Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2014

Open Access 01-12-2014 | Research article

Immature articular cartilage and subchondral bone covered by menisci are potentially susceptive to mechanical load

Authors: Hirotaka Iijima, Tomoki Aoyama, Akira Ito, Junichi Tajino, Momoko Nagai, Xiangkai Zhang, Shoki Yamaguchi, Haruhiko Akiyama, Hiroshi Kuroki

Published in: BMC Musculoskeletal Disorders | Issue 1/2014

Login to get access

Abstract

Background

The differences of mechanical and histological properties between cartilage covered by menisci and uncovered by menisci may contribute to the osteoarthritis after meniscectomy and these differences are not fully understood. The purpose of this study is to investigate potential differences in the mechanical and histological properties, and in particular the collagen architecture, of the superficial cartilage layer and subchondral bone between regions covered and uncovered by menisci using immature knee.

Methods

Osteochondral plugs were obtained from porcine tibial cartilage that was either covered or uncovered by menisci. Investigation of the thickness, mechanical properties, histology, and water content of the cartilage as well as micro-computed tomography analysis of the subchondral bone was performed to compare these regions. Collagen architecture was also assessed by using scanning electron microscopy.

Results

Compared to the cartilage uncovered by menisci, that covered by menisci was thinner and showed a higher deformity to compression loading and higher water content. In the superficial layer of cartilage in the uncovered regions, collagen fibers showed high density, whereas they showed low density in covered regions. Furthermore, subchondral bone architecture varied between the 2 regions, and showed low bone density in covered regions.

Conclusions

Cartilage covered by menisci differed from that uncovered in both its mechanical and histological properties, especially with regards to the density of the superficial collagen layer. These regional differences may be related to local mechanical environment in normal condition and indicate that cartilage covered by menisci is tightly guarded by menisci from extreme mechanical loading. Our results indicate that immature cartilage degeneration and subchondral microfracture may occur easily to extreme direct mechanical loading in covered region after meniscectomy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Andriacchi TP, Koo S, Scanlan SF: Gait mechanics influence healthy cartilage morphology and osteoarthritis of the knee. J Bone Joint Surg Am. 2009, 91: 95-101.CrossRefPubMedPubMedCentral Andriacchi TP, Koo S, Scanlan SF: Gait mechanics influence healthy cartilage morphology and osteoarthritis of the knee. J Bone Joint Surg Am. 2009, 91: 95-101.CrossRefPubMedPubMedCentral
2.
go back to reference Thambyah A, Nather A, Goh J: Mechanical properties of articular cartilage covered by the meniscus. Osteoarthritis Cartilage. 2006, 14: 580-588.CrossRefPubMed Thambyah A, Nather A, Goh J: Mechanical properties of articular cartilage covered by the meniscus. Osteoarthritis Cartilage. 2006, 14: 580-588.CrossRefPubMed
3.
go back to reference Beveridge JE, Shrive NG, Frank CB: Meniscectomy causes significant in vivo kinematic changes and mechanically induced focal chondral lesions in a sheep model. J Orthop Res. 2011, 29: 1397-1405.CrossRefPubMed Beveridge JE, Shrive NG, Frank CB: Meniscectomy causes significant in vivo kinematic changes and mechanically induced focal chondral lesions in a sheep model. J Orthop Res. 2011, 29: 1397-1405.CrossRefPubMed
4.
go back to reference Roos EM: Joint injury causes knee osteoarthritis in young adults. Curr Opin Rheumatol. 2005, 17: 195-200.CrossRefPubMed Roos EM: Joint injury causes knee osteoarthritis in young adults. Curr Opin Rheumatol. 2005, 17: 195-200.CrossRefPubMed
5.
go back to reference Moschella D, Blasi A, Leardini A, Ensini A, Catani F: Wear patterns on tibial plateau from varus osteoarthritic knees. Clin Biomech (Bristol, Avon). 2006, 21: 152-158.CrossRef Moschella D, Blasi A, Leardini A, Ensini A, Catani F: Wear patterns on tibial plateau from varus osteoarthritic knees. Clin Biomech (Bristol, Avon). 2006, 21: 152-158.CrossRef
6.
go back to reference Cake MA, Read RA, Corfield G, Daniel A, Smith MM, Little CB: Comparison of gait and pathology outcomes of three meniscal procedures for induction of knee osteoarthritis in sheep. Osteoarthritis Cartilage. 2013, 21: 226-236.CrossRefPubMed Cake MA, Read RA, Corfield G, Daniel A, Smith MM, Little CB: Comparison of gait and pathology outcomes of three meniscal procedures for induction of knee osteoarthritis in sheep. Osteoarthritis Cartilage. 2013, 21: 226-236.CrossRefPubMed
7.
go back to reference Deneweth JM, Newman KE, Sylvia SM, Mclean SG, Arruda EM: Heterogeneity of tibial plateau cartilage in response to a physiological compressive strain rate. J Orthop Res. 2013, 31: 370-375.CrossRefPubMed Deneweth JM, Newman KE, Sylvia SM, Mclean SG, Arruda EM: Heterogeneity of tibial plateau cartilage in response to a physiological compressive strain rate. J Orthop Res. 2013, 31: 370-375.CrossRefPubMed
8.
go back to reference Bevill SL, Briant PL, Levenston ME, Andriacchi TP: Central and peripheral region tibial plateau chondrocytes respond differently to in vitro dynamic compression. Osteoarthritis Cartilage. 2009, 17: 980-987.CrossRefPubMed Bevill SL, Briant PL, Levenston ME, Andriacchi TP: Central and peripheral region tibial plateau chondrocytes respond differently to in vitro dynamic compression. Osteoarthritis Cartilage. 2009, 17: 980-987.CrossRefPubMed
9.
go back to reference Lee DH, Kim TH, Kim JM, Bin SI: Results of subtotal/total or partial meniscectomy for discoid lateral meniscus in children. Arthroscopy. 2009, 25: 496-503.CrossRefPubMed Lee DH, Kim TH, Kim JM, Bin SI: Results of subtotal/total or partial meniscectomy for discoid lateral meniscus in children. Arthroscopy. 2009, 25: 496-503.CrossRefPubMed
10.
go back to reference Levin AS, Chen CT, Torzilli PA: Effect of tissue maturity on cell viability in load-injured articular cartilage explants. Osteoarthritis Cartilage. 2005, 13: 488-496.CrossRefPubMed Levin AS, Chen CT, Torzilli PA: Effect of tissue maturity on cell viability in load-injured articular cartilage explants. Osteoarthritis Cartilage. 2005, 13: 488-496.CrossRefPubMed
11.
go back to reference Kleemann RU, Krocker D, Cedrato A, Tuischer J, Duda GN: Altered cartilage mechanics and histology in knee osteoarthritis: relation to clinical assessment (ICRS grade). Osteoarthritis Cartilage. 2005, 13: 958-963.CrossRefPubMed Kleemann RU, Krocker D, Cedrato A, Tuischer J, Duda GN: Altered cartilage mechanics and histology in knee osteoarthritis: relation to clinical assessment (ICRS grade). Osteoarthritis Cartilage. 2005, 13: 958-963.CrossRefPubMed
12.
go back to reference Franz T, Hasler EM, Hagg R, Weiler C, Jakob RP, Mainil-Varlet P: In situ compressive stiffness, biochemical composition, and structural integrity of articular cartilage of the human knee joint. Osteoarthritis Cartilage. 2001, 9: 582-592.CrossRefPubMed Franz T, Hasler EM, Hagg R, Weiler C, Jakob RP, Mainil-Varlet P: In situ compressive stiffness, biochemical composition, and structural integrity of articular cartilage of the human knee joint. Osteoarthritis Cartilage. 2001, 9: 582-592.CrossRefPubMed
13.
go back to reference Julkunen P, Kiviranta P, Wilson W, Jurvelin JS, Korhonen RK: Characterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model. J Biomech. 2007, 40: 1862-1870.CrossRefPubMed Julkunen P, Kiviranta P, Wilson W, Jurvelin JS, Korhonen RK: Characterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model. J Biomech. 2007, 40: 1862-1870.CrossRefPubMed
14.
go back to reference Korhonen RK, Laasanen MS, Töyräs J, Lappalainen R, Helminen HJ, Jurvelin JS: Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal, proteoglycan depleted and collagen degraded articular cartilage. J Biomech. 2003, 36: 1373-1379.CrossRefPubMed Korhonen RK, Laasanen MS, Töyräs J, Lappalainen R, Helminen HJ, Jurvelin JS: Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal, proteoglycan depleted and collagen degraded articular cartilage. J Biomech. 2003, 36: 1373-1379.CrossRefPubMed
15.
go back to reference Julkunen P, Wilson W, Jurvelin JS, Rieppo J, Qu CJ, Lammi MJ, Korhonen RK: Stress-relaxation of human patellar articular cartilage in unconfined compression: prediction of mechanical response by tissue composition and structure. J Biomech. 2008, 41: 1978-1986.CrossRefPubMed Julkunen P, Wilson W, Jurvelin JS, Rieppo J, Qu CJ, Lammi MJ, Korhonen RK: Stress-relaxation of human patellar articular cartilage in unconfined compression: prediction of mechanical response by tissue composition and structure. J Biomech. 2008, 41: 1978-1986.CrossRefPubMed
16.
go back to reference Hosseini SM, Veldink MB, Ito K, Van Donkelaar CC: Is collagen fiber damage the cause of early softening in articular cartilage?. Osteoarthritis Cartilage. 2013, 21: 136-143.CrossRefPubMed Hosseini SM, Veldink MB, Ito K, Van Donkelaar CC: Is collagen fiber damage the cause of early softening in articular cartilage?. Osteoarthritis Cartilage. 2013, 21: 136-143.CrossRefPubMed
17.
go back to reference Gannon AR, Nagel T, Kelly DJ: The role of the superficial region in determining the dynamic properties of articular cartilage. Osteoarthritis Cartilage. 2012, 20: 1417-1425.CrossRefPubMed Gannon AR, Nagel T, Kelly DJ: The role of the superficial region in determining the dynamic properties of articular cartilage. Osteoarthritis Cartilage. 2012, 20: 1417-1425.CrossRefPubMed
18.
go back to reference Torzilli PA, Dethmers DA, Rose DE, Schryuer HF: Movement of interstitial water through loaded articular cartilage. J Biomech. 1983, 16: 169-179.CrossRefPubMed Torzilli PA, Dethmers DA, Rose DE, Schryuer HF: Movement of interstitial water through loaded articular cartilage. J Biomech. 1983, 16: 169-179.CrossRefPubMed
19.
go back to reference Fujioka R, Aoyama T, Takakuwa T: The layered structure of the articular surface. Osteoarthritis Cartilage. 2013, doi:10.1016/j.joca.2013.04.021 Fujioka R, Aoyama T, Takakuwa T: The layered structure of the articular surface. Osteoarthritis Cartilage. 2013, doi:10.1016/j.joca.2013.04.021
20.
go back to reference Radin EL, Paul IL, Rose RM: Role of mechanical factors in pathogenesis of primary osteoarthritis. Lancet. 1972, 4: 519-522.CrossRef Radin EL, Paul IL, Rose RM: Role of mechanical factors in pathogenesis of primary osteoarthritis. Lancet. 1972, 4: 519-522.CrossRef
21.
go back to reference Buckland-Wright JC, Lynch JA, Macfarlane DG: Fractal signature analysis measures cancellous bone organisation in macroradiographs of patients with knee osteoarthritis. Ann Rheum Dis. 1996, 55: 749-755.CrossRefPubMedPubMedCentral Buckland-Wright JC, Lynch JA, Macfarlane DG: Fractal signature analysis measures cancellous bone organisation in macroradiographs of patients with knee osteoarthritis. Ann Rheum Dis. 1996, 55: 749-755.CrossRefPubMedPubMedCentral
22.
go back to reference Hayami T, Pickarski M, Zhuo Y, Wesolowski GA, Rodan GA, Duong le T: Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and menicectomized models of osteoarthritis. Bone. 2006, 38: 234-243.CrossRefPubMed Hayami T, Pickarski M, Zhuo Y, Wesolowski GA, Rodan GA, Duong le T: Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and menicectomized models of osteoarthritis. Bone. 2006, 38: 234-243.CrossRefPubMed
23.
go back to reference Lee JH, Chun KJ, Kim HS, Kim SH, Han P, Jun Y: Alteration patterns of trabecular bone microarchitectural characteristics induced by osteoarthritis over time. Clin Interv Aging. 2012, 7: 303-312.PubMedPubMedCentral Lee JH, Chun KJ, Kim HS, Kim SH, Han P, Jun Y: Alteration patterns of trabecular bone microarchitectural characteristics induced by osteoarthritis over time. Clin Interv Aging. 2012, 7: 303-312.PubMedPubMedCentral
24.
go back to reference Intema F, Hazewinkel HA, Gouwens D, Bijlsma JW, Weinans H, Lafeber FP, Mastbergen SC: In early OA, thinning of the subchondral bone plate is directly related to cartilage damage: results from a canine ACLT-meniscectomy model. Osteoarthritis Cartilage. 2010, 18: 691-698.CrossRefPubMed Intema F, Hazewinkel HA, Gouwens D, Bijlsma JW, Weinans H, Lafeber FP, Mastbergen SC: In early OA, thinning of the subchondral bone plate is directly related to cartilage damage: results from a canine ACLT-meniscectomy model. Osteoarthritis Cartilage. 2010, 18: 691-698.CrossRefPubMed
25.
go back to reference Mohan G, Perilli E, Kuliwaba JS, Humphries JM, Parkinson IH, Fazzalari NL: Application of in vivo micro-computed tomography in the temporal characterisation of subchondral bone architecture in a rat model of low-dose monosodium iodoacetate-induced osteoarthritis. Arthritis Res Ther. 2011, 13: R210-CrossRefPubMedPubMedCentral Mohan G, Perilli E, Kuliwaba JS, Humphries JM, Parkinson IH, Fazzalari NL: Application of in vivo micro-computed tomography in the temporal characterisation of subchondral bone architecture in a rat model of low-dose monosodium iodoacetate-induced osteoarthritis. Arthritis Res Ther. 2011, 13: R210-CrossRefPubMedPubMedCentral
26.
go back to reference Cox LG, van Donkelaar CC, van Rietbergen B, Emans PJ, Ito K: Alterations to the subchondral bone architecture during osteoarthritis: bone adaptation vs endochondral bone formation. Osteoarthritis Cartilage. 2013, 21: 331-338.CrossRefPubMed Cox LG, van Donkelaar CC, van Rietbergen B, Emans PJ, Ito K: Alterations to the subchondral bone architecture during osteoarthritis: bone adaptation vs endochondral bone formation. Osteoarthritis Cartilage. 2013, 21: 331-338.CrossRefPubMed
27.
go back to reference Chappard C, Peyrin F, Bonnassie A, Lemineur G, Brunet-lmbault B, Lespessailles E, Benhamou CL: Subchondral bone micro-architectural alterations in osteoarthritis: a synchrotron micro-computed tomography study. Osteoarthritis Cartilage. 2006, 14: 215-223.CrossRefPubMed Chappard C, Peyrin F, Bonnassie A, Lemineur G, Brunet-lmbault B, Lespessailles E, Benhamou CL: Subchondral bone micro-architectural alterations in osteoarthritis: a synchrotron micro-computed tomography study. Osteoarthritis Cartilage. 2006, 14: 215-223.CrossRefPubMed
28.
go back to reference Funck-Brentano T, Cohen-Solal M: Crosstalk between cartilage and bone: when bone cytokines matter. Cytokine Growth Factor Rev. 2011, 22: 91-97.CrossRefPubMed Funck-Brentano T, Cohen-Solal M: Crosstalk between cartilage and bone: when bone cytokines matter. Cytokine Growth Factor Rev. 2011, 22: 91-97.CrossRefPubMed
29.
go back to reference Bellido M, Lugo L, Roman-Blas JA, Castañeda S, Caeiro JR, Dapia S, Calvo E, Largo R, Herrero-Beaumont G: Subchondral bone microstructural damage by increased remodelling aggravates experimental osteoarthritis preceded by osteoporosis. Arthritis Res Ther. 2010, 12: R152-CrossRefPubMedPubMedCentral Bellido M, Lugo L, Roman-Blas JA, Castañeda S, Caeiro JR, Dapia S, Calvo E, Largo R, Herrero-Beaumont G: Subchondral bone microstructural damage by increased remodelling aggravates experimental osteoarthritis preceded by osteoporosis. Arthritis Res Ther. 2010, 12: R152-CrossRefPubMedPubMedCentral
30.
go back to reference Anetzberger H, Mayer A, Glaser C, Lorenz S, Birkenmaier C, Müller-Gerbl M: Meniscectomy leads to early changes in the mineralization distribution of subchondral bone plate. Knee Surg Sports Traumatol Arthrosc. 2012, doi: 10.1007/s00167-012-2297-7 Anetzberger H, Mayer A, Glaser C, Lorenz S, Birkenmaier C, Müller-Gerbl M: Meniscectomy leads to early changes in the mineralization distribution of subchondral bone plate. Knee Surg Sports Traumatol Arthrosc. 2012, doi: 10.1007/s00167-012-2297-7
31.
go back to reference Cao L, Youn I, Guilak F, Setton LA: Compressive properties of mouse articular cartilage determined in a novel micro-indentation test method and biphasic finite element model. J Biomech Eng. 2006, 128: 766-771.CrossRefPubMed Cao L, Youn I, Guilak F, Setton LA: Compressive properties of mouse articular cartilage determined in a novel micro-indentation test method and biphasic finite element model. J Biomech Eng. 2006, 128: 766-771.CrossRefPubMed
32.
go back to reference Trudel G, Himori K, Uhthoff HK: Contrasting alterations of apposed and unopposed articular cartilage during joint contracture formation. Arch Phys Med Rehabil. 2005, 86: 90-97.CrossRefPubMed Trudel G, Himori K, Uhthoff HK: Contrasting alterations of apposed and unopposed articular cartilage during joint contracture formation. Arch Phys Med Rehabil. 2005, 86: 90-97.CrossRefPubMed
33.
go back to reference Appleyard RC, Burkhardt D, Ghosh P, Read R, Cake M, Swain MV, Murrell GA: Topographical analysis of the structural, biochemical and dynamic biomechanical properties of cartilage in an ovine model of osteoarthritis. Osteoarthritis Cartilage. 2003, 11: 65-77.CrossRefPubMed Appleyard RC, Burkhardt D, Ghosh P, Read R, Cake M, Swain MV, Murrell GA: Topographical analysis of the structural, biochemical and dynamic biomechanical properties of cartilage in an ovine model of osteoarthritis. Osteoarthritis Cartilage. 2003, 11: 65-77.CrossRefPubMed
34.
go back to reference Grogan SP, Duffy SF, Pauli C, Koziol JA, D’Lima DD, Lotz MK: Zone-specific gene expression patterns in articular cartilage. Arthritis Rheum. 2013, 65: 418-428.CrossRefPubMedPubMedCentral Grogan SP, Duffy SF, Pauli C, Koziol JA, D’Lima DD, Lotz MK: Zone-specific gene expression patterns in articular cartilage. Arthritis Rheum. 2013, 65: 418-428.CrossRefPubMedPubMedCentral
35.
go back to reference Gu WY, Mao XG, Foster RJ, Weidenbaum M, Mow VC, Rawlins BA: The anisotropic hydraulic permeability of human lumbar anulus fibrosus. Influence of age, degeneration, and water content. Spine. 1999, 24: 2449-2455.CrossRefPubMed Gu WY, Mao XG, Foster RJ, Weidenbaum M, Mow VC, Rawlins BA: The anisotropic hydraulic permeability of human lumbar anulus fibrosus. Influence of age, degeneration, and water content. Spine. 1999, 24: 2449-2455.CrossRefPubMed
36.
go back to reference Setton LA, Mow VC, Müller FJ, Pita JC, Howell DS: Mechanical properties of canine articular cartilage are significantly altered following transection of the anterior cruciate ligament. J Orthop Res. 1994, 12: 451-463.CrossRefPubMed Setton LA, Mow VC, Müller FJ, Pita JC, Howell DS: Mechanical properties of canine articular cartilage are significantly altered following transection of the anterior cruciate ligament. J Orthop Res. 1994, 12: 451-463.CrossRefPubMed
37.
go back to reference Setton LA, Elliott DM, Mow VC: Altered mechanics of cartilage with osteoarthritis: human osteoarthritis and an experimental model of joint degeneration. Osteoarthritis Cartilage. 1999, 7: 2-14.CrossRefPubMed Setton LA, Elliott DM, Mow VC: Altered mechanics of cartilage with osteoarthritis: human osteoarthritis and an experimental model of joint degeneration. Osteoarthritis Cartilage. 1999, 7: 2-14.CrossRefPubMed
38.
go back to reference Muir H, Bullough P, Maroudas A: The distribution of collagen in human articular cartilage with some of its physiological implications. J Bone Joint Surg Br. 1970, 52: 554-563.PubMed Muir H, Bullough P, Maroudas A: The distribution of collagen in human articular cartilage with some of its physiological implications. J Bone Joint Surg Br. 1970, 52: 554-563.PubMed
39.
go back to reference Setton LA, Zhu W, Mow VC: The biphasic poroviscoelastic behavior of articular cartilage: role of the surface zone in governing the compressive behavior. J Biomech. 1993, 26: 581-592.CrossRefPubMed Setton LA, Zhu W, Mow VC: The biphasic poroviscoelastic behavior of articular cartilage: role of the surface zone in governing the compressive behavior. J Biomech. 1993, 26: 581-592.CrossRefPubMed
40.
go back to reference Julkunen P, Halmesmaki EP, Livarinen J, Rieppo L, Narhi T, Marjanen J, Rieppo J, Arokoski J, Brama PA, Jurvelin JS, Helminen HJ: Effects of growth and exercise on composition, structural maturation and appearance of osteoarthritis in articular cartilage of hamsters. J Anat. 2010, 217: 262-274.CrossRefPubMedPubMedCentral Julkunen P, Halmesmaki EP, Livarinen J, Rieppo L, Narhi T, Marjanen J, Rieppo J, Arokoski J, Brama PA, Jurvelin JS, Helminen HJ: Effects of growth and exercise on composition, structural maturation and appearance of osteoarthritis in articular cartilage of hamsters. J Anat. 2010, 217: 262-274.CrossRefPubMedPubMedCentral
41.
go back to reference Williamson AK, Chen AC, Sah RL: Compressive properties and function-composition relationships of developing bovine articular cartilage. J Orthop Res. 2001, 19: 1113-1121.CrossRefPubMed Williamson AK, Chen AC, Sah RL: Compressive properties and function-composition relationships of developing bovine articular cartilage. J Orthop Res. 2001, 19: 1113-1121.CrossRefPubMed
42.
go back to reference Bland YS, Ashhurst DE: Development and ageing of the articular cartilage of the rabbit knee joint: distribution of the fibllar collagens. Anat Embryol. 1996, 194: 607-619.CrossRefPubMed Bland YS, Ashhurst DE: Development and ageing of the articular cartilage of the rabbit knee joint: distribution of the fibllar collagens. Anat Embryol. 1996, 194: 607-619.CrossRefPubMed
43.
go back to reference Rolauffs B, Muehleman C, Li J, Kurz B, Kuettner KE, Frank E, Grodzinsky AJ: Vulnerability of the superficial zone of immature articular cartilage to compressive injury. Arthritis Rheum. 2010, 62: 3016-3027.CrossRefPubMedPubMedCentral Rolauffs B, Muehleman C, Li J, Kurz B, Kuettner KE, Frank E, Grodzinsky AJ: Vulnerability of the superficial zone of immature articular cartilage to compressive injury. Arthritis Rheum. 2010, 62: 3016-3027.CrossRefPubMedPubMedCentral
44.
go back to reference Proffen BL, McElfresh M, Fleming BC, Murray MM: A comparative anatomical study of the human knee and six animal species. Knee. 2012, 19: 493-499.CrossRefPubMed Proffen BL, McElfresh M, Fleming BC, Murray MM: A comparative anatomical study of the human knee and six animal species. Knee. 2012, 19: 493-499.CrossRefPubMed
45.
go back to reference Buckland-Wright C: Subchondral bone changes in hand and knee osteoarthritis detected by radiography. Osteoarthritis Cartilage. 2004, 12: S10-S19.CrossRefPubMed Buckland-Wright C: Subchondral bone changes in hand and knee osteoarthritis detected by radiography. Osteoarthritis Cartilage. 2004, 12: S10-S19.CrossRefPubMed
46.
go back to reference Burr DB, Radin EL: Microfracture and microcracks in subchondral bone: are they relevant to osteoarthritis?. Rheum Dis Clin North Am. 2003, 29: 675-685.CrossRefPubMed Burr DB, Radin EL: Microfracture and microcracks in subchondral bone: are they relevant to osteoarthritis?. Rheum Dis Clin North Am. 2003, 29: 675-685.CrossRefPubMed
47.
go back to reference Norrdin RW, Kawcak CE, Capwell BA, Mcllwraith CW: Subchondral bone failure in an equine model of overload arthrosis. Bone. 1998, 22: 133-139.CrossRefPubMed Norrdin RW, Kawcak CE, Capwell BA, Mcllwraith CW: Subchondral bone failure in an equine model of overload arthrosis. Bone. 1998, 22: 133-139.CrossRefPubMed
48.
go back to reference MacDessi SJ, Brophy RH, Bullough PG, Windsor RE, Sculco TP: Subchondral fracture following arthroscopic knee surgery. A series of eight cases. J Bone Joint Surg Am. 2008, 90: 1007-1012.CrossRefPubMed MacDessi SJ, Brophy RH, Bullough PG, Windsor RE, Sculco TP: Subchondral fracture following arthroscopic knee surgery. A series of eight cases. J Bone Joint Surg Am. 2008, 90: 1007-1012.CrossRefPubMed
49.
go back to reference Nakamura N, Horibe S, Nakamura S, Mitsuoka T: Subchondral microfracture of the knee without osteonecrosis after arthroscopic medial meniscectomy. Arthroscopy. 2002, 18: 538-541.CrossRefPubMed Nakamura N, Horibe S, Nakamura S, Mitsuoka T: Subchondral microfracture of the knee without osteonecrosis after arthroscopic medial meniscectomy. Arthroscopy. 2002, 18: 538-541.CrossRefPubMed
50.
go back to reference LeRoux MA, Arokoski J, Vail TP, Guilak F, Hyttinen MM, Kiviranta I, Setton LA: Simultaneous changes in the mechanical properties, quantitative collagen organization, and proteoglycan concentration of articular cartilage following canine meniscectomy. J Orthop Res. 2000, 18: 383-392.CrossRefPubMed LeRoux MA, Arokoski J, Vail TP, Guilak F, Hyttinen MM, Kiviranta I, Setton LA: Simultaneous changes in the mechanical properties, quantitative collagen organization, and proteoglycan concentration of articular cartilage following canine meniscectomy. J Orthop Res. 2000, 18: 383-392.CrossRefPubMed
51.
go back to reference Rieppo Jm Hyttinen MM, Halmesmaki E, Ruotsalainen H, Vasara A, Kiviranta L, Jurvelin JS, Helminen HJ: Changes in spatial content and collagen network architecture in porcine articular cartilage during growth and muturation. Osteoarthritis Cartilage. 2009, 17: 448-455.CrossRef Rieppo Jm Hyttinen MM, Halmesmaki E, Ruotsalainen H, Vasara A, Kiviranta L, Jurvelin JS, Helminen HJ: Changes in spatial content and collagen network architecture in porcine articular cartilage during growth and muturation. Osteoarthritis Cartilage. 2009, 17: 448-455.CrossRef
52.
go back to reference Thonar EJ, Buckwalter JA, Kuettner KE: Maturation-related differences in the structure and composition of proteoglycans synthesized by chondrocytes from bovine articular cartilage. J Biol Chem. 1986, 261: 2467-2474.PubMed Thonar EJ, Buckwalter JA, Kuettner KE: Maturation-related differences in the structure and composition of proteoglycans synthesized by chondrocytes from bovine articular cartilage. J Biol Chem. 1986, 261: 2467-2474.PubMed
53.
go back to reference Little CB, Ghosh P: Variation in proteoglycan metabolism by articular chondrocytes in different joint regions is determined by post-natal mechanical loading. Osteoarthritis Cartilage. 1997, 5: 49-62.CrossRefPubMed Little CB, Ghosh P: Variation in proteoglycan metabolism by articular chondrocytes in different joint regions is determined by post-natal mechanical loading. Osteoarthritis Cartilage. 1997, 5: 49-62.CrossRefPubMed
54.
go back to reference Tassani S, Demenegas F, Matsopoulos GK: Local analysis of trabecular bone fracture. Conf Proc IEEE Eng Med Biol Soc. 2011, 2011: 7454-7457.PubMed Tassani S, Demenegas F, Matsopoulos GK: Local analysis of trabecular bone fracture. Conf Proc IEEE Eng Med Biol Soc. 2011, 2011: 7454-7457.PubMed
Metadata
Title
Immature articular cartilage and subchondral bone covered by menisci are potentially susceptive to mechanical load
Authors
Hirotaka Iijima
Tomoki Aoyama
Akira Ito
Junichi Tajino
Momoko Nagai
Xiangkai Zhang
Shoki Yamaguchi
Haruhiko Akiyama
Hiroshi Kuroki
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2014
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/1471-2474-15-101

Other articles of this Issue 1/2014

BMC Musculoskeletal Disorders 1/2014 Go to the issue