to reference Ribarska T, Ingenwerth M, Goering W, Engers R, Schulz WA: Epigenetic Inactivation of the Placentally Imprinted Tumor Suppressor Gene TFPI2 in Prostate Carcinoma. Cancer Genomics Proteomics. 2010, 7 (2): 51-60.PubMed Ribarska T, Ingenwerth M, Goering W, Engers R, Schulz WA: Epigenetic Inactivation of the Placentally Imprinted Tumor Suppressor Gene TFPI2 in Prostate Carcinoma. Cancer Genomics Proteomics. 2010, 7 (2): 51-60.PubMed
9.
go back to reference Bhusari S, Yang B, Kueck J, Huang W, Jarrard DF: Insulin-like growth factor-2 (IGF2) loss of imprinting marks a field defect within human prostates containing cancer. Prostate. 2011, 71 (15): 1621-1630. 10.1002/pros.21379.CrossRefPubMed Bhusari S, Yang B, Kueck J, Huang W, Jarrard DF: Insulin-like growth factor-2 (IGF2) loss of imprinting marks a field defect within human prostates containing cancer. Prostate. 2011, 71 (15): 1621-1630. 10.1002/pros.21379.CrossRefPubMed
10.
go back to reference Kim SJ, Kelly WK, Fu A, Haines K, Hoffman A, Zheng T, Zhu Y: Genome-wide methylation analysis identifies involvement of TNF-α mediated cancer pathways in prostate cancer. Cancer Lett. 2011, 302 (1): 47-53. 10.1016/j.canlet.2010.12.010.CrossRefPubMed Kim SJ, Kelly WK, Fu A, Haines K, Hoffman A, Zheng T, Zhu Y: Genome-wide methylation analysis identifies involvement of TNF-α mediated cancer pathways in prostate cancer. Cancer Lett. 2011, 302 (1): 47-53. 10.1016/j.canlet.2010.12.010.CrossRefPubMed
11.
go back to reference Benjamini Y, Hochberg Y: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J Roy Stat Soc B Met. 1995, 57 (1): 289-300. Benjamini Y, Hochberg Y: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J Roy Stat Soc B Met. 1995, 57 (1): 289-300.
12.
go back to reference Welsh JB, Sapinoso LM, Su AI, Kern SG, Wang-Rodriguez J, Moskaluk CA, Frierson HF, Hampton GM: Analysis of Gene Expression Identifies Candidate Markers and Pharmacological Targets in Prostate Cancer. Cancer Res. 2001, 61 (16): 5974-5978.PubMed Welsh JB, Sapinoso LM, Su AI, Kern SG, Wang-Rodriguez J, Moskaluk CA, Frierson HF, Hampton GM: Analysis of Gene Expression Identifies Candidate Markers and Pharmacological Targets in Prostate Cancer. Cancer Res. 2001, 61 (16): 5974-5978.PubMed
13.
go back to reference Wallace TA, Prueitt RL, Yi M, Howe TM, Gillespie JW, Yfantis HG, Stephens RM, Caporaso NE, Loffredo CA, Ambs S: Tumor Immunobiological Differences in Prostate Cancer between African-American and European-American Men. Cancer Res. 2008, 68 (3): 927-936. 10.1158/0008-5472.CAN-07-2608.CrossRefPubMed Wallace TA, Prueitt RL, Yi M, Howe TM, Gillespie JW, Yfantis HG, Stephens RM, Caporaso NE, Loffredo CA, Ambs S: Tumor Immunobiological Differences in Prostate Cancer between African-American and European-American Men. Cancer Res. 2008, 68 (3): 927-936. 10.1158/0008-5472.CAN-07-2608.CrossRefPubMed
14.
go back to reference Singh D, Febbo PG, Ross K, Jackson DG, Manola J, Ladd C, Tamayo P, Renshaw AA, D'Amico AV, Richie JP, et al: Gene expression correlates of clinical prostate cancer behavior. Cancer Cell. 2002, 1 (2): 203-209. 10.1016/S1535-6108(02)00030-2.CrossRefPubMed Singh D, Febbo PG, Ross K, Jackson DG, Manola J, Ladd C, Tamayo P, Renshaw AA, D'Amico AV, Richie JP, et al: Gene expression correlates of clinical prostate cancer behavior. Cancer Cell. 2002, 1 (2): 203-209. 10.1016/S1535-6108(02)00030-2.CrossRefPubMed
15.
go back to reference Yu YP, Landsittel D, Jing L, Nelson J, Ren B, Liu L, McDonald C, Thomas R, Dhir R, Finkelstein S, et al: Gene Expression Alterations in Prostate Cancer Predicting Tumor Aggression and Preceding Development of Malignancy. J Clin Oncol. 2004, 22 (14): 2790-2799. 10.1200/JCO.2004.05.158.CrossRefPubMed Yu YP, Landsittel D, Jing L, Nelson J, Ren B, Liu L, McDonald C, Thomas R, Dhir R, Finkelstein S, et al: Gene Expression Alterations in Prostate Cancer Predicting Tumor Aggression and Preceding Development of Malignancy. J Clin Oncol. 2004, 22 (14): 2790-2799. 10.1200/JCO.2004.05.158.CrossRefPubMed
16.
go back to reference Liu P, Ramachandran S, Ali Seyed M, Scharer CD, Laycock N, Dalton WB, Williams H, Karanam S, Datta MW, Jaye DL, et al: Sex-Determining Region Y Box 4 Is a Transforming Oncogene in Human Prostate Cancer Cells. Cancer Res. 2006, 66 (8): 4011-4019. 10.1158/0008-5472.CAN-05-3055.CrossRefPubMed Liu P, Ramachandran S, Ali Seyed M, Scharer CD, Laycock N, Dalton WB, Williams H, Karanam S, Datta MW, Jaye DL, et al: Sex-Determining Region Y Box 4 Is a Transforming Oncogene in Human Prostate Cancer Cells. Cancer Res. 2006, 66 (8): 4011-4019. 10.1158/0008-5472.CAN-05-3055.CrossRefPubMed
17.
go back to reference Arredouani MS, Lu B, Bhasin M, Eljanne M, Yue W, Mosquera J-M, Bubley GJ, Li V, Rubin MA, Libermann TA, et al: Identification of the Transcription Factor Single-Minded Homologue 2 as a Potential Biomarker and Immunotherapy Target in Prostate Cancer. Clin Cancer Res. 2009, 15 (18): 5794-5802. 10.1158/1078-0432.CCR-09-0911.CrossRefPubMed Arredouani MS, Lu B, Bhasin M, Eljanne M, Yue W, Mosquera J-M, Bubley GJ, Li V, Rubin MA, Libermann TA, et al: Identification of the Transcription Factor Single-Minded Homologue 2 as a Potential Biomarker and Immunotherapy Target in Prostate Cancer. Clin Cancer Res. 2009, 15 (18): 5794-5802. 10.1158/1078-0432.CCR-09-0911.CrossRefPubMed
18.
go back to reference Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, Arora VK, Kaushik P, Cerami E, Reva B, et al: Integrative Genomic Profiling of Human Prostate Cancer. Cancer Cell. 2010, 18 (1): 11-22. 10.1016/j.ccr.2010.05.026.CrossRefPubMedPubMedCentral Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, Arora VK, Kaushik P, Cerami E, Reva B, et al: Integrative Genomic Profiling of Human Prostate Cancer. Cancer Cell. 2010, 18 (1): 11-22. 10.1016/j.ccr.2010.05.026.CrossRefPubMedPubMedCentral
19.
go back to reference Varambally S, Yu J, Laxman B, Rhodes DR, Mehra R, Tomlins SA, Shah RB, Chandran U, Monzon FA, Becich MJ, et al: Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell. 2005, 8 (5): 393-406. 10.1016/j.ccr.2005.10.001.CrossRefPubMed Varambally S, Yu J, Laxman B, Rhodes DR, Mehra R, Tomlins SA, Shah RB, Chandran U, Monzon FA, Becich MJ, et al: Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell. 2005, 8 (5): 393-406. 10.1016/j.ccr.2005.10.001.CrossRefPubMed
20.
go back to reference LaTulippe E, Satagopan J, Smith A, Scher H, Scardino P, Reuter V, Gerald WL: Comprehensive Gene Expression Analysis of Prostate Cancer Reveals Distinct Transcriptional Programs Associated with Metastatic Disease. Cancer Res. 2002, 62 (15): 4499-4506.PubMed LaTulippe E, Satagopan J, Smith A, Scher H, Scardino P, Reuter V, Gerald WL: Comprehensive Gene Expression Analysis of Prostate Cancer Reveals Distinct Transcriptional Programs Associated with Metastatic Disease. Cancer Res. 2002, 62 (15): 4499-4506.PubMed
21.
go back to reference Tomlins SA, Mehra R, Rhodes DR, Cao X, Wang L, Dhanasekaran SM, Kalyana-Sundaram S, Wei JT, Rubin MA, Pienta KJ, et al: Integrative molecular concept modeling of prostate cancer progression. Nat Genet. 2007, 39 (1): 41-51. 10.1038/ng1935.CrossRefPubMed Tomlins SA, Mehra R, Rhodes DR, Cao X, Wang L, Dhanasekaran SM, Kalyana-Sundaram S, Wei JT, Rubin MA, Pienta KJ, et al: Integrative molecular concept modeling of prostate cancer progression. Nat Genet. 2007, 39 (1): 41-51. 10.1038/ng1935.CrossRefPubMed
22.
go back to reference Vanaja DK, Cheville JC, Iturria SJ, Young CYF: Transcriptional Silencing of Zinc Finger Protein 185 Identified by Expression Profiling Is Associated with Prostate Cancer Progression. Cancer Res. 2003, 63 (14): 3877-3882.PubMed Vanaja DK, Cheville JC, Iturria SJ, Young CYF: Transcriptional Silencing of Zinc Finger Protein 185 Identified by Expression Profiling Is Associated with Prostate Cancer Progression. Cancer Res. 2003, 63 (14): 3877-3882.PubMed
23.
go back to reference Brown KW, Power F, Moore B, Charles AK, Malik KTA: Frequency and Timing of Loss of Imprinting at 11p13 and 11p15 in Wilms' Tumor Development. Mol Cancer Res. 2008, 6 (7): 1114-1123. 10.1158/1541-7786.MCR-08-0002.CrossRefPubMed Brown KW, Power F, Moore B, Charles AK, Malik KTA: Frequency and Timing of Loss of Imprinting at 11p13 and 11p15 in Wilms' Tumor Development. Mol Cancer Res. 2008, 6 (7): 1114-1123. 10.1158/1541-7786.MCR-08-0002.CrossRefPubMed
24.
go back to reference Z-h J, R-j Y, Dong B, Xing B-c:Progenitor gene DLK1 might be an independent prognostic factor of liver cancer. Expert Opin Biol Ther. 2008, 8 (4): 371-377. 10.1517/14712598.8.4.371.CrossRef Z-h J, R-j Y, Dong B, Xing B-c:Progenitor gene DLK1 might be an independent prognostic factor of liver cancer. Expert Opin Biol Ther. 2008, 8 (4): 371-377. 10.1517/14712598.8.4.371.CrossRef
25.
go back to reference Xu X, Liu R-F, Zhang X, Huang L-Y, Chen F, Fei Q-L, Han Z-G: DLK1 as a Potential Target against Cancer Stem/Progenitor Cells of Hepatocellular Carcinoma. Mol Cancer Ther. 2012, 11 (3): 629-638. 10.1158/1535-7163.MCT-11-0531.CrossRefPubMed Xu X, Liu R-F, Zhang X, Huang L-Y, Chen F, Fei Q-L, Han Z-G: DLK1 as a Potential Target against Cancer Stem/Progenitor Cells of Hepatocellular Carcinoma. Mol Cancer Ther. 2012, 11 (3): 629-638. 10.1158/1535-7163.MCT-11-0531.CrossRefPubMed
26.
go back to reference Jarmalaite S, Laurinaviciene A, Tverkuviene J, Kalinauskaite N, Petroska D, Böhling T, Husgafvel-Pursiainen K: Tumor suppressor gene ZAC/PLAGL1: altered expression and loss of the nonimprinted allele in pheochromocytomas. Cancer genet. 2011, 204 (7): 398-404. 10.1016/j.cancergen.2011.07.002.CrossRefPubMed Jarmalaite S, Laurinaviciene A, Tverkuviene J, Kalinauskaite N, Petroska D, Böhling T, Husgafvel-Pursiainen K: Tumor suppressor gene ZAC/PLAGL1: altered expression and loss of the nonimprinted allele in pheochromocytomas. Cancer genet. 2011, 204 (7): 398-404. 10.1016/j.cancergen.2011.07.002.CrossRefPubMed
27.
go back to reference Chu S-H, Feng D-F, Ma Y-B, Zhang H, Zhu Z-A, Li Z-Q, Jiang P-C: Promoter methylation and downregulation of SLC22A18 are associated with the development and progression of human glioma. J Transl Med. 2011, 9 (1): 156-10.1186/1479-5876-9-156.CrossRefPubMedPubMedCentral Chu S-H, Feng D-F, Ma Y-B, Zhang H, Zhu Z-A, Li Z-Q, Jiang P-C: Promoter methylation and downregulation of SLC22A18 are associated with the development and progression of human glioma. J Transl Med. 2011, 9 (1): 156-10.1186/1479-5876-9-156.CrossRefPubMedPubMedCentral
28.
go back to reference He H, Xu C, Zhao Z, Qin X, Xu H, Zhang H: Low expression of SLC22A18 predicts poor survival outcome in patients with breast cancer after surgery. Cancer Epidemiol. 2011, 35 (3): 279-285. 10.1016/j.canep.2010.09.006.CrossRefPubMed He H, Xu C, Zhao Z, Qin X, Xu H, Zhang H: Low expression of SLC22A18 predicts poor survival outcome in patients with breast cancer after surgery. Cancer Epidemiol. 2011, 35 (3): 279-285. 10.1016/j.canep.2010.09.006.CrossRefPubMed
29.
go back to reference Lee SB, Haber DA: Wilms Tumor and the WT1 Gene. Exp Cell Res. 2001, 264 (1): 74-99. 10.1006/excr.2000.5131.CrossRefPubMed Lee SB, Haber DA: Wilms Tumor and the WT1 Gene. Exp Cell Res. 2001, 264 (1): 74-99. 10.1006/excr.2000.5131.CrossRefPubMed
30.
go back to reference Silberstein GB, Van Horn K, Strickland P, Roberts CT, Daniel CW: Altered expression of the WT1 Wilms tumor suppressor gene in human breast cancer. Proc Natl Acad Sci. 1997, 94 (15): 8132-8137. 10.1073/pnas.94.15.8132.CrossRefPubMedPubMedCentral Silberstein GB, Van Horn K, Strickland P, Roberts CT, Daniel CW: Altered expression of the WT1 Wilms tumor suppressor gene in human breast cancer. Proc Natl Acad Sci. 1997, 94 (15): 8132-8137. 10.1073/pnas.94.15.8132.CrossRefPubMedPubMedCentral
31.
go back to reference Cawkwell L, Lewis FA, Quirke P: Frequency of allele loss of DCC, p53, RBI, WT1, NF1, NM23 and APC/MCC in colorectal cancer assayed by fluorescent multiplex polymerase chain reaction. Br J Cancer. 1994, 70 (5): 813-818. 10.1038/bjc.1994.404.CrossRefPubMedPubMedCentral Cawkwell L, Lewis FA, Quirke P: Frequency of allele loss of DCC, p53, RBI, WT1, NF1, NM23 and APC/MCC in colorectal cancer assayed by fluorescent multiplex polymerase chain reaction. Br J Cancer. 1994, 70 (5): 813-818. 10.1038/bjc.1994.404.CrossRefPubMedPubMedCentral
32.
go back to reference Oji Y, Miyoshi Y, Koga S, Nakano Y, Ando A, Nakatsuka S-i, Ikeba A, Takahashi E, Sakaguchi N, Yokota A, et al: Overexpression of the Wilms' tumor gene WT1 in primary thyroid cancer. Cancer Science. 2003, 94 (7): 606-611. 10.1111/j.1349-7006.2003.tb01490.x.CrossRefPubMed Oji Y, Miyoshi Y, Koga S, Nakano Y, Ando A, Nakatsuka S-i, Ikeba A, Takahashi E, Sakaguchi N, Yokota A, et al: Overexpression of the Wilms' tumor gene WT1 in primary thyroid cancer. Cancer Science. 2003, 94 (7): 606-611. 10.1111/j.1349-7006.2003.tb01490.x.CrossRefPubMed
33.
go back to reference Sigal A, Rotter V: Oncogenic Mutations of the p53 Tumor Suppressor: The Demons of the Guardian of the Genome. Cancer Res. 2000, 60 (24): 6788-6793.PubMed Sigal A, Rotter V: Oncogenic Mutations of the p53 Tumor Suppressor: The Demons of the Guardian of the Genome. Cancer Res. 2000, 60 (24): 6788-6793.PubMed
34.
go back to reference Hollstein M, Sidransky D, Vogelstein B, Harris CC: p53 Mutations in human cancers. Science. 1991, 253 (5015): 49-53. 10.1126/science.1905840.CrossRefPubMed Hollstein M, Sidransky D, Vogelstein B, Harris CC: p53 Mutations in human cancers. Science. 1991, 253 (5015): 49-53. 10.1126/science.1905840.CrossRefPubMed
35.
go back to reference Bird AP: Gene expression: DNA methylation– how important in gene control?. Nature. 1984, 307 (5951): 503-504. 10.1038/307503a0.CrossRefPubMed Bird AP: Gene expression: DNA methylation– how important in gene control?. Nature. 1984, 307 (5951): 503-504. 10.1038/307503a0.CrossRefPubMed
36.
go back to reference Robertson KD, Jones PA: DNA methylation: past, present and future directions. Carcinogenesis. 2000, 21 (3): 461-467. 10.1093/carcin/21.3.461.CrossRefPubMed Robertson KD, Jones PA: DNA methylation: past, present and future directions. Carcinogenesis. 2000, 21 (3): 461-467. 10.1093/carcin/21.3.461.CrossRefPubMed
37.
go back to reference Ng H-H, Adrian B: DNA methylation and chromatin modification. Curr Opin Genet Dev. 1999, 9 (2): 158-163. 10.1016/S0959-437X(99)80024-0.CrossRefPubMed Ng H-H, Adrian B: DNA methylation and chromatin modification. Curr Opin Genet Dev. 1999, 9 (2): 158-163. 10.1016/S0959-437X(99)80024-0.CrossRefPubMed
38.
go back to reference Jones PA, Takai D: The Role of DNA Methylation in Mammalian Epigenetics. Science. 2001, 293 (5532): 1068-1070. 10.1126/science.1063852.CrossRefPubMed Jones PA, Takai D: The Role of DNA Methylation in Mammalian Epigenetics. Science. 2001, 293 (5532): 1068-1070. 10.1126/science.1063852.CrossRefPubMed
39.
40.
go back to reference Baladrón V, Ruiz-Hidalgo MJ, Nueda ML, Díaz-Guerra MJM, García-Ramírez JJ, Bonvini E, Gubina E, Laborda J: dlk acts as a negative regulator of Notch1 activation through interactions with specific EGF-like repeats. Exp Cell Res. 2005, 303 (2): 343-359. 10.1016/j.yexcr.2004.10.001.CrossRefPubMed Baladrón V, Ruiz-Hidalgo MJ, Nueda ML, Díaz-Guerra MJM, García-Ramírez JJ, Bonvini E, Gubina E, Laborda J: dlk acts as a negative regulator of Notch1 activation through interactions with specific EGF-like repeats. Exp Cell Res. 2005, 303 (2): 343-359. 10.1016/j.yexcr.2004.10.001.CrossRefPubMed
41.
go back to reference Hafeez BB, Adhami VM, Asim M, Siddiqui IA, Bhat KM, Zhong W, Saleem M, Din M, Setaluri V, Mukhtar H: Targeted knockdown of Notch1 inhibits invasion of human prostate cancer cells concomitant with inhibition of matrix metalloproteinase-9 and urokinase plasminogen activator. Clin Cancer Res. 2009, 15 (2): 452-459. 10.1158/1078-0432.CCR-08-1631.CrossRefPubMedCentral Hafeez BB, Adhami VM, Asim M, Siddiqui IA, Bhat KM, Zhong W, Saleem M, Din M, Setaluri V, Mukhtar H: Targeted knockdown of Notch1 inhibits invasion of human prostate cancer cells concomitant with inhibition of matrix metalloproteinase-9 and urokinase plasminogen activator. Clin Cancer Res. 2009, 15 (2): 452-459. 10.1158/1078-0432.CCR-08-1631.CrossRefPubMedCentral
42.
go back to reference Murillo H, Schmidt LJ, Karter M, Hafner KA, Kondo Y, Ballman KV, Vasmatzis G, Jenkins RB, Tindall DJ: Prostate cancer cells use genetic and epigenetic mechanisms for progression to androgen independence. Gene Chromosome Canc. 2006, 45 (7): 702-716. 10.1002/gcc.20333.CrossRef Murillo H, Schmidt LJ, Karter M, Hafner KA, Kondo Y, Ballman KV, Vasmatzis G, Jenkins RB, Tindall DJ: Prostate cancer cells use genetic and epigenetic mechanisms for progression to androgen independence. Gene Chromosome Canc. 2006, 45 (7): 702-716. 10.1002/gcc.20333.CrossRef
43.
go back to reference Yamada HY, Gorbsky GJ: Tumor suppressor candidate TSSC5 is regulated by UbcH6 and a novel ubiquitin ligase RING105. Oncogene. 2005, 25 (9): 1330-1339.CrossRef Yamada HY, Gorbsky GJ: Tumor suppressor candidate TSSC5 is regulated by UbcH6 and a novel ubiquitin ligase RING105. Oncogene. 2005, 25 (9): 1330-1339.CrossRef
44.
go back to reference Fraizer G, Leahy R, Priyadarshini S, Graham K, Delacerda J, Diaz M: Suppression of prostate tumor cell growth in vivo by WT1, the Wilms' tumor suppressor gene. Int J Oncol. 2004, 24 (3): 461-471.PubMed Fraizer G, Leahy R, Priyadarshini S, Graham K, Delacerda J, Diaz M: Suppression of prostate tumor cell growth in vivo by WT1, the Wilms' tumor suppressor gene. Int J Oncol. 2004, 24 (3): 461-471.PubMed
45.
go back to reference Yu J, Baron V, Mercola D, Mustelin T, Adamson E: A network of p73, p53 and Egr1 is required for efficient apoptosis in tumor cells. Cell Death Differ. 2006, 14 (3): 436-446.CrossRefPubMed Yu J, Baron V, Mercola D, Mustelin T, Adamson E: A network of p73, p53 and Egr1 is required for efficient apoptosis in tumor cells. Cell Death Differ. 2006, 14 (3): 436-446.CrossRefPubMed
46.
go back to reference Fu VX, Dobosy JR, Desotelle JA, Almassi N, Ewald JA, Srinivasan R, Berres M, Svaren J, Weindruch R, Jarrard DF: Aging and Cancer-Related Loss of Insulin-like Growth Factor 2 Imprinting in the Mouse and Human Prostate. Cancer Res. 2008, 68 (16): 6797-6802. 10.1158/0008-5472.CAN-08-1714.CrossRefPubMedPubMedCentral Fu VX, Dobosy JR, Desotelle JA, Almassi N, Ewald JA, Srinivasan R, Berres M, Svaren J, Weindruch R, Jarrard DF: Aging and Cancer-Related Loss of Insulin-like Growth Factor 2 Imprinting in the Mouse and Human Prostate. Cancer Res. 2008, 68 (16): 6797-6802. 10.1158/0008-5472.CAN-08-1714.CrossRefPubMedPubMedCentral
47.
go back to reference Cui H, Horon IL, Ohlsson R, Hamilton SR, Feinberg AP: Loss of imprinting in normal tissue of colorectal cancer patients with microsatellite instability. Nat Med. 1998, 4 (11): 1276-1280. 10.1038/3260.CrossRefPubMed Cui H, Horon IL, Ohlsson R, Hamilton SR, Feinberg AP: Loss of imprinting in normal tissue of colorectal cancer patients with microsatellite instability. Nat Med. 1998, 4 (11): 1276-1280. 10.1038/3260.CrossRefPubMed
Metadata
Title
Dysregulated methylation at imprinted genes in prostate tumor tissue detected by methylation microarray
Authors
Daniel I Jacobs
Yingying Mao
Alan Fu
William Kevin Kelly
Yong Zhu
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Urology / Issue 1/2013
Electronic ISSN: 1471-2490
DOI
https://doi.org/10.1186/1471-2490-13-37

Other articles of this Issue 1/2013

BMC Urology 1/2013 Go to the issue