Skip to main content
Top
Published in: BMC Urology 1/2013

Open Access 01-12-2013 | Research article

MDM2 SNP309 promoter polymorphism and p53 mutations in urinary bladder carcinoma stage T1

Authors: Hans Olsson, Per Hultman, Johan Rosell, Peter Söderkvist, Staffan Jahnson

Published in: BMC Urology | Issue 1/2013

Login to get access

Abstract

Background

Urinary bladder carcinoma stage T1 is an unpredictable disease that in some cases has a good prognosis with only local or no recurrence, but in others can appear as a more aggressive tumor with progression to more advanced stages. The aim here was to investigate stage T1 tumors regarding MDM2 promoter SNP309 polymorphism, mutations in the p53 gene, and expression of p53 and p16 measured by immunohistochemistry, and subsequently relate these changes to tumor recurrence and progression. We examined a cohort of patients with primary stage T1 urothelial carcinoma of the bladder and their tumors.

Methods

After re-evaluation of the original slides and exclusions, the study population comprised 141 patients, all with primary stage T1 urothelial carcinoma of the bladder. The hospital records were screened for clinical parameters and information concerning presence of histologically proven recurrence and progression. The paraffin-embedded tumor material was evaluated by immunohistochemistry. Any mutations found in the p53 gene were studied by single-strand conformation analysis and Sanger sequencing. The MDM2 SNP309 polymorphism was investigated by pyrosequencing. Multivariate analyses concerning association with prognosis were performed, and Kaplan-Meier analysis was conducted for a combination of changes and time to progression.

Results

Of the 141 patients, 82 had at least one MDM2 SNP309 G allele, and 53 had a mutation in the p53 gene, but neither of those anomalies was associated with a worse prognosis. A mutation in the p53 gene was associated with immunohistochemically visualized p53 protein expression at a cut-off value of 50%. In the group with p53 mutation Kaplan-Meier analysis showed higher rate of progression and shorter time to progression in patients with immunohistochemically abnormal p16 expression compared to them with normal p16 expression (p = 0.038).

Conclusions

MDM2 SNP309 promoter polymorphism and mutations in p53 were not associated with worse prognosis in this cohort of patients with primary stage T1 urinary bladder carcinoma. However, patients with abnormal p16 expression and a mutated p53 gene had a higher rate of and a shorter time to progression, and p53 gene mutation was associated with an abnormal immunohistochemistry for p53 at a cut-off of 50%.
Appendix
Available only for authorised users
Literature
1.
go back to reference Andius P, Holmang S: Bacillus Calmette-Guerin therapy in stage Ta/T1 bladder cancer: prognostic factors for time to recurrence and progression. BJU Int. 2004, 93 (7): 980-984. 10.1111/j.1464-410X.2003.04764.x.CrossRefPubMed Andius P, Holmang S: Bacillus Calmette-Guerin therapy in stage Ta/T1 bladder cancer: prognostic factors for time to recurrence and progression. BJU Int. 2004, 93 (7): 980-984. 10.1111/j.1464-410X.2003.04764.x.CrossRefPubMed
2.
go back to reference Shahin O, et al: A retrospective analysis of 153 patients treated with or without intravesical bacillus Calmette-Guerin for primary stage T1 grade 3 bladder cancer: recurrence, progression and survival. J Urol. 2003, 169 (1): 96-100. 10.1016/S0022-5347(05)64044-X. discussion 100CrossRefPubMed Shahin O, et al: A retrospective analysis of 153 patients treated with or without intravesical bacillus Calmette-Guerin for primary stage T1 grade 3 bladder cancer: recurrence, progression and survival. J Urol. 2003, 169 (1): 96-100. 10.1016/S0022-5347(05)64044-X. discussion 100CrossRefPubMed
3.
go back to reference Stein JP, et al: Radical cystectomy in the treatment of invasive bladder cancer: long-term results in 1,054 patients. J Clin Oncol. 2001, 19 (3): 666-675.PubMed Stein JP, et al: Radical cystectomy in the treatment of invasive bladder cancer: long-term results in 1,054 patients. J Clin Oncol. 2001, 19 (3): 666-675.PubMed
4.
go back to reference Bostrom PJ, et al: Optimal timing of radical cystectomy in T1 high-grade bladder cancer. Expert Rev Anticancer Ther. 2010, 10 (12): 1891-1902. 10.1586/era.10.183.CrossRefPubMed Bostrom PJ, et al: Optimal timing of radical cystectomy in T1 high-grade bladder cancer. Expert Rev Anticancer Ther. 2010, 10 (12): 1891-1902. 10.1586/era.10.183.CrossRefPubMed
5.
go back to reference Herr HW, Donat SM, Dalbagni G: Can restaging transurethral resection of T1 bladder cancer select patients for immediate cystectomy?. J Urol. 2007, 177 (1): 75-79. 10.1016/j.juro.2006.08.070. discussion 79CrossRefPubMed Herr HW, Donat SM, Dalbagni G: Can restaging transurethral resection of T1 bladder cancer select patients for immediate cystectomy?. J Urol. 2007, 177 (1): 75-79. 10.1016/j.juro.2006.08.070. discussion 79CrossRefPubMed
6.
go back to reference Sjodahl G: A systematic study of gene mutations in urothelial carcinoma; inactivating mutations in TSC2 and PIK3R1. PLoS One. 2011, 6 (4): 10.1371/journal.pone.0018583. Sjodahl G: A systematic study of gene mutations in urothelial carcinoma; inactivating mutations in TSC2 and PIK3R1. PLoS One. 2011, 6 (4): 10.1371/journal.pone.0018583.
7.
go back to reference Smith ND, et al: The p53 tumor suppressor gene and nuclear protein: basic science review and relevance in the management of bladder cancer. J Urol. 2003, 169 (4): 1219-1228. 10.1097/01.ju.0000056085.58221.80.CrossRefPubMed Smith ND, et al: The p53 tumor suppressor gene and nuclear protein: basic science review and relevance in the management of bladder cancer. J Urol. 2003, 169 (4): 1219-1228. 10.1097/01.ju.0000056085.58221.80.CrossRefPubMed
8.
go back to reference Pasin E, et al: Superficial bladder cancer: an update on etiology, molecular development, classification, and natural history. Rev Urol. 2008, 10 (1): 31-43.PubMedPubMedCentral Pasin E, et al: Superficial bladder cancer: an update on etiology, molecular development, classification, and natural history. Rev Urol. 2008, 10 (1): 31-43.PubMedPubMedCentral
9.
go back to reference Bond GL, Levine AJ: A single nucleotide polymorphism in the p53 pathway interacts with gender, environmental stresses and tumor genetics to influence cancer in humans. Oncogene. 2007, 26 (9): 1317-1323. 10.1038/sj.onc.1210199.CrossRefPubMed Bond GL, Levine AJ: A single nucleotide polymorphism in the p53 pathway interacts with gender, environmental stresses and tumor genetics to influence cancer in humans. Oncogene. 2007, 26 (9): 1317-1323. 10.1038/sj.onc.1210199.CrossRefPubMed
10.
go back to reference Horikawa Y, et al: Clinical implications of the MDM2 SNP309 and p53 Arg72Pro polymorphisms in transitional cell carcinoma of the bladder. Oncol Rep. 2008, 20 (1): 49-55.PubMed Horikawa Y, et al: Clinical implications of the MDM2 SNP309 and p53 Arg72Pro polymorphisms in transitional cell carcinoma of the bladder. Oncol Rep. 2008, 20 (1): 49-55.PubMed
11.
go back to reference Soussi T, Wiman KG: Shaping genetic alterations in human cancer: the p53 mutation paradigm. Cancer Cell. 2007, 12 (4): 303-312. 10.1016/j.ccr.2007.10.001.CrossRefPubMed Soussi T, Wiman KG: Shaping genetic alterations in human cancer: the p53 mutation paradigm. Cancer Cell. 2007, 12 (4): 303-312. 10.1016/j.ccr.2007.10.001.CrossRefPubMed
12.
go back to reference Knappskog S, Lonning PE: Effects of the MDM2 promoter SNP285 and SNP309 on Sp1 transcription factor binding and cancer risk. Transcription. 2011, 2 (5): 207-210. 10.4161/trns.2.5.16813.CrossRefPubMedPubMedCentral Knappskog S, Lonning PE: Effects of the MDM2 promoter SNP285 and SNP309 on Sp1 transcription factor binding and cancer risk. Transcription. 2011, 2 (5): 207-210. 10.4161/trns.2.5.16813.CrossRefPubMedPubMedCentral
13.
go back to reference Suzuki K, Matsubara H: Recent advances in p53 research and cancer treatment. J Biomed Biotechnol. 2011, 2011: 10.1155/2011/978312. Suzuki K, Matsubara H: Recent advances in p53 research and cancer treatment. J Biomed Biotechnol. 2011, 2011: 10.1155/2011/978312.
15.
go back to reference Ozaki T, Nakagawara A: p53: the attractive tumor suppressor in the cancer research field. J Biomed Biotechnol. 2011, 2011: 10.1155/2011/603925. Ozaki T, Nakagawara A: p53: the attractive tumor suppressor in the cancer research field. J Biomed Biotechnol. 2011, 2011: 10.1155/2011/603925.
16.
go back to reference Moll UM, Petrenko O: The MDM2-p53 interaction. Mol Cancer Res. 2003, 1 (14): 1001-1008.PubMed Moll UM, Petrenko O: The MDM2-p53 interaction. Mol Cancer Res. 2003, 1 (14): 1001-1008.PubMed
17.
go back to reference Bond GL, et al: A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell. 2004, 119 (5): 591-602. 10.1016/j.cell.2004.11.022.CrossRefPubMed Bond GL, et al: A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell. 2004, 119 (5): 591-602. 10.1016/j.cell.2004.11.022.CrossRefPubMed
18.
go back to reference Brown CJ, et al: Reactivation of p53: from peptides to small molecules. Trends Pharmacol Sci. 2011, 32 (1): 53-62. 10.1016/j.tips.2010.11.004.CrossRefPubMed Brown CJ, et al: Reactivation of p53: from peptides to small molecules. Trends Pharmacol Sci. 2011, 32 (1): 53-62. 10.1016/j.tips.2010.11.004.CrossRefPubMed
19.
go back to reference Weber L: Patented inhibitors of p53-Mdm2 interaction (2006–2008). Expert Opin Ther Pat. 2010, 20 (2): 179-191. 10.1517/13543770903514129.CrossRefPubMed Weber L: Patented inhibitors of p53-Mdm2 interaction (2006–2008). Expert Opin Ther Pat. 2010, 20 (2): 179-191. 10.1517/13543770903514129.CrossRefPubMed
20.
go back to reference Lauria A, et al: Molecular modeling approaches in the discovery of new drugs for anti-cancer therapy: the investigation of p53-MDM2 interaction and its inhibition by small molecules. Curr Med Chem. 2010, 17 (28): 3142-3154. 10.2174/092986710792232021.CrossRefPubMed Lauria A, et al: Molecular modeling approaches in the discovery of new drugs for anti-cancer therapy: the investigation of p53-MDM2 interaction and its inhibition by small molecules. Curr Med Chem. 2010, 17 (28): 3142-3154. 10.2174/092986710792232021.CrossRefPubMed
21.
go back to reference Olsson H: Immunohistochemical Evaluation of Cell Cycle Regulators: Impact on Predicting Prognosis in Stage T1 Urinary Bladder Cancer. ISRN Urology. in press Olsson H: Immunohistochemical Evaluation of Cell Cycle Regulators: Impact on Predicting Prognosis in Stage T1 Urinary Bladder Cancer. ISRN Urology. in press
22.
go back to reference Olsson H, et al: Population-based study on prognostic factors for recurrence and progression in primary stage T1 bladder tumours. 2012, Scand: J Urol Olsson H, et al: Population-based study on prognostic factors for recurrence and progression in primary stage T1 bladder tumours. 2012, Scand: J Urol
23.
go back to reference Quentin T, et al: Altered mRNA expression of the Rb and p16 tumor suppressor genes and of CDK4 in transitional cell carcinomas of the urinary bladder associated with tumor progression. Anticancer Res. 2004, 24 (2B): 1011-1023.PubMed Quentin T, et al: Altered mRNA expression of the Rb and p16 tumor suppressor genes and of CDK4 in transitional cell carcinomas of the urinary bladder associated with tumor progression. Anticancer Res. 2004, 24 (2B): 1011-1023.PubMed
24.
go back to reference Konecny GE, et al: Expression of p16 and retinoblastoma determines response to CDK4/6 inhibition in ovarian cancer. Clin Cancer Res. 2011, 17 (6): 1591-1602. 10.1158/1078-0432.CCR-10-2307.CrossRefPubMedPubMedCentral Konecny GE, et al: Expression of p16 and retinoblastoma determines response to CDK4/6 inhibition in ovarian cancer. Clin Cancer Res. 2011, 17 (6): 1591-1602. 10.1158/1078-0432.CCR-10-2307.CrossRefPubMedPubMedCentral
26.
go back to reference Mostofi FK, Davis CJ, Sesterhenn IA, et al: Histological typing of urinary bladder tumours. 1999, Berlin, Heidelberg, New York: Springer, 2CrossRef Mostofi FK, Davis CJ, Sesterhenn IA, et al: Histological typing of urinary bladder tumours. 1999, Berlin, Heidelberg, New York: Springer, 2CrossRef
27.
go back to reference TNM Classification of Malignant Tumours. Edited by: Sobin LH, Gospodarowicz MK, Wittekind C. 2009, Oxford: Wiley-Blackwell, 7 TNM Classification of Malignant Tumours. Edited by: Sobin LH, Gospodarowicz MK, Wittekind C. 2009, Oxford: Wiley-Blackwell, 7
28.
go back to reference Cho KS, et al: Lymphovascular invasion in transurethral resection specimens as predictor of progression and metastasis in patients with newly diagnosed T1 bladder urothelial cancer. J Urol. 2009, 182 (6): 2625-2630. 10.1016/j.juro.2009.08.083.CrossRefPubMed Cho KS, et al: Lymphovascular invasion in transurethral resection specimens as predictor of progression and metastasis in patients with newly diagnosed T1 bladder urothelial cancer. J Urol. 2009, 182 (6): 2625-2630. 10.1016/j.juro.2009.08.083.CrossRefPubMed
29.
go back to reference Algaba F: Lymphovascular invasion as a prognostic tool for advanced bladder cancer. Curr Opin Urol. 2006, 16 (5): 367-371. 10.1097/01.mou.0000240311.08701.55.CrossRefPubMed Algaba F: Lymphovascular invasion as a prognostic tool for advanced bladder cancer. Curr Opin Urol. 2006, 16 (5): 367-371. 10.1097/01.mou.0000240311.08701.55.CrossRefPubMed
30.
go back to reference Shariat SF, et al: p53 predictive value for pT1-2 N0 disease at radical cystectomy. J Urol. 2009, 182 (3): 907-913. 10.1016/j.juro.2009.05.024.CrossRefPubMed Shariat SF, et al: p53 predictive value for pT1-2 N0 disease at radical cystectomy. J Urol. 2009, 182 (3): 907-913. 10.1016/j.juro.2009.05.024.CrossRefPubMed
31.
go back to reference Hitchings AW, et al: Prediction of progression in pTa and pT1 bladder carcinomas with p53, p16 and pRb. Br J Cancer. 2004, 91 (3): 552-557. 10.1038/sj.bjc.6601954.CrossRefPubMedPubMedCentral Hitchings AW, et al: Prediction of progression in pTa and pT1 bladder carcinomas with p53, p16 and pRb. Br J Cancer. 2004, 91 (3): 552-557. 10.1038/sj.bjc.6601954.CrossRefPubMedPubMedCentral
32.
go back to reference Shariat SF, et al: p53, p21, pRB, and p16 expression predict clinical outcome in cystectomy with bladder cancer. J Clin Oncol. 2004, 22 (6): 1014-1024. 10.1200/JCO.2004.03.118.CrossRefPubMed Shariat SF, et al: p53, p21, pRB, and p16 expression predict clinical outcome in cystectomy with bladder cancer. J Clin Oncol. 2004, 22 (6): 1014-1024. 10.1200/JCO.2004.03.118.CrossRefPubMed
33.
go back to reference Perry DJ: Screening for Mutations in DNA by Single-Stranded Conformation Polymorphism (SSCP) Analysis. Methods Mol Med. 1999, 31: 105-110.PubMed Perry DJ: Screening for Mutations in DNA by Single-Stranded Conformation Polymorphism (SSCP) Analysis. Methods Mol Med. 1999, 31: 105-110.PubMed
35.
go back to reference Lind H, et al: Association of a functional polymorphism in the promoter of the MDM2 gene with risk of nonsmall cell lung cancer. Int J Cancer. 2006, 119 (3): 718-721. 10.1002/ijc.21872.CrossRefPubMed Lind H, et al: Association of a functional polymorphism in the promoter of the MDM2 gene with risk of nonsmall cell lung cancer. Int J Cancer. 2006, 119 (3): 718-721. 10.1002/ijc.21872.CrossRefPubMed
36.
go back to reference Boersma BJ, et al: Association of breast cancer outcome with status of p53 and MDM2 SNP309. J Natl Cancer Inst. 2006, 98 (13): 911-919. 10.1093/jnci/djj245.CrossRefPubMed Boersma BJ, et al: Association of breast cancer outcome with status of p53 and MDM2 SNP309. J Natl Cancer Inst. 2006, 98 (13): 911-919. 10.1093/jnci/djj245.CrossRefPubMed
37.
go back to reference Ohmiya N, et al: MDM2 promoter polymorphism is associated with both an increased susceptibility to gastric carcinoma and poor prognosis. J Clin Oncol. 2006, 24 (27): 4434-4440. 10.1200/JCO.2005.04.1459.CrossRefPubMed Ohmiya N, et al: MDM2 promoter polymorphism is associated with both an increased susceptibility to gastric carcinoma and poor prognosis. J Clin Oncol. 2006, 24 (27): 4434-4440. 10.1200/JCO.2005.04.1459.CrossRefPubMed
38.
go back to reference Hirata H, et al: MDM2 SNP309 polymorphism as risk factor for susceptibility and poor prognosis in renal cell carcinoma. Clin Cancer Res. 2007, 13 (14): 4123-4129. 10.1158/1078-0432.CCR-07-0609.CrossRefPubMed Hirata H, et al: MDM2 SNP309 polymorphism as risk factor for susceptibility and poor prognosis in renal cell carcinoma. Clin Cancer Res. 2007, 13 (14): 4123-4129. 10.1158/1078-0432.CCR-07-0609.CrossRefPubMed
39.
go back to reference Shinohara A, et al: Association of TP53 and MDM2 polymorphisms with survival in bladder cancer patients treated with chemoradiotherapy. Cancer Sci. 2009, 100 (12): 2376-2382. 10.1111/j.1349-7006.2009.01331.x.CrossRefPubMed Shinohara A, et al: Association of TP53 and MDM2 polymorphisms with survival in bladder cancer patients treated with chemoradiotherapy. Cancer Sci. 2009, 100 (12): 2376-2382. 10.1111/j.1349-7006.2009.01331.x.CrossRefPubMed
40.
go back to reference Yemelyanova A, et al: Immunohistochemical staining patterns of p53 can serve as a surrogate marker for TP53 mutations in ovarian carcinoma: an immunohistochemical and nucleotide sequencing analysis. Mod Pathol. 2011, 24 (9): 1248-1253. 10.1038/modpathol.2011.85.CrossRefPubMed Yemelyanova A, et al: Immunohistochemical staining patterns of p53 can serve as a surrogate marker for TP53 mutations in ovarian carcinoma: an immunohistochemical and nucleotide sequencing analysis. Mod Pathol. 2011, 24 (9): 1248-1253. 10.1038/modpathol.2011.85.CrossRefPubMed
41.
go back to reference Cote RJ, et al: Elevated and absent pRb expression is associated with bladder cancer progression and has cooperative effects with p53. Cancer Res. 1998, 58 (6): 1090-1094.PubMed Cote RJ, et al: Elevated and absent pRb expression is associated with bladder cancer progression and has cooperative effects with p53. Cancer Res. 1998, 58 (6): 1090-1094.PubMed
42.
go back to reference Benedict WF, et al: Level of retinoblastoma protein expression correlates with p16 (MTS-1/INK4A/CDKN2) status in bladder cancer. Oncogene. 1999, 18 (5): 1197-1203. 10.1038/sj.onc.1202452.CrossRefPubMed Benedict WF, et al: Level of retinoblastoma protein expression correlates with p16 (MTS-1/INK4A/CDKN2) status in bladder cancer. Oncogene. 1999, 18 (5): 1197-1203. 10.1038/sj.onc.1202452.CrossRefPubMed
43.
go back to reference Kruger S, et al: P16 immunoreactivity is an independent predictor of tumor progression in minimally invasive urothelial bladder carcinoma. Eur Urol. 2005, 47 (4): 463-467. 10.1016/j.eururo.2004.12.018.CrossRefPubMed Kruger S, et al: P16 immunoreactivity is an independent predictor of tumor progression in minimally invasive urothelial bladder carcinoma. Eur Urol. 2005, 47 (4): 463-467. 10.1016/j.eururo.2004.12.018.CrossRefPubMed
44.
go back to reference Alhopuro P, et al: The MDM2 promoter polymorphism SNP309T→G and the risk of uterine leiomyosarcoma, colorectal cancer, and squamous cell carcinoma of the head and neck. J Med Genet. 2005, 42 (9): 694-698. 10.1136/jmg.2005.031260.CrossRefPubMedPubMedCentral Alhopuro P, et al: The MDM2 promoter polymorphism SNP309T→G and the risk of uterine leiomyosarcoma, colorectal cancer, and squamous cell carcinoma of the head and neck. J Med Genet. 2005, 42 (9): 694-698. 10.1136/jmg.2005.031260.CrossRefPubMedPubMedCentral
45.
go back to reference Onat OE, et al: MDM2 T309G polymorphism is associated with bladder cancer. Anticancer Res. 2006, 26 (5A): 3473-3475.PubMed Onat OE, et al: MDM2 T309G polymorphism is associated with bladder cancer. Anticancer Res. 2006, 26 (5A): 3473-3475.PubMed
46.
go back to reference Willander K, et al: MDM2 SNP309 promoter polymorphism, an independent prognostic factor in chronic lymphocytic leukemia. Eur J Haematol. 2010, 85 (3): 251-256. 10.1111/j.1600-0609.2010.01470.x.CrossRefPubMed Willander K, et al: MDM2 SNP309 promoter polymorphism, an independent prognostic factor in chronic lymphocytic leukemia. Eur J Haematol. 2010, 85 (3): 251-256. 10.1111/j.1600-0609.2010.01470.x.CrossRefPubMed
47.
go back to reference Lu ML, et al: Impact of alterations affecting the p53 pathway in bladder cancer on clinical outcome, assessed by conventional and array-based methods. Clin Cancer Res. 2002, 8 (1): 171-179.PubMed Lu ML, et al: Impact of alterations affecting the p53 pathway in bladder cancer on clinical outcome, assessed by conventional and array-based methods. Clin Cancer Res. 2002, 8 (1): 171-179.PubMed
48.
go back to reference Hernandez S, et al: FGFR3 and Tp53 mutations in T1G3 transitional bladder carcinomas: independent distribution and lack of association with prognosis. Clin Cancer Res. 2005, 11 (15): 5444-5450. 10.1158/1078-0432.CCR-05-0122.CrossRefPubMed Hernandez S, et al: FGFR3 and Tp53 mutations in T1G3 transitional bladder carcinomas: independent distribution and lack of association with prognosis. Clin Cancer Res. 2005, 11 (15): 5444-5450. 10.1158/1078-0432.CCR-05-0122.CrossRefPubMed
Metadata
Title
MDM2 SNP309 promoter polymorphism and p53 mutations in urinary bladder carcinoma stage T1
Authors
Hans Olsson
Per Hultman
Johan Rosell
Peter Söderkvist
Staffan Jahnson
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Urology / Issue 1/2013
Electronic ISSN: 1471-2490
DOI
https://doi.org/10.1186/1471-2490-13-5

Other articles of this Issue 1/2013

BMC Urology 1/2013 Go to the issue