Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2013

Open Access 01-12-2013 | Research article

Biomechanical comparison of three stand-alone lumbar cages — a three-dimensional finite element analysis

Authors: Shih-Hao Chen, Ming-Chieh Chiang, Jin-Fu Lin, Shang-Chih Lin, Ching-Hua Hung

Published in: BMC Musculoskeletal Disorders | Issue 1/2013

Login to get access

Abstract

Background

For anterior lumbar interbody fusion (ALIF), stand-alone cages can be supplemented with vertebral plate, locking screws, or threaded cylinder to avoid the use of posterior fixation. Intuitively, the plate, screw, and cylinder aim to be embedded into the vertebral bodies to effectively immobilize the cage itself. The kinematic and mechanical effects of these integrated components on the lumbar construct have not been extensively studied. A nonlinearly lumbar finite-element model was developed and validated to investigate the biomechanical differences between three stand-alone (Latero, SynFix, and Stabilis) and SynCage-Open plus transpedicular fixation. All four cages were instrumented at the L3-4 level.

Methods

The lumbar models were subjected to the follower load along the lumbar column and the moment at the lumbar top to produce flexion (FL), extension (EX), left/right lateral bending (LLB, RLB), and left/right axial rotation (LAR, RAR). A 10 Nm moment was applied to obtain the six physiological motions in all models. The comparison indices included disc range of motion (ROM), facet contact force, and stresses of the annulus and implants.

Results

At the surgical level, the SynCage-open model supplemented with transpedicular fixation decreased ROM (>76%) greatly; while the SynFix model decreased ROM 56-72%, the Latero model decreased ROM 36-91%, in all motions as compared with the INT model. However, the Stabilis model decreased ROM slightly in extension (11%), lateral bending (21%), and axial rotation (34%). At the adjacent levels, there were no obvious differences in ROM and annulus stress among all instrumented models.

Conclusions

ALIF instrumentation with the Latero or SynFix cage provides an acceptable stability for clinical use without the requirement of additional posterior fixation. However, the Stabilis cage is not favored in extension and lateral bending because of insufficient stabilization.
Appendix
Available only for authorised users
Literature
1.
go back to reference Schleicher P, Gerlach R, Schár B, Cain CM, Achatz W, Pflugmacher R, Haas NP, Kandziora F: Biomechanical comparison of two different concepts for stand alone anterior lumbar interbody fusion. Eur Spine J. 2008, 17: 1757-1765. 10.1007/s00586-008-0797-4.CrossRefPubMedPubMedCentral Schleicher P, Gerlach R, Schár B, Cain CM, Achatz W, Pflugmacher R, Haas NP, Kandziora F: Biomechanical comparison of two different concepts for stand alone anterior lumbar interbody fusion. Eur Spine J. 2008, 17: 1757-1765. 10.1007/s00586-008-0797-4.CrossRefPubMedPubMedCentral
2.
go back to reference Cho CB, Ryu KS, Park CK: Anterior lumbar interbody fusion with stand-alone interbody cage in treatment of lumbar intervertebral foraminal stenosis: comparative study of two different types of cages. J Korean Neurosurg Soc. 2010, 47: 352-357. 10.3340/jkns.2010.47.5.352.CrossRefPubMedPubMedCentral Cho CB, Ryu KS, Park CK: Anterior lumbar interbody fusion with stand-alone interbody cage in treatment of lumbar intervertebral foraminal stenosis: comparative study of two different types of cages. J Korean Neurosurg Soc. 2010, 47: 352-357. 10.3340/jkns.2010.47.5.352.CrossRefPubMedPubMedCentral
3.
go back to reference Brantigan JW, Steffee AD, Lewis ML, Quinn LM, Persenaire JM: Lumbar interbody fusion using the Brantigan I/F cage for posterior lumbar interbody fusion and the variable pedicle screw placement system: two-year results from a Food and Drug Administration investigational device exemption clinical trial. Spine. 2000, 25: 1437-1446. 10.1097/00007632-200006010-00017.CrossRefPubMed Brantigan JW, Steffee AD, Lewis ML, Quinn LM, Persenaire JM: Lumbar interbody fusion using the Brantigan I/F cage for posterior lumbar interbody fusion and the variable pedicle screw placement system: two-year results from a Food and Drug Administration investigational device exemption clinical trial. Spine. 2000, 25: 1437-1446. 10.1097/00007632-200006010-00017.CrossRefPubMed
4.
go back to reference Kuslich SD, Danielson G, Dowdle JD, Sherman J, Fredrickson B, Yuan H, Griffith SL: Four-year follow-up results of lumbar spine arthrodesis using the Bagby and Kuslich lumbar fusion cage. Spine. 2000, 25: 2656-2662. 10.1097/00007632-200010150-00018.CrossRefPubMed Kuslich SD, Danielson G, Dowdle JD, Sherman J, Fredrickson B, Yuan H, Griffith SL: Four-year follow-up results of lumbar spine arthrodesis using the Bagby and Kuslich lumbar fusion cage. Spine. 2000, 25: 2656-2662. 10.1097/00007632-200010150-00018.CrossRefPubMed
5.
go back to reference Pavlov PW, Spruit M, Havinga M, Anderson PG, van Limbeek J, Jacobs WC: Anterior lumbar interbody fusion with threaded fusion cages and autologous bone grafts. Eur Spine J. 2000, 9: 224-229. 10.1007/s005869900115.CrossRefPubMedPubMedCentral Pavlov PW, Spruit M, Havinga M, Anderson PG, van Limbeek J, Jacobs WC: Anterior lumbar interbody fusion with threaded fusion cages and autologous bone grafts. Eur Spine J. 2000, 9: 224-229. 10.1007/s005869900115.CrossRefPubMedPubMedCentral
6.
go back to reference Steffen T, Tsantrizos A, Aebi M: Effect of implant design and endplate preparation on the compressive strength of interbody fusion constructs. Spine. 2000, 25: 1077-1084. 10.1097/00007632-200005010-00007.CrossRefPubMed Steffen T, Tsantrizos A, Aebi M: Effect of implant design and endplate preparation on the compressive strength of interbody fusion constructs. Spine. 2000, 25: 1077-1084. 10.1097/00007632-200005010-00007.CrossRefPubMed
7.
go back to reference Oxland TR, Lund T: Biomechanics of stand-alone cages and cages in combination with posterior fixation: a literature review. Eur Spine J. 2000, 9: S95-S101. 10.1007/PL00010028.CrossRefPubMed Oxland TR, Lund T: Biomechanics of stand-alone cages and cages in combination with posterior fixation: a literature review. Eur Spine J. 2000, 9: S95-S101. 10.1007/PL00010028.CrossRefPubMed
8.
go back to reference Steffen T, Tsantrizos A, Fruth I, Aebi M: Cage: designs and concepts. Eur Spine J. 2000, 9: S89-S94. 10.1007/PL00010027.CrossRefPubMed Steffen T, Tsantrizos A, Fruth I, Aebi M: Cage: designs and concepts. Eur Spine J. 2000, 9: S89-S94. 10.1007/PL00010027.CrossRefPubMed
9.
go back to reference Costa F, Sassi M, Ortolina A, Cardia A, Assietti R, Zerbi A, Lorenzetti M, Galbusera F, Fornari M: Stand-alone cage for posterior lumbar interbody fusion in the treatment of high-degree degenerative disc disease: design of a new device for an “old” technique. A prospective study on a series of 116 patients. Eur Spine J. 2011, 20: S46-S56. 10.1007/s00586-011-1755-0.CrossRefPubMed Costa F, Sassi M, Ortolina A, Cardia A, Assietti R, Zerbi A, Lorenzetti M, Galbusera F, Fornari M: Stand-alone cage for posterior lumbar interbody fusion in the treatment of high-degree degenerative disc disease: design of a new device for an “old” technique. A prospective study on a series of 116 patients. Eur Spine J. 2011, 20: S46-S56. 10.1007/s00586-011-1755-0.CrossRefPubMed
10.
go back to reference Tsuang YH, Chiang YF, Hung CY, Wei HW, Huang CH, Cheng CK: Comparison of cage application modality in posterior lumbar interbody fusion with posterior instrumentation—A finite element study. Med Eng Phys. 2009, 31: 565-570. 10.1016/j.medengphy.2008.11.012.CrossRefPubMed Tsuang YH, Chiang YF, Hung CY, Wei HW, Huang CH, Cheng CK: Comparison of cage application modality in posterior lumbar interbody fusion with posterior instrumentation—A finite element study. Med Eng Phys. 2009, 31: 565-570. 10.1016/j.medengphy.2008.11.012.CrossRefPubMed
11.
12.
go back to reference Cain CM, Schleicher P, Gerlach R, Pflugmacher R, Scholz M, Kandziora F: A new stand-alone anterior lumbar interbody fusion device: biomechanical comparison with established fixation techniques. Spine. 2005, 30 (23): 2631-2636. 10.1097/01.brs.0000187897.25889.54.CrossRefPubMed Cain CM, Schleicher P, Gerlach R, Pflugmacher R, Scholz M, Kandziora F: A new stand-alone anterior lumbar interbody fusion device: biomechanical comparison with established fixation techniques. Spine. 2005, 30 (23): 2631-2636. 10.1097/01.brs.0000187897.25889.54.CrossRefPubMed
13.
go back to reference Kim Y: Finite element analysis of anterior lumbar interbody fusion: threaded cylindrical cage and pedicle screw fixation. Spine. 2007, 32: 2558-2568. 10.1097/BRS.0b013e318158cdd8.CrossRefPubMed Kim Y: Finite element analysis of anterior lumbar interbody fusion: threaded cylindrical cage and pedicle screw fixation. Spine. 2007, 32: 2558-2568. 10.1097/BRS.0b013e318158cdd8.CrossRefPubMed
14.
go back to reference Chen SH, Tai CL, Lin CY, Hsieh PH, Chen WP: Biomechanical comparison of a new stand-alone anterior lumbar interbody fusion cage with established fixation techniques - a three-dimensional finite element analysis. BMC Musculoskelet Disord. 2008, 9: 88-10.1186/1471-2474-9-88.CrossRefPubMedPubMedCentral Chen SH, Tai CL, Lin CY, Hsieh PH, Chen WP: Biomechanical comparison of a new stand-alone anterior lumbar interbody fusion cage with established fixation techniques - a three-dimensional finite element analysis. BMC Musculoskelet Disord. 2008, 9: 88-10.1186/1471-2474-9-88.CrossRefPubMedPubMedCentral
15.
go back to reference Jost B, Cripton PA, Lund T, Oxland TR, Lippuner K, Jaeger P, Nolte LP: Compressive strength of interbody cages in the lumbar spine: the effect of cage shape, posterior instrumentation and bone density. Eur Spine J. 1998, 7: 132-141. 10.1007/s005860050043.CrossRefPubMedPubMedCentral Jost B, Cripton PA, Lund T, Oxland TR, Lippuner K, Jaeger P, Nolte LP: Compressive strength of interbody cages in the lumbar spine: the effect of cage shape, posterior instrumentation and bone density. Eur Spine J. 1998, 7: 132-141. 10.1007/s005860050043.CrossRefPubMedPubMedCentral
16.
go back to reference Patwardhan AG, Havey RM, Meade KP, Lee B, Dunlap B: A follower load increases the load-carrying capacity of the lumbar spine in compression. Spine. 1999, 24: 1003-1009. 10.1097/00007632-199905150-00014.CrossRefPubMed Patwardhan AG, Havey RM, Meade KP, Lee B, Dunlap B: A follower load increases the load-carrying capacity of the lumbar spine in compression. Spine. 1999, 24: 1003-1009. 10.1097/00007632-199905150-00014.CrossRefPubMed
17.
go back to reference Kettler A, Wilke HJ, Dietl R, Krammer M, Lumenta C, Claes L: Stabilizing effect of posterior lumbar interbody fusion cages before and after cyclic loading. J Neurosurg. 2000, 92: 87-92.PubMed Kettler A, Wilke HJ, Dietl R, Krammer M, Lumenta C, Claes L: Stabilizing effect of posterior lumbar interbody fusion cages before and after cyclic loading. J Neurosurg. 2000, 92: 87-92.PubMed
18.
go back to reference Kim Y: Prediction of mechanical behaviors at interfaces between bone and two interbody cages of lumbar spine segments. Spine. 2001, 26: 1437-1442. 10.1097/00007632-200107010-00010.CrossRefPubMed Kim Y: Prediction of mechanical behaviors at interfaces between bone and two interbody cages of lumbar spine segments. Spine. 2001, 26: 1437-1442. 10.1097/00007632-200107010-00010.CrossRefPubMed
19.
go back to reference Oxland TR, Lund T, Jost B, Cripton P, Lippuner K, Jaeger P, Nolte LP: The relative importance of vertebral bone density and disc degeneration in spinal flexibility and interbody implant performance. Spine. 1996, 21: 2558-2569. 10.1097/00007632-199611150-00005.CrossRefPubMed Oxland TR, Lund T, Jost B, Cripton P, Lippuner K, Jaeger P, Nolte LP: The relative importance of vertebral bone density and disc degeneration in spinal flexibility and interbody implant performance. Spine. 1996, 21: 2558-2569. 10.1097/00007632-199611150-00005.CrossRefPubMed
20.
go back to reference Polikeit A, Ferguson SJ, Nolte LP, Orr TE: Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis. Eur Spine J. 2003, 12: 413-420. 10.1007/s00586-002-0505-8.CrossRefPubMed Polikeit A, Ferguson SJ, Nolte LP, Orr TE: Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis. Eur Spine J. 2003, 12: 413-420. 10.1007/s00586-002-0505-8.CrossRefPubMed
21.
go back to reference Silva MJ, Keaveny TM, Hayes WC: Load sharing between the shell and centrum in the lumbar vertebral body. Spine. 1997, 22: 140-150. 10.1097/00007632-199701150-00004.CrossRefPubMed Silva MJ, Keaveny TM, Hayes WC: Load sharing between the shell and centrum in the lumbar vertebral body. Spine. 1997, 22: 140-150. 10.1097/00007632-199701150-00004.CrossRefPubMed
22.
go back to reference Lu YM, Hutton WC, Gharpuray VM: Do bending, twisting, and diurnal fluid changes in the disc affect the propensity to prolapse? A viscoelastic finite element model. Spine. Nov 1996, 21 (22): 2570-2579.CrossRefPubMed Lu YM, Hutton WC, Gharpuray VM: Do bending, twisting, and diurnal fluid changes in the disc affect the propensity to prolapse? A viscoelastic finite element model. Spine. Nov 1996, 21 (22): 2570-2579.CrossRefPubMed
23.
go back to reference Schmidt H, Heuer F, Simon U, Kettler A, Rohlmann A, Claes L, Wilke HJ: Application of a new calibration method for a three-dimensional finite element model of a human lumbar annulus fibrosus. Clin Biomech (Bristol, Avon). May 2006, 21 (4): 337-344. 10.1016/j.clinbiomech.2005.12.001.CrossRef Schmidt H, Heuer F, Simon U, Kettler A, Rohlmann A, Claes L, Wilke HJ: Application of a new calibration method for a three-dimensional finite element model of a human lumbar annulus fibrosus. Clin Biomech (Bristol, Avon). May 2006, 21 (4): 337-344. 10.1016/j.clinbiomech.2005.12.001.CrossRef
24.
go back to reference Carter DR, Hayes WC: The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg Am. 1977, 59 (7): 954-62.PubMed Carter DR, Hayes WC: The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg Am. 1977, 59 (7): 954-62.PubMed
25.
go back to reference Goel VK, Monroe BT, Gilbertson LG, Brinckmann P: Interlaminar shear stresses and laminae separation in a disc. Finite element analysis of the L3-L4 motion segment subjected to axial compressive loads. Spine. 1995, 20: 689-698. 10.1097/00007632-199503150-00010.CrossRefPubMed Goel VK, Monroe BT, Gilbertson LG, Brinckmann P: Interlaminar shear stresses and laminae separation in a disc. Finite element analysis of the L3-L4 motion segment subjected to axial compressive loads. Spine. 1995, 20: 689-698. 10.1097/00007632-199503150-00010.CrossRefPubMed
26.
go back to reference Renner SM, Natarajan RN, Patwardhan AG, Havey RM, Voronov LI, Guo BY, Andersson GB, An HS: Novel model to analyze the effect of a large compressive follower pre-load on range of motions in a lumbar spine. J Biomech. 2007, 40: 1326-1332. 10.1016/j.jbiomech.2006.05.019.CrossRefPubMed Renner SM, Natarajan RN, Patwardhan AG, Havey RM, Voronov LI, Guo BY, Andersson GB, An HS: Novel model to analyze the effect of a large compressive follower pre-load on range of motions in a lumbar spine. J Biomech. 2007, 40: 1326-1332. 10.1016/j.jbiomech.2006.05.019.CrossRefPubMed
27.
go back to reference Rohlmann A, Neller S, Claes L, Bergmann G, Wilke HJ: Influence of a follower load on intradiscal pressure and intersegmental rotation of the lumbar spine. Spine. 2001, 26: E557-E561. 10.1097/00007632-200112150-00014.CrossRefPubMed Rohlmann A, Neller S, Claes L, Bergmann G, Wilke HJ: Influence of a follower load on intradiscal pressure and intersegmental rotation of the lumbar spine. Spine. 2001, 26: E557-E561. 10.1097/00007632-200112150-00014.CrossRefPubMed
28.
go back to reference Edwards WT, Ordway NR, Zheng Y, McCullen G, Han Z, Yuan HA: Peak stresses observed in the posterior lateral anulus. Spine. 2001, 26: 1753-1759. 10.1097/00007632-200108150-00005.CrossRefPubMed Edwards WT, Ordway NR, Zheng Y, McCullen G, Han Z, Yuan HA: Peak stresses observed in the posterior lateral anulus. Spine. 2001, 26: 1753-1759. 10.1097/00007632-200108150-00005.CrossRefPubMed
29.
go back to reference Adams MA, Hutton WC: The mechanics of prolapsed intervertebral disc. Int Orthopaed. 1982, 6: 249-253. Adams MA, Hutton WC: The mechanics of prolapsed intervertebral disc. Int Orthopaed. 1982, 6: 249-253.
30.
go back to reference McNally DS, Adams MA, Goodship AE: Can intervertebral disc prolapse be predicted by disc mechanics?. Spine. 1993, 18: 1525-1530.CrossRefPubMed McNally DS, Adams MA, Goodship AE: Can intervertebral disc prolapse be predicted by disc mechanics?. Spine. 1993, 18: 1525-1530.CrossRefPubMed
31.
go back to reference Chen SH, Zhong ZC, Chen CS, Chen WJ, Hung C: Biomechanical comparison between lumbar disc arthroplasty and fusion. Med Eng Phys. 2009, 31: 244-253. 10.1016/j.medengphy.2008.07.007.CrossRefPubMed Chen SH, Zhong ZC, Chen CS, Chen WJ, Hung C: Biomechanical comparison between lumbar disc arthroplasty and fusion. Med Eng Phys. 2009, 31: 244-253. 10.1016/j.medengphy.2008.07.007.CrossRefPubMed
32.
go back to reference Goel VK, Kong W, Han JS, Weinstein JN, Gilbertson LG: A combined finite element and optimization investigation of lumbar spine mechanics with and without muscles. Spine. 1993, 18: 1531-1541.CrossRefPubMed Goel VK, Kong W, Han JS, Weinstein JN, Gilbertson LG: A combined finite element and optimization investigation of lumbar spine mechanics with and without muscles. Spine. 1993, 18: 1531-1541.CrossRefPubMed
33.
go back to reference Panjabi MM: Hybrid multidirectional test method to evaluate spinal adjacent-level effects. Clin Biomech. 2007, 22: 257-265. 10.1016/j.clinbiomech.2006.08.006.CrossRef Panjabi MM: Hybrid multidirectional test method to evaluate spinal adjacent-level effects. Clin Biomech. 2007, 22: 257-265. 10.1016/j.clinbiomech.2006.08.006.CrossRef
34.
go back to reference Bae JS, Lee SH, Kim JS, Jung B, Choi G: Adjacent segment degeneration after lumbar interbody fusion with percutaneous pedicle screw fixation for adult low-grade isthmic spondylolisthesis: minimum 3 years of follow-up. Neurosurg. 2010, 67: 1600-1607. 10.1227/NEU.0b013e3181f91697.CrossRef Bae JS, Lee SH, Kim JS, Jung B, Choi G: Adjacent segment degeneration after lumbar interbody fusion with percutaneous pedicle screw fixation for adult low-grade isthmic spondylolisthesis: minimum 3 years of follow-up. Neurosurg. 2010, 67: 1600-1607. 10.1227/NEU.0b013e3181f91697.CrossRef
35.
go back to reference Ploumis A, Wu C, Fischer G, Mehbod AA, Wu W, Faundez A, Transfeldt EE: Biomechanical comparison of anterior lumbar interbody fusion and transforaminal lumbar interbody fusion. J Spinal Disord Tech. 2008, 21: 120-125. 10.1097/BSD.0b013e318060092f.CrossRefPubMed Ploumis A, Wu C, Fischer G, Mehbod AA, Wu W, Faundez A, Transfeldt EE: Biomechanical comparison of anterior lumbar interbody fusion and transforaminal lumbar interbody fusion. J Spinal Disord Tech. 2008, 21: 120-125. 10.1097/BSD.0b013e318060092f.CrossRefPubMed
Metadata
Title
Biomechanical comparison of three stand-alone lumbar cages — a three-dimensional finite element analysis
Authors
Shih-Hao Chen
Ming-Chieh Chiang
Jin-Fu Lin
Shang-Chih Lin
Ching-Hua Hung
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2013
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/1471-2474-14-281

Other articles of this Issue 1/2013

BMC Musculoskeletal Disorders 1/2013 Go to the issue