Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2014

Open Access 01-12-2014 | Research article

The influence of knee position on ankle dorsiflexion - a biometric study

Authors: Sebastian F Baumbach, Mareen Brumann, Jakob Binder, Wolf Mutschler, Markus Regauer, Hans Polzer

Published in: BMC Musculoskeletal Disorders | Issue 1/2014

Login to get access

Abstract

Background

Musculus gastrocnemius tightness (MGT) can be diagnosed by comparing ankle dorsiflexion (ADF) with the knee extended and flexed. Although various measurement techniques exist, the degree of knee flexion needed to eliminate the effect of the gastrocnemius on ADF is still unknown. The aim of this study was to identify the minimal degree of knee flexion required to eliminate the restricting effect of the musculus gastrocnemius on ADF.

Methods

Bilateral ADF of 20 asymptomatic volunteers aged 18-40 years (50% female) was assessed prospectively at six different degrees of knee flexion (0°, 20°, 30°, 45°, 60°, 75°, Lunge). Tests were performed following a standardized protocol, non weightbearing and weightbearing, by two observers. Statistics comprised of descriptive statistics, t-tests, repeated measurement ANOVA and ICC.

Results

20 individuals with a mean age of 27 ± 4 years were tested. No significant side to side differences were observed. The average ADF [95% confidence interval] for non weightbearing was 4° [1°-8°] with the knee extended and 20° [16°-24°] for the knee 75° flexed. Mean weightbearing ADF was 25° [22°-28°] for the knee extended and 39° [36°-42°] for the knee 75° flexed. The mean differences between 20° knee flexion and full extension were 15° [12°-18°] non weightbearing and 13° [11°-16°] weightbearing. Significant differences of ADF were only found between full extension and 20° of knee flexion. Further knee flexion did not increase ADF.

Conclusion

Knee flexion of 20° fully eliminates the ADF restraining effect of the gastrocnemius. This knowledge is essential to design a standardized clinical examination assessing MGT.
Appendix
Available only for authorised users
Literature
1.
go back to reference Patel A, DiGiovanni B: Association between plantar fasciitis and isolated contracture of the gastrocnemius. Foot Ankle Int. 2011, 32: 5-8.CrossRefPubMed Patel A, DiGiovanni B: Association between plantar fasciitis and isolated contracture of the gastrocnemius. Foot Ankle Int. 2011, 32: 5-8.CrossRefPubMed
2.
go back to reference DiGiovanni CW, Kuo R, Tejwani N, Price R, Hansen ST, Cziernecki J, Sangeorzan BJ: Isolated gastrocnemius tightness. J Bone Joint Surg Am. 2002, 84-A: 962-970.PubMed DiGiovanni CW, Kuo R, Tejwani N, Price R, Hansen ST, Cziernecki J, Sangeorzan BJ: Isolated gastrocnemius tightness. J Bone Joint Surg Am. 2002, 84-A: 962-970.PubMed
3.
go back to reference Bolívar YA, Munuera PV, Padillo JP: Relationship between tightness of the posterior muscles of the lower limb and plantar fasciitis. Foot Ankle Int. 2013, 34: 42-48.PubMed Bolívar YA, Munuera PV, Padillo JP: Relationship between tightness of the posterior muscles of the lower limb and plantar fasciitis. Foot Ankle Int. 2013, 34: 42-48.PubMed
4.
go back to reference Irving DB, Cook JL, Menz HB: Factors associated with chronic plantar heel pain: a systematic review. J Sci Med Sport. 2006, 9: 11-22. discussion 23-14CrossRefPubMed Irving DB, Cook JL, Menz HB: Factors associated with chronic plantar heel pain: a systematic review. J Sci Med Sport. 2006, 9: 11-22. discussion 23-14CrossRefPubMed
5.
go back to reference Crawford F, Thomson C: Interventions for treating plantar heel pain. Cochrane Database Syst Rev. 2003, 3: CD000416-PubMed Crawford F, Thomson C: Interventions for treating plantar heel pain. Cochrane Database Syst Rev. 2003, 3: CD000416-PubMed
6.
go back to reference Wilder RP, Sethi S: Overuse injuries: tendinopathies, stress fractures, compartment syndrome, and shin splints. Clin Sports Med. 2004, 23: 55-81. viCrossRefPubMed Wilder RP, Sethi S: Overuse injuries: tendinopathies, stress fractures, compartment syndrome, and shin splints. Clin Sports Med. 2004, 23: 55-81. viCrossRefPubMed
7.
go back to reference You J-Y, Lee H-M, Luo H-J, Leu C-C, Cheng P-G, Wu S-K: Gastrocnemius tightness on joint angle and work of lower extremity during gait. Clin Biomech (Bristol, Avon). 2009, 24: 744-750.CrossRef You J-Y, Lee H-M, Luo H-J, Leu C-C, Cheng P-G, Wu S-K: Gastrocnemius tightness on joint angle and work of lower extremity during gait. Clin Biomech (Bristol, Avon). 2009, 24: 744-750.CrossRef
8.
go back to reference Aronow MS, Diaz-Doran V, Sullivan RJ, Adams DJ: The effect of triceps surae contracture force on plantar foot pressure distribution. Foot Ankle Int. 2006, 27: 43-52.PubMed Aronow MS, Diaz-Doran V, Sullivan RJ, Adams DJ: The effect of triceps surae contracture force on plantar foot pressure distribution. Foot Ankle Int. 2006, 27: 43-52.PubMed
9.
go back to reference Chimera NJ, Castro M, Davis I, Manal K: The effect of isolated gastrocnemius contracture and gastrocnemius recession on lower extremity kinematics and kinetics during stance. Clin Biomech (Bristol, Avon). 2012, 27: 917-923.CrossRef Chimera NJ, Castro M, Davis I, Manal K: The effect of isolated gastrocnemius contracture and gastrocnemius recession on lower extremity kinematics and kinetics during stance. Clin Biomech (Bristol, Avon). 2012, 27: 917-923.CrossRef
10.
go back to reference Duthon VB, Lübbeke A, Duc SR, Stern R, Assal M: Noninsertional Achilles tendinopathy treated with gastrocnemius lengthening. Foot Ankle Int. 2011, 32: 375-379.CrossRefPubMed Duthon VB, Lübbeke A, Duc SR, Stern R, Assal M: Noninsertional Achilles tendinopathy treated with gastrocnemius lengthening. Foot Ankle Int. 2011, 32: 375-379.CrossRefPubMed
11.
go back to reference Nishimoto GS, Attinger CE, Cooper PS: Lengthening the Achilles tendon for the treatment of diabetic plantar forefoot ulceration. Surg Clin North Am. 2003, 83: 707-726.CrossRefPubMed Nishimoto GS, Attinger CE, Cooper PS: Lengthening the Achilles tendon for the treatment of diabetic plantar forefoot ulceration. Surg Clin North Am. 2003, 83: 707-726.CrossRefPubMed
12.
go back to reference Barske HL, DiGiovanni BF, Douglass M, Nawoczenski DA: Current concepts review: isolated gastrocnemius contracture and gastrocnemius recession. Foot Ankle Int. 2012, 33: 915-921.CrossRefPubMed Barske HL, DiGiovanni BF, Douglass M, Nawoczenski DA: Current concepts review: isolated gastrocnemius contracture and gastrocnemius recession. Foot Ankle Int. 2012, 33: 915-921.CrossRefPubMed
13.
go back to reference Gurdezi S, Kohls-Gatzoulis J, Solan MC: Results of proximal medial gastrocnemius release for Achilles tendinopathy. Foot Ankle Int. 2013, 34: 1364-1369.CrossRefPubMed Gurdezi S, Kohls-Gatzoulis J, Solan MC: Results of proximal medial gastrocnemius release for Achilles tendinopathy. Foot Ankle Int. 2013, 34: 1364-1369.CrossRefPubMed
14.
go back to reference Hill RS: Ankle equinus. Prevalence and linkage to common foot pathology. J Am Podiatr Med Assoc. 1995, 85: 295-300.CrossRefPubMed Hill RS: Ankle equinus. Prevalence and linkage to common foot pathology. J Am Podiatr Med Assoc. 1995, 85: 295-300.CrossRefPubMed
15.
go back to reference Silfverskiold N: Reduction of the uncrossed two-joints muscles of the leg to one-joint muscles in spastic conditions. Acta Chir Scand. 1923, 56: 315-330. Silfverskiold N: Reduction of the uncrossed two-joints muscles of the leg to one-joint muscles in spastic conditions. Acta Chir Scand. 1923, 56: 315-330.
16.
go back to reference Krause DA, Cloud BA, Forster LA, Schrank JA, Hollman JH: Measurement of ankle dorsiflexion: a comparison of active and passive techniques in multiple positions. J Sport Rehabil. 2011, 20: 333-344.PubMed Krause DA, Cloud BA, Forster LA, Schrank JA, Hollman JH: Measurement of ankle dorsiflexion: a comparison of active and passive techniques in multiple positions. J Sport Rehabil. 2011, 20: 333-344.PubMed
17.
go back to reference Bennell KL, Talbot RC, Wajswelner H, Techovanich W, Kelly DH, Hall AJ: Intra-rater and inter-rater reliability of a weight-bearing lunge measure of ankle dorsiflexion. Aust J Physiother. 1998, 44: 175-180.CrossRefPubMed Bennell KL, Talbot RC, Wajswelner H, Techovanich W, Kelly DH, Hall AJ: Intra-rater and inter-rater reliability of a weight-bearing lunge measure of ankle dorsiflexion. Aust J Physiother. 1998, 44: 175-180.CrossRefPubMed
18.
go back to reference Munteanu SE, Strawhorn AB, Landorf KB, Bird AR, Murley GS: A weightbearing technique for the measurement of ankle joint dorsiflexion with the knee extended is reliable. J Sci Med Sport. 2009, 12: 54-59.CrossRefPubMed Munteanu SE, Strawhorn AB, Landorf KB, Bird AR, Murley GS: A weightbearing technique for the measurement of ankle joint dorsiflexion with the knee extended is reliable. J Sci Med Sport. 2009, 12: 54-59.CrossRefPubMed
19.
go back to reference Wilken J, Rao S, Estin M, Saltzman CL, Yack HJ: A new device for assessing ankle dorsiflexion motion: reliability and validity. J Orthop Sports Phys Ther. 2011, 41: 274-280.CrossRefPubMed Wilken J, Rao S, Estin M, Saltzman CL, Yack HJ: A new device for assessing ankle dorsiflexion motion: reliability and validity. J Orthop Sports Phys Ther. 2011, 41: 274-280.CrossRefPubMed
20.
go back to reference Gatt A, Chockalingam N: Validity and reliability of a new ankle dorsiflexion measurement device. Prosthetics Orthot Int. 2013, 37: 289-297.CrossRef Gatt A, Chockalingam N: Validity and reliability of a new ankle dorsiflexion measurement device. Prosthetics Orthot Int. 2013, 37: 289-297.CrossRef
21.
go back to reference Baggett BD, Young G: Ankle joint dorsiflexion. Establishment of a normal range. J Am Podiatr Med Assoc. 1993, 83: 251-254.CrossRefPubMed Baggett BD, Young G: Ankle joint dorsiflexion. Establishment of a normal range. J Am Podiatr Med Assoc. 1993, 83: 251-254.CrossRefPubMed
22.
go back to reference Menz HB, Tiedemann A, Kwan MM-S, Latt MD, Sherrington C, Lord SR: Reliability of clinical tests of foot and ankle characteristics in older people. J Am Podiatr Med Assoc. 2003, 93: 380-387.CrossRefPubMed Menz HB, Tiedemann A, Kwan MM-S, Latt MD, Sherrington C, Lord SR: Reliability of clinical tests of foot and ankle characteristics in older people. J Am Podiatr Med Assoc. 2003, 93: 380-387.CrossRefPubMed
23.
go back to reference Rabin A, Kozol Z: Weightbearing and nonweightbearing ankle dorsiflexion range of motion: are we measuring the same thing?. J Am Podiatr Med Assoc. 2012, 12: 406-411.CrossRef Rabin A, Kozol Z: Weightbearing and nonweightbearing ankle dorsiflexion range of motion: are we measuring the same thing?. J Am Podiatr Med Assoc. 2012, 12: 406-411.CrossRef
24.
go back to reference Worrell TW, McCullough M, Pfeiffer A: Effect of foot position on gastrocnemius/soleus stretching in subjects with normal flexibility. J Orthop Sports Phys Ther. 1994, 19: 352-356.CrossRefPubMed Worrell TW, McCullough M, Pfeiffer A: Effect of foot position on gastrocnemius/soleus stretching in subjects with normal flexibility. J Orthop Sports Phys Ther. 1994, 19: 352-356.CrossRefPubMed
25.
go back to reference Norkin CC, White DJ: Measurement of Joint Motion: A Guide to Goniometry. 2003, Philadelphia: FA Davis, 3 Norkin CC, White DJ: Measurement of Joint Motion: A Guide to Goniometry. 2003, Philadelphia: FA Davis, 3
26.
go back to reference Jonson SR, Gross MT: Intraexaminer reliability, interexaminer reliability, and mean values for nine lower extremity skeletal measures in healthy naval midshipmen. J Orthop Sports Phys Ther. 1997, 25: 253-263.CrossRefPubMed Jonson SR, Gross MT: Intraexaminer reliability, interexaminer reliability, and mean values for nine lower extremity skeletal measures in healthy naval midshipmen. J Orthop Sports Phys Ther. 1997, 25: 253-263.CrossRefPubMed
27.
go back to reference Seiger C, Draper DO: Use of pulsed shortwave diathermy and joint mobilization to increase ankle range of motion in the presence of surgical implanted metal: a case series. J Orthop Sports Phys Ther. 2006, 36: 669-677.CrossRefPubMed Seiger C, Draper DO: Use of pulsed shortwave diathermy and joint mobilization to increase ankle range of motion in the presence of surgical implanted metal: a case series. J Orthop Sports Phys Ther. 2006, 36: 669-677.CrossRefPubMed
28.
go back to reference Aström M, Arvidson T: Alignment and joint motion in the normal foot. J Orthop Sports Phys Ther. 1995, 22: 216-222.CrossRefPubMed Aström M, Arvidson T: Alignment and joint motion in the normal foot. J Orthop Sports Phys Ther. 1995, 22: 216-222.CrossRefPubMed
29.
go back to reference Lahey MA, Downey RG, Saal FE: Intraclass correlations: there is more than meets the eye. Psychol Bull. 1983, 93: 586-595.CrossRef Lahey MA, Downey RG, Saal FE: Intraclass correlations: there is more than meets the eye. Psychol Bull. 1983, 93: 586-595.CrossRef
30.
go back to reference Martin RL, McPoil TG: Reliability of ankle goniometric measurements: a literature review. J Am Podiatr Med Assoc. 2005, 95: 564-572.CrossRefPubMed Martin RL, McPoil TG: Reliability of ankle goniometric measurements: a literature review. J Am Podiatr Med Assoc. 2005, 95: 564-572.CrossRefPubMed
31.
go back to reference Pandya S, Florence JM, King WM, Robison JD, Oxman M, Province MA: Reliability of goniometric measurements in patients with Duchenne muscular dystrophy. Phys Ther. 1985, 65: 1339-1342.PubMed Pandya S, Florence JM, King WM, Robison JD, Oxman M, Province MA: Reliability of goniometric measurements in patients with Duchenne muscular dystrophy. Phys Ther. 1985, 65: 1339-1342.PubMed
32.
go back to reference Kim PJ, Peace R, Mieras J, Thoms T, Freeman D, Page J: Interrater and intrarater reliability in the measurement of ankle joint dorsiflexion is independent of examiner experience and technique used. J Am Podiatr Med Assoc. 2011, 101: 407-414.CrossRefPubMed Kim PJ, Peace R, Mieras J, Thoms T, Freeman D, Page J: Interrater and intrarater reliability in the measurement of ankle joint dorsiflexion is independent of examiner experience and technique used. J Am Podiatr Med Assoc. 2011, 101: 407-414.CrossRefPubMed
33.
go back to reference Youdas JW, Krause DA, Egan KS, Therneau TM, Laskowski ER: The effect of static stretching of the calf muscle-tendon unit on active ankle dorsiflexion range of motion. J Orthop Sports Phys Ther. 2003, 33: 408-417.CrossRefPubMed Youdas JW, Krause DA, Egan KS, Therneau TM, Laskowski ER: The effect of static stretching of the calf muscle-tendon unit on active ankle dorsiflexion range of motion. J Orthop Sports Phys Ther. 2003, 33: 408-417.CrossRefPubMed
34.
go back to reference Fosang AL, Galea MP, McCoy AT, Reddihough DS, Story I: Measures of muscle and joint performance in the lower limb of children with cerebral palsy. Dev Med Child Neurol. 2003, 45: 664-670.CrossRefPubMed Fosang AL, Galea MP, McCoy AT, Reddihough DS, Story I: Measures of muscle and joint performance in the lower limb of children with cerebral palsy. Dev Med Child Neurol. 2003, 45: 664-670.CrossRefPubMed
35.
go back to reference Kilgour G, McNair P, Stott NS: Intrarater reliability of lower limb sagittal range-of-motion measures in children with spastic diplegia. Dev Med Child Neurol. 2003, 45: 391-399.CrossRefPubMed Kilgour G, McNair P, Stott NS: Intrarater reliability of lower limb sagittal range-of-motion measures in children with spastic diplegia. Dev Med Child Neurol. 2003, 45: 391-399.CrossRefPubMed
36.
go back to reference Van Gheluwe B, Kirby KA, Roosen P, Phillips RD: Reliability and accuracy of biomechanical measurements of the lower extremities. J Am Podiatr Med Assoc. 2002, 92: 317-326.CrossRefPubMed Van Gheluwe B, Kirby KA, Roosen P, Phillips RD: Reliability and accuracy of biomechanical measurements of the lower extremities. J Am Podiatr Med Assoc. 2002, 92: 317-326.CrossRefPubMed
37.
go back to reference Diamond JE, Mueller MJ, Delitto A, Sinacore DR: Reliability of a diabetic foot evaluation. Phys Ther. 1989, 69: 797-802.PubMed Diamond JE, Mueller MJ, Delitto A, Sinacore DR: Reliability of a diabetic foot evaluation. Phys Ther. 1989, 69: 797-802.PubMed
38.
go back to reference Venturini C, Ituassu NT, Teixeira LM, Deus CVOE: Intrarater and interrater reliability of two methods for measuring the active range of motion for ankle dorsiflexion in healthy subjects. Rev bras fisioter. 2006, 10: 407-411.CrossRef Venturini C, Ituassu NT, Teixeira LM, Deus CVOE: Intrarater and interrater reliability of two methods for measuring the active range of motion for ankle dorsiflexion in healthy subjects. Rev bras fisioter. 2006, 10: 407-411.CrossRef
39.
go back to reference Tiberio D: Evaluation of functional ankle dorsiflexion using subtalar neutral position. Clin Rep Phys Ther. 1987, 67: 955-957. Tiberio D: Evaluation of functional ankle dorsiflexion using subtalar neutral position. Clin Rep Phys Ther. 1987, 67: 955-957.
40.
go back to reference Tiberio D, Bohannon RW, Zito MA: Effect of subtalar joint position on the measurement of maximum ankle dorsiflexic. Clin Biomech (Bristol, Avon). 1989, 4: 189-191.CrossRef Tiberio D, Bohannon RW, Zito MA: Effect of subtalar joint position on the measurement of maximum ankle dorsiflexic. Clin Biomech (Bristol, Avon). 1989, 4: 189-191.CrossRef
41.
go back to reference Bohannon RW, Tiberio D, Waters G: Motion measured from forefoot and hindfoot landmarks during passive ankle dorsiflexion range of motion. J Orthop Sports Phys Ther. 1991, 13: 20-22.CrossRefPubMed Bohannon RW, Tiberio D, Waters G: Motion measured from forefoot and hindfoot landmarks during passive ankle dorsiflexion range of motion. J Orthop Sports Phys Ther. 1991, 13: 20-22.CrossRefPubMed
42.
go back to reference Johanson M, Baer J, Hovermale H, Phouthavong P: Subtalar joint position during gastrocnemius stretching and ankle dorsiflexion range of motion. J Athl Train. 2008, 43: 172-178.CrossRefPubMedPubMedCentral Johanson M, Baer J, Hovermale H, Phouthavong P: Subtalar joint position during gastrocnemius stretching and ankle dorsiflexion range of motion. J Athl Train. 2008, 43: 172-178.CrossRefPubMedPubMedCentral
Metadata
Title
The influence of knee position on ankle dorsiflexion - a biometric study
Authors
Sebastian F Baumbach
Mareen Brumann
Jakob Binder
Wolf Mutschler
Markus Regauer
Hans Polzer
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2014
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/1471-2474-15-246

Other articles of this Issue 1/2014

BMC Musculoskeletal Disorders 1/2014 Go to the issue