Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2008

Open Access 01-12-2008 | Research article

Compressive properties of commercially available polyurethane foams as mechanical models for osteoporotic human cancellous bone

Authors: Purvi SD Patel, Duncan ET Shepherd, David WL Hukins

Published in: BMC Musculoskeletal Disorders | Issue 1/2008

Login to get access

Abstract

Background

Polyurethane (PU) foam is widely used as a model for cancellous bone. The higher density foams are used as standard biomechanical test materials, but none of the low density PU foams are universally accepted as models for osteoporotic (OP) bone. The aim of this study was to determine whether low density PU foam might be suitable for mimicking human OP cancellous bone.

Methods

Quasi-static compression tests were performed on PU foam cylinders of different lengths (3.9 and 7.7 mm) and of different densities (0.09, 0.16 and 0.32 g.cm-3), to determine the Young's modulus, yield strength and energy absorbed to yield.

Results

Young's modulus values were 0.08–0.93 MPa for the 0.09 g.cm-3 foam and from 15.1–151.4 MPa for the 0.16 and 0.32 g.cm-3 foam. Yield strength values were 0.01–0.07 MPa for the 0.09 g.cm-3 foam and from 0.9–4.5 MPa for the 0.16 and 0.32 g.cm-3 foam. The energy absorbed to yield was found to be negligible for all foam cylinders.

Conclusion

Based on these results, it is concluded that 0.16 g.cm-3 PU foam may prove to be suitable as an OP cancellous bone model when fracture stress, but not energy dissipation, is of concern.
Appendix
Available only for authorised users
Literature
1.
go back to reference ASTM F1839-01 Standard Specification for Rigid Polyurethane Foam for Use as a Standard Material for Testing Orthopaedic Devices and Instruments. Pennsylvania: American Society for Testing and Materials. 2001 ASTM F1839-01 Standard Specification for Rigid Polyurethane Foam for Use as a Standard Material for Testing Orthopaedic Devices and Instruments. Pennsylvania: American Society for Testing and Materials. 2001
2.
go back to reference Battula S, Schoenfeld A, Vrabec G, Njus GO: Experimental evaluation of the holding power/stiffness of the self-tapping bone screws in normal and osteoporotic bone material. Clin Biomech. 2006, 21: 533-537. 10.1016/j.clinbiomech.2005.12.020.CrossRef Battula S, Schoenfeld A, Vrabec G, Njus GO: Experimental evaluation of the holding power/stiffness of the self-tapping bone screws in normal and osteoporotic bone material. Clin Biomech. 2006, 21: 533-537. 10.1016/j.clinbiomech.2005.12.020.CrossRef
3.
go back to reference Chapman JR, Harrington RM, Lee KM, Anderson PA, Tencer AF, Kowalski D: Factors affecting the pullout strength of cancellous bone screws. J Biomech Eng. 1996, 118: 391-398. 10.1115/1.2796022.CrossRefPubMed Chapman JR, Harrington RM, Lee KM, Anderson PA, Tencer AF, Kowalski D: Factors affecting the pullout strength of cancellous bone screws. J Biomech Eng. 1996, 118: 391-398. 10.1115/1.2796022.CrossRefPubMed
4.
go back to reference Iesaka K, Kummer FJ, Di Cesare PE: Stress risers between two ipsilateral intramedullary stems – A finite-element and biomechanical analysis. J Arthroplasty. 2005, 20: 386-391. 10.1016/j.arth.2004.05.002.CrossRefPubMed Iesaka K, Kummer FJ, Di Cesare PE: Stress risers between two ipsilateral intramedullary stems – A finite-element and biomechanical analysis. J Arthroplasty. 2005, 20: 386-391. 10.1016/j.arth.2004.05.002.CrossRefPubMed
5.
go back to reference Heiner AD, Brown TD: Structural properties of a new design of composite replicate femurs and tibias. J Biomech. 2001, 34: 773-781. 10.1016/S0021-9290(01)00015-X.CrossRefPubMed Heiner AD, Brown TD: Structural properties of a new design of composite replicate femurs and tibias. J Biomech. 2001, 34: 773-781. 10.1016/S0021-9290(01)00015-X.CrossRefPubMed
6.
go back to reference Silverthorn DU: Human physiology: an integrated approach. 2001, New Jersey: Prentice-Hall Inc, 807-2 Silverthorn DU: Human physiology: an integrated approach. 2001, New Jersey: Prentice-Hall Inc, 807-2
8.
go back to reference Johnson AE, Keller TS: Mechanical properties of open-cell foam synthetic thoracic vertebrae. J Mater Sci – Mater M. 2008, 19: 1317-1323. 10.1007/s10856-007-3158-7.CrossRef Johnson AE, Keller TS: Mechanical properties of open-cell foam synthetic thoracic vertebrae. J Mater Sci – Mater M. 2008, 19: 1317-1323. 10.1007/s10856-007-3158-7.CrossRef
9.
go back to reference Szivek JA, Thomas M, Benjamin JB: Technical note. Characterization of a synthetic foam as a model for human cancellous bone. J Appl Biomater. 1993, 4: 269-272. 10.1002/jab.770040309.CrossRefPubMed Szivek JA, Thomas M, Benjamin JB: Technical note. Characterization of a synthetic foam as a model for human cancellous bone. J Appl Biomater. 1993, 4: 269-272. 10.1002/jab.770040309.CrossRefPubMed
10.
go back to reference Szivek JA, Thompson JD, Benjamin JB: Characterization of three formulations of a synthetic foam as models for a range of human cancellous bone types. J Appl Biomater. 1995, 6: 125-128. 10.1002/jab.770060207.CrossRefPubMed Szivek JA, Thompson JD, Benjamin JB: Characterization of three formulations of a synthetic foam as models for a range of human cancellous bone types. J Appl Biomater. 1995, 6: 125-128. 10.1002/jab.770060207.CrossRefPubMed
11.
go back to reference Thompson MS, McCarthy ID, Lidgren L, Ryd L: Compressive and shear properties of commercially available polyurethane foams. J Biomech Eng – T ASME. 2003, 125: 732-734. 10.1115/1.1614820.CrossRef Thompson MS, McCarthy ID, Lidgren L, Ryd L: Compressive and shear properties of commercially available polyurethane foams. J Biomech Eng – T ASME. 2003, 125: 732-734. 10.1115/1.1614820.CrossRef
12.
go back to reference Palissery V, Taylor M, Browne M: Fatigue characterization of a polymer foam to use as a cancellous bone analog material in the assessment of orthopaedic devices. J Mater Sci – Mater M. 2004, 15: 61-67. 10.1023/B:JMSM.0000010098.65572.3b.CrossRef Palissery V, Taylor M, Browne M: Fatigue characterization of a polymer foam to use as a cancellous bone analog material in the assessment of orthopaedic devices. J Mater Sci – Mater M. 2004, 15: 61-67. 10.1023/B:JMSM.0000010098.65572.3b.CrossRef
13.
go back to reference Trumble DR, McGregor WE, Magovern JA: Validation of a bone analog model for studies of sternal closure. Ann Thorac Surg. 2002, 74: 739-745. 10.1016/S0003-4975(02)03699-8.CrossRefPubMed Trumble DR, McGregor WE, Magovern JA: Validation of a bone analog model for studies of sternal closure. Ann Thorac Surg. 2002, 74: 739-745. 10.1016/S0003-4975(02)03699-8.CrossRefPubMed
14.
go back to reference Li B, Aspden RM: Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis or osteoarthritis. J Bone Miner Res. 1997, 12: 641-651. 10.1359/jbmr.1997.12.4.641.CrossRefPubMed Li B, Aspden RM: Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis or osteoarthritis. J Bone Miner Res. 1997, 12: 641-651. 10.1359/jbmr.1997.12.4.641.CrossRefPubMed
15.
go back to reference Sommers MB, Fitzpatrick DC, Madey SM, Zanderschulp Vande C, Bottlang M: A surrogate long-bone model with osteoporotic material properties for biomechanical testing of fracture implants. J Biomech. 2007, 40: 3297-3304. 10.1016/j.jbiomech.2007.04.024.CrossRefPubMedPubMedCentral Sommers MB, Fitzpatrick DC, Madey SM, Zanderschulp Vande C, Bottlang M: A surrogate long-bone model with osteoporotic material properties for biomechanical testing of fracture implants. J Biomech. 2007, 40: 3297-3304. 10.1016/j.jbiomech.2007.04.024.CrossRefPubMedPubMedCentral
16.
go back to reference BS 903-A6: 1992 Physical testing of rubber – Part A6: Method for determination of compression set at ambient, elevated or low temperatures. 1992, London: British Standards Institute BS 903-A6: 1992 Physical testing of rubber – Part A6: Method for determination of compression set at ambient, elevated or low temperatures. 1992, London: British Standards Institute
17.
go back to reference O'Sullivan S, Nagle R, McEwen JA, Casey V: Elastomer rubbers as deflection elements in pressure sensors: investigation of properties using a custom designed programmable elastomer test rig. J Phys D Appl Phys. 2003, 36: 1910-1916. 10.1088/0022-3727/36/15/324.CrossRef O'Sullivan S, Nagle R, McEwen JA, Casey V: Elastomer rubbers as deflection elements in pressure sensors: investigation of properties using a custom designed programmable elastomer test rig. J Phys D Appl Phys. 2003, 36: 1910-1916. 10.1088/0022-3727/36/15/324.CrossRef
18.
go back to reference Widdle RD, Bajaj AK, Davies P: Measurement of the Poisson's ratio of flexible polyurethane foam and its influence on a uniaxial compression model. Int J Eng Sci. 2008, 46: 31-49. 10.1016/j.ijengsci.2007.09.002.CrossRef Widdle RD, Bajaj AK, Davies P: Measurement of the Poisson's ratio of flexible polyurethane foam and its influence on a uniaxial compression model. Int J Eng Sci. 2008, 46: 31-49. 10.1016/j.ijengsci.2007.09.002.CrossRef
19.
go back to reference Turner CH, Burr DB: Basic biomechanical measurements of bone: a tutorial. Bone. 1993, 14: 595-608. 10.1016/8756-3282(93)90081-K.CrossRefPubMed Turner CH, Burr DB: Basic biomechanical measurements of bone: a tutorial. Bone. 1993, 14: 595-608. 10.1016/8756-3282(93)90081-K.CrossRefPubMed
20.
go back to reference Jutley RS, Watson MA, Shepherd DET, Hukins DWL: Finite element analysis of stress around a sternum screw used to prevent sternal dehiscence after heart surgery. Proc Inst Mech Eng [H]. 2002, 216: 315-321. 10.1243/09544110260216586.CrossRef Jutley RS, Watson MA, Shepherd DET, Hukins DWL: Finite element analysis of stress around a sternum screw used to prevent sternal dehiscence after heart surgery. Proc Inst Mech Eng [H]. 2002, 216: 315-321. 10.1243/09544110260216586.CrossRef
21.
go back to reference Røhl L, Larsen E, Linde F, Odgaard A, Jørgensen J: Tensile and compressive properties of cancellous bone. J Biomech. 1991, 24: 1143-1149. 10.1016/0021-9290(91)90006-9.CrossRefPubMed Røhl L, Larsen E, Linde F, Odgaard A, Jørgensen J: Tensile and compressive properties of cancellous bone. J Biomech. 1991, 24: 1143-1149. 10.1016/0021-9290(91)90006-9.CrossRefPubMed
22.
go back to reference Goldstein S: The mechanical properties of trabecular bone: dependence on anatomic location and function. J Biomech. 1987, 20: 1055-1061. 10.1016/0021-9290(87)90023-6.CrossRefPubMed Goldstein S: The mechanical properties of trabecular bone: dependence on anatomic location and function. J Biomech. 1987, 20: 1055-1061. 10.1016/0021-9290(87)90023-6.CrossRefPubMed
23.
go back to reference Kopperdahl DL, Keaveny TM: Yield strain behaviour of trabecular bone. J Biomech. 1998, 31: 601-608. 10.1016/S0021-9290(98)00057-8.CrossRefPubMed Kopperdahl DL, Keaveny TM: Yield strain behaviour of trabecular bone. J Biomech. 1998, 31: 601-608. 10.1016/S0021-9290(98)00057-8.CrossRefPubMed
24.
go back to reference Morgan EF, Keaveny TM: Dependence of yield strain of human trabecular bone on anatomic site. J Biomech. 2001, 34: 569-577. 10.1016/S0021-9290(01)00011-2.CrossRefPubMed Morgan EF, Keaveny TM: Dependence of yield strain of human trabecular bone on anatomic site. J Biomech. 2001, 34: 569-577. 10.1016/S0021-9290(01)00011-2.CrossRefPubMed
25.
go back to reference Harte AM, Fleck NA, Ashby MF: Fatigue failure of an open cell and a closed cell aluminium alloy foam. Acta Mater. 1999, 47: 2511-2524. 10.1016/S1359-6454(99)00097-X.CrossRef Harte AM, Fleck NA, Ashby MF: Fatigue failure of an open cell and a closed cell aluminium alloy foam. Acta Mater. 1999, 47: 2511-2524. 10.1016/S1359-6454(99)00097-X.CrossRef
26.
go back to reference Keller TS: Predicting the compressive mechanical behavior of bone. J Biomech. 1994, 27: 1159-1168. 10.1016/0021-9290(94)90056-6.CrossRefPubMed Keller TS: Predicting the compressive mechanical behavior of bone. J Biomech. 1994, 27: 1159-1168. 10.1016/0021-9290(94)90056-6.CrossRefPubMed
27.
go back to reference Smith BL, Schäffer TE, Viani M, Thompson JB, Frederick NA, Kindt J, Belcher A, Stucky GD, Morse DE, Hansma PK: Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature. 1999, 399: 761-763. 10.1038/21607.CrossRef Smith BL, Schäffer TE, Viani M, Thompson JB, Frederick NA, Kindt J, Belcher A, Stucky GD, Morse DE, Hansma PK: Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature. 1999, 399: 761-763. 10.1038/21607.CrossRef
28.
go back to reference Keaveny TM, Pinilla TP, Crawford RP, Kopperdahl DL, Lou A: Systematic and random errors in compression testing of trabecular bone. J Orthop Res. 1997, 15: 101-110. 10.1002/jor.1100150115.CrossRefPubMed Keaveny TM, Pinilla TP, Crawford RP, Kopperdahl DL, Lou A: Systematic and random errors in compression testing of trabecular bone. J Orthop Res. 1997, 15: 101-110. 10.1002/jor.1100150115.CrossRefPubMed
29.
go back to reference Gibson LJ: Biomechanics of cellular solids. J Biomech. 2005, 38: 377-399. 10.1016/j.jbiomech.2004.09.027.CrossRefPubMed Gibson LJ: Biomechanics of cellular solids. J Biomech. 2005, 38: 377-399. 10.1016/j.jbiomech.2004.09.027.CrossRefPubMed
Metadata
Title
Compressive properties of commercially available polyurethane foams as mechanical models for osteoporotic human cancellous bone
Authors
Purvi SD Patel
Duncan ET Shepherd
David WL Hukins
Publication date
01-12-2008
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2008
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/1471-2474-9-137

Other articles of this Issue 1/2008

BMC Musculoskeletal Disorders 1/2008 Go to the issue