Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2014

Open Access 01-12-2014 | Research article

Identification of myeloid-derived suppressor cells in the synovial fluid of patients with rheumatoid arthritis: a pilot study

Authors: Júlia Kurkó, András Vida, Tibor T Glant, Carla R Scanzello, Robert S Katz, Anjali Nair, Zoltán Szekanecz, Katalin Mikecz

Published in: BMC Musculoskeletal Disorders | Issue 1/2014

Login to get access

Abstract

Background

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of innate immune cells with a granulocyte-like or monocyte-like phenotype and a unique ability to suppress T-cell responses. MDSCs have been shown to accumulate in cancer patients, but recent studies suggest that these cells are also present in humans and animals suffering from autoimmune diseases. We previously identified MDSCs in the synovial fluid (SF) of mice with experimental autoimmune arthritis. The goal of the present study was to identify MDSCs in the SF of patients with rheumatoid arthritis (RA).

Methods

RA SF cells were studied by flow cytometry using antibodies to MDSC cell surface markers as well as by analysis of cell morphology. The suppressor activity of RA SF cells toward autologous peripheral blood T cells was determined ex vivo. We employed both antigen-nonspecific (anti-CD3/CD28 antibodies) and antigen-specific (allogeneic cells) induction systems to test the effects of RA SF cells on the proliferation of autologous T cells.

Results

SF from RA patients contained MDSC-like cells, the majority of which showed granulocyte (neutrophil)-like phenotype and morphology. RA SF cells significantly suppressed the proliferation of anti-CD3/CD28-stimulated autologous T cells upon co-culture. When compared side by side, RA SF cells had a more profound inhibitory effect on the alloantigen-induced than the anti-CD3/CD28-induced proliferation of autologous T cells.

Conclusion

MDSCs are present among RA SF cells that are commonly regarded as inflammatory neutrophils. Our results suggest that the presence of neutrophil-like MDSCs in the SF is likely beneficial, as these cells have the ability to limit the expansion of joint-infiltrating T cells in RA.
Appendix
Available only for authorised users
Literature
1.
go back to reference Firestein GS: Rheumatoid Arthritis: Etiology and Pathogeneis of Rheumatoid Arthritis. Kelley’s Textbook of Rheumatology. Edited by: Ruddy S, Harris ED, Sledge CB, Kelley WN. 2005, Philadelphia, PA: W.B.Saunders Co, 996-1045. 7 Firestein GS: Rheumatoid Arthritis: Etiology and Pathogeneis of Rheumatoid Arthritis. Kelley’s Textbook of Rheumatology. Edited by: Ruddy S, Harris ED, Sledge CB, Kelley WN. 2005, Philadelphia, PA: W.B.Saunders Co, 996-1045. 7
2.
go back to reference Kurko J, Besenyei T, Laki J, Glant TT, Mikecz K, Szekanecz Z: Genetics of rheumatoid arthritis - a comprehensive review. Clin Rev Allergy Immunol. 2013, 45: 170-179. 10.1007/s12016-012-8346-7.CrossRefPubMedPubMedCentral Kurko J, Besenyei T, Laki J, Glant TT, Mikecz K, Szekanecz Z: Genetics of rheumatoid arthritis - a comprehensive review. Clin Rev Allergy Immunol. 2013, 45: 170-179. 10.1007/s12016-012-8346-7.CrossRefPubMedPubMedCentral
3.
go back to reference Law SC, Street S, Yu CH, Capini C, Ramnoruth S, Nel HJ, van Gorp E, Hyde C, Lau K, Pahau H, Purcell AW, Thomas R: T cell autoreactivity to citrullinated autoantigenic peptides in rheumatoid arthritis patients carrying HLA-DRB1 shared epitope alleles. Arthritis Res Ther. 2012, 14: R118-10.1186/ar3848.CrossRefPubMedPubMedCentral Law SC, Street S, Yu CH, Capini C, Ramnoruth S, Nel HJ, van Gorp E, Hyde C, Lau K, Pahau H, Purcell AW, Thomas R: T cell autoreactivity to citrullinated autoantigenic peptides in rheumatoid arthritis patients carrying HLA-DRB1 shared epitope alleles. Arthritis Res Ther. 2012, 14: R118-10.1186/ar3848.CrossRefPubMedPubMedCentral
4.
go back to reference Szodoray P, Szabo Z, Kapitany A, Gyetvai A, Lakos G, Szanto S, Szucs G, Szekanecz Z: Anti-citrullinated protein/peptide autoantibodies in association with genetic and environmental factors as indicators of disease outcome in rheumatoid arthritis. Autoimmun Rev. 2010, 9: 140-143. 10.1016/j.autrev.2009.04.006.CrossRefPubMed Szodoray P, Szabo Z, Kapitany A, Gyetvai A, Lakos G, Szanto S, Szucs G, Szekanecz Z: Anti-citrullinated protein/peptide autoantibodies in association with genetic and environmental factors as indicators of disease outcome in rheumatoid arthritis. Autoimmun Rev. 2010, 9: 140-143. 10.1016/j.autrev.2009.04.006.CrossRefPubMed
5.
go back to reference Kobezda T, Ghassemi-Nejad S, Mikecz K, Glant TT, Szekanecz Z: Of mice and men: how animal models advance our understanding of T-cell function in RA. Nat Rev Rheumatol. 2014, 10: 160-170. 10.1038/nrrheum.2013.205.CrossRefPubMedPubMedCentral Kobezda T, Ghassemi-Nejad S, Mikecz K, Glant TT, Szekanecz Z: Of mice and men: how animal models advance our understanding of T-cell function in RA. Nat Rev Rheumatol. 2014, 10: 160-170. 10.1038/nrrheum.2013.205.CrossRefPubMedPubMedCentral
6.
go back to reference Panayi GS, Lanchbury JS, Kingsley GH: The importance of the T cell in initiating and maintaining the chronic synovitis of rheumatoid arthritis. Arthritis Rheum. 1992, 35: 729-735. 10.1002/art.1780350702.CrossRefPubMed Panayi GS, Lanchbury JS, Kingsley GH: The importance of the T cell in initiating and maintaining the chronic synovitis of rheumatoid arthritis. Arthritis Rheum. 1992, 35: 729-735. 10.1002/art.1780350702.CrossRefPubMed
7.
go back to reference Bjelle A, Norberg B, Sjogren G: The cytology of joint exudates in rheumatoid arthritis. Morphology and preparation techniques. Scand J Rheumatol. 1982, 11: 124-128. 10.3109/03009748209098176.CrossRefPubMed Bjelle A, Norberg B, Sjogren G: The cytology of joint exudates in rheumatoid arthritis. Morphology and preparation techniques. Scand J Rheumatol. 1982, 11: 124-128. 10.3109/03009748209098176.CrossRefPubMed
8.
go back to reference Greten TF, Manns MP, Korangy F: Myeloid derived suppressor cells in human diseases. Int Immunopharmacol. 2011, 11: 802-807. 10.1016/j.intimp.2011.01.003.CrossRefPubMedPubMedCentral Greten TF, Manns MP, Korangy F: Myeloid derived suppressor cells in human diseases. Int Immunopharmacol. 2011, 11: 802-807. 10.1016/j.intimp.2011.01.003.CrossRefPubMedPubMedCentral
9.
go back to reference Ugel S, Delpozzo F, Desantis G, Papalini F, Simonato F, Sonda N, Zilio S, Bronte V: Therapeutic targeting of myeloid-derived suppressor cells. Curr Opin Pharmacol. 2009, 9: 470-481. 10.1016/j.coph.2009.06.014.CrossRefPubMed Ugel S, Delpozzo F, Desantis G, Papalini F, Simonato F, Sonda N, Zilio S, Bronte V: Therapeutic targeting of myeloid-derived suppressor cells. Curr Opin Pharmacol. 2009, 9: 470-481. 10.1016/j.coph.2009.06.014.CrossRefPubMed
10.
go back to reference Serafini P, Borrello I, Bronte V: Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol. 2006, 16: 53-65. 10.1016/j.semcancer.2005.07.005.CrossRefPubMed Serafini P, Borrello I, Bronte V: Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol. 2006, 16: 53-65. 10.1016/j.semcancer.2005.07.005.CrossRefPubMed
11.
go back to reference Lowell CA, Berton G: Integrin signal transduction in myeloid leukocytes. J Leukoc Biol. 1999, 65: 313-320.PubMed Lowell CA, Berton G: Integrin signal transduction in myeloid leukocytes. J Leukoc Biol. 1999, 65: 313-320.PubMed
12.
13.
go back to reference Nagaraj S, Gabrilovich DI: Myeloid-derived suppressor cells in human cancer. Cancer J. 2010, 16: 348-353. 10.1097/PPO.0b013e3181eb3358.CrossRefPubMed Nagaraj S, Gabrilovich DI: Myeloid-derived suppressor cells in human cancer. Cancer J. 2010, 16: 348-353. 10.1097/PPO.0b013e3181eb3358.CrossRefPubMed
14.
go back to reference Lechner MG, Megiel C, Russell SM, Bingham B, Arger N, Woo T, Epstein AL: Functional characterization of human CD33+ and CD11b+ myeloid-derived suppressor cell subsets induced from peripheral blood mononuclear cells co-cultured with a diverse set of human tumor cell lines. J Transl Med. 2011, 9: 90-10.1186/1479-5876-9-90.CrossRefPubMedPubMedCentral Lechner MG, Megiel C, Russell SM, Bingham B, Arger N, Woo T, Epstein AL: Functional characterization of human CD33+ and CD11b+ myeloid-derived suppressor cell subsets induced from peripheral blood mononuclear cells co-cultured with a diverse set of human tumor cell lines. J Transl Med. 2011, 9: 90-10.1186/1479-5876-9-90.CrossRefPubMedPubMedCentral
15.
go back to reference Richards MK, Liu F, Iwasaki H, Akashi K, Link DC: Pivotal role of granulocyte colony-stimulating factor in the development of progenitors in the common myeloid pathway. Blood. 2003, 102: 3562-3568. 10.1182/blood-2003-02-0593.CrossRefPubMed Richards MK, Liu F, Iwasaki H, Akashi K, Link DC: Pivotal role of granulocyte colony-stimulating factor in the development of progenitors in the common myeloid pathway. Blood. 2003, 102: 3562-3568. 10.1182/blood-2003-02-0593.CrossRefPubMed
16.
go back to reference Hamilton JA: GM-CSF in inflammation and autoimmunity. Trends Immunol. 2002, 23: 403-408. 10.1016/S1471-4906(02)02260-3.CrossRefPubMed Hamilton JA: GM-CSF in inflammation and autoimmunity. Trends Immunol. 2002, 23: 403-408. 10.1016/S1471-4906(02)02260-3.CrossRefPubMed
17.
go back to reference Simon HU: Neutrophil apoptosis pathways and their modifications in inflammation. Immunol Rev. 2003, 193: 101-110. 10.1034/j.1600-065X.2003.00038.x.CrossRefPubMed Simon HU: Neutrophil apoptosis pathways and their modifications in inflammation. Immunol Rev. 2003, 193: 101-110. 10.1034/j.1600-065X.2003.00038.x.CrossRefPubMed
18.
go back to reference Wright HL, Bucknall RC, Moots RJ, Edwards SW: Analysis of SF and plasma cytokines provides insights into the mechanisms of inflammatory arthritis and may predict response to therapy. Rheumatology (Oxford). 2012, 51: 451-459. 10.1093/rheumatology/ker338.CrossRef Wright HL, Bucknall RC, Moots RJ, Edwards SW: Analysis of SF and plasma cytokines provides insights into the mechanisms of inflammatory arthritis and may predict response to therapy. Rheumatology (Oxford). 2012, 51: 451-459. 10.1093/rheumatology/ker338.CrossRef
19.
go back to reference Ioannou M, Alissafi T, Lazaridis I, Deraos G, Matsoukas J, Gravanis A, Mastorodemos V, Plaitakis A, Sharpe A, Boumpas D, Verginis P: Crucial role of granulocytic myeloid-derived suppressor cells in the regulation of central nervous system autoimmune disease. J Immunol. 2012, 188: 1136-1146. 10.4049/jimmunol.1101816.CrossRefPubMed Ioannou M, Alissafi T, Lazaridis I, Deraos G, Matsoukas J, Gravanis A, Mastorodemos V, Plaitakis A, Sharpe A, Boumpas D, Verginis P: Crucial role of granulocytic myeloid-derived suppressor cells in the regulation of central nervous system autoimmune disease. J Immunol. 2012, 188: 1136-1146. 10.4049/jimmunol.1101816.CrossRefPubMed
20.
go back to reference Jiao Z, Hua S, Wang W, Wang H, Gao J, Wang X: Increased circulating myeloid-derived suppressor cells correlated negatively with Th17 cells in patients with rheumatoid arthritis. Scand J Rheumatol. 2013, 42: 85-90. 10.3109/03009742.2012.716450.CrossRefPubMed Jiao Z, Hua S, Wang W, Wang H, Gao J, Wang X: Increased circulating myeloid-derived suppressor cells correlated negatively with Th17 cells in patients with rheumatoid arthritis. Scand J Rheumatol. 2013, 42: 85-90. 10.3109/03009742.2012.716450.CrossRefPubMed
21.
go back to reference Egelston C, Kurko J, Besenyei T, Tryniszewska B, Rauch TA, Glant TT, Mikecz K: Suppression of dendritic cell maturation and T cell proliferation by synovial fluid myeloid cells from mice with autoimmune arthritis. Arthritis Rheum. 2012, 64: 3179-3188. 10.1002/art.34494.CrossRefPubMedPubMedCentral Egelston C, Kurko J, Besenyei T, Tryniszewska B, Rauch TA, Glant TT, Mikecz K: Suppression of dendritic cell maturation and T cell proliferation by synovial fluid myeloid cells from mice with autoimmune arthritis. Arthritis Rheum. 2012, 64: 3179-3188. 10.1002/art.34494.CrossRefPubMedPubMedCentral
22.
go back to reference Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO, Birnbaum NS, Burmester GR, Bykerk VP, Cohen MD, Combe B, Costenbader KH, Dougados M, Emery P, Ferraccioli G, Hazes JM, Hobbs K, Huizinga TW, Kavanaugh A, Kay J, Kvien TK, Laing T, Mease P, Menard HA, Moreland LW, Naden RL, Pincus T, Smolen JS, Stanislawska-Biernat E, Symmons D, et al: 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann Rheum Dis. 2010, 69: 1580-1588. 10.1136/ard.2010.138461.CrossRefPubMed Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO, Birnbaum NS, Burmester GR, Bykerk VP, Cohen MD, Combe B, Costenbader KH, Dougados M, Emery P, Ferraccioli G, Hazes JM, Hobbs K, Huizinga TW, Kavanaugh A, Kay J, Kvien TK, Laing T, Mease P, Menard HA, Moreland LW, Naden RL, Pincus T, Smolen JS, Stanislawska-Biernat E, Symmons D, et al: 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann Rheum Dis. 2010, 69: 1580-1588. 10.1136/ard.2010.138461.CrossRefPubMed
23.
go back to reference Pillay J, Kamp VM, van E H, Visser T, Tak T, Lammers JW, Ulfman LH, Leenen LP, Pickkers P, Koenderman L: A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1. J Clin Invest. 2012, 122: 327-336. 10.1172/JCI57990.CrossRefPubMed Pillay J, Kamp VM, van E H, Visser T, Tak T, Lammers JW, Ulfman LH, Leenen LP, Pickkers P, Koenderman L: A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1. J Clin Invest. 2012, 122: 327-336. 10.1172/JCI57990.CrossRefPubMed
24.
go back to reference Lechner MG, Liebertz DJ, Epstein AL: Characterization of cytokine-induced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells. J Immunol. 2010, 185: 2273-2284. 10.4049/jimmunol.1000901.CrossRefPubMedPubMedCentral Lechner MG, Liebertz DJ, Epstein AL: Characterization of cytokine-induced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells. J Immunol. 2010, 185: 2273-2284. 10.4049/jimmunol.1000901.CrossRefPubMedPubMedCentral
25.
go back to reference Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L, Herber DL, Schneck J, Gabrilovich DI: Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med. 2007, 13: 828-835. 10.1038/nm1609.CrossRefPubMedPubMedCentral Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L, Herber DL, Schneck J, Gabrilovich DI: Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med. 2007, 13: 828-835. 10.1038/nm1609.CrossRefPubMedPubMedCentral
26.
go back to reference Yin B, Ma G, Yen CY, Zhou Z, Wang GX, Divino CM, Casares S, Chen SH, Yang WC, Pan PY: Myeloid-derived suppressor cells prevent type 1 diabetes in murine models. J Immunol. 2010, 185: 5828-5834. 10.4049/jimmunol.0903636.CrossRefPubMedPubMedCentral Yin B, Ma G, Yen CY, Zhou Z, Wang GX, Divino CM, Casares S, Chen SH, Yang WC, Pan PY: Myeloid-derived suppressor cells prevent type 1 diabetes in murine models. J Immunol. 2010, 185: 5828-5834. 10.4049/jimmunol.0903636.CrossRefPubMedPubMedCentral
27.
go back to reference Fujii W, Ashihara E, Hirai H, Nagahara H, Kajitani N, Fujioka K, Murakami K, Seno T, Yamamoto A, Ishino H, Kohno M, Maekawa T, Kawahito Y: Myeloid-derived suppressor cells play crucial roles in the regulation of mouse collagen-induced arthritis. J Immunol. 2013, 191: 1073-1081. 10.4049/jimmunol.1203535.CrossRefPubMed Fujii W, Ashihara E, Hirai H, Nagahara H, Kajitani N, Fujioka K, Murakami K, Seno T, Yamamoto A, Ishino H, Kohno M, Maekawa T, Kawahito Y: Myeloid-derived suppressor cells play crucial roles in the regulation of mouse collagen-induced arthritis. J Immunol. 2013, 191: 1073-1081. 10.4049/jimmunol.1203535.CrossRefPubMed
28.
go back to reference Youn JI, Gabrilovich DI: The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur J Immunol. 2010, 40: 2969-2975. 10.1002/eji.201040895.CrossRefPubMedPubMedCentral Youn JI, Gabrilovich DI: The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur J Immunol. 2010, 40: 2969-2975. 10.1002/eji.201040895.CrossRefPubMedPubMedCentral
29.
go back to reference Pillay J, Tak T, Kamp VM, Koenderman L: Immune suppression by neutrophils and granulocytic myeloid-derived suppressor cells: similarities and differences. Cell Mol Life Sci. 2013, 70: 3813-3827. 10.1007/s00018-013-1286-4.CrossRefPubMedPubMedCentral Pillay J, Tak T, Kamp VM, Koenderman L: Immune suppression by neutrophils and granulocytic myeloid-derived suppressor cells: similarities and differences. Cell Mol Life Sci. 2013, 70: 3813-3827. 10.1007/s00018-013-1286-4.CrossRefPubMedPubMedCentral
30.
go back to reference Farrell AJ, Blake DR, Palmer RM, Moncada S: Increased concentrations of nitrite in synovial fluid and serum samples suggest increased nitric oxide synthesis in rheumatic diseases. Ann Rheum Dis. 1992, 51: 1219-1222. 10.1136/ard.51.11.1219.CrossRefPubMedPubMedCentral Farrell AJ, Blake DR, Palmer RM, Moncada S: Increased concentrations of nitrite in synovial fluid and serum samples suggest increased nitric oxide synthesis in rheumatic diseases. Ann Rheum Dis. 1992, 51: 1219-1222. 10.1136/ard.51.11.1219.CrossRefPubMedPubMedCentral
31.
go back to reference Dolcetti L, Peranzoni E, Ugel S, Marigo I, Fernandez GA, Mesa C, Geilich M, Winkels G, Traggia E, Casati A, Grassi F, Bronte V: Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur J Immunol. 2010, 40: 22-35.CrossRefPubMed Dolcetti L, Peranzoni E, Ugel S, Marigo I, Fernandez GA, Mesa C, Geilich M, Winkels G, Traggia E, Casati A, Grassi F, Bronte V: Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur J Immunol. 2010, 40: 22-35.CrossRefPubMed
33.
go back to reference Cao D, van Vollenhoven R, Klareskog L, Trollmo C, Malmstrom V: CD25brightCD4+ regulatory T cells are enriched in inflamed joints of patients with chronic rheumatic disease. Arthritis Res Ther. 2004, 6: R335-R346. 10.1186/ar1192.CrossRefPubMedPubMedCentral Cao D, van Vollenhoven R, Klareskog L, Trollmo C, Malmstrom V: CD25brightCD4+ regulatory T cells are enriched in inflamed joints of patients with chronic rheumatic disease. Arthritis Res Ther. 2004, 6: R335-R346. 10.1186/ar1192.CrossRefPubMedPubMedCentral
34.
go back to reference Wehrens EJ, Prakken BJ, van Wijk F: T cells out of control–impaired immune regulation in the inflamed joint. Nat Rev Rheumatol. 2013, 9: 34-42. 10.2174/1573397111309010009.CrossRefPubMed Wehrens EJ, Prakken BJ, van Wijk F: T cells out of control–impaired immune regulation in the inflamed joint. Nat Rev Rheumatol. 2013, 9: 34-42. 10.2174/1573397111309010009.CrossRefPubMed
Metadata
Title
Identification of myeloid-derived suppressor cells in the synovial fluid of patients with rheumatoid arthritis: a pilot study
Authors
Júlia Kurkó
András Vida
Tibor T Glant
Carla R Scanzello
Robert S Katz
Anjali Nair
Zoltán Szekanecz
Katalin Mikecz
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2014
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/1471-2474-15-281

Other articles of this Issue 1/2014

BMC Musculoskeletal Disorders 1/2014 Go to the issue