Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2012

Open Access 01-12-2012 | Research article

Effects of ground and joint reaction force exercise on lumbar spine and femoral neck bone mineral density in postmenopausal women: a meta-analysis of randomized controlled trials

Authors: George A Kelley, Kristi S Kelley, Wendy M Kohrt

Published in: BMC Musculoskeletal Disorders | Issue 1/2012

Login to get access

Abstract

Background

Low bone mineral density (BMD) and subsequent fractures are a major public health problem in postmenopausal women. The purpose of this study was to use the aggregate data meta-analytic approach to examine the effects of ground (for example, walking) and/or joint reaction (for example, strength training) exercise on femoral neck (FN) and lumbar spine (LS) BMD in postmenopausal women.

Methods

The a priori inclusion criteria were: (1) randomized controlled trials, (2) exercise intervention ≥ 24 weeks, (3) comparative control group, (4) postmenopausal women, (5) participants not regularly active, i.e., less than 150 minutes of moderate intensity (3.0 to 5.9 metabolic equivalents) weight bearing endurance activity per week, less than 75 minutes of vigorous intensity (> 6.0 metabolic equivalents) weight bearing endurance activity per week, resistance training < 2 times per week, (6) published and unpublished studies in any language since January 1, 1989, (7) BMD data available at the FN and/or LS. Studies were located by searching six electronic databases, cross-referencing, hand searching and expert review. Dual selection of studies and data abstraction were performed. Hedge’s standardized effect size (g) was calculated for each FN and LS BMD result and pooled using random-effects models. Z-score alpha values, 95%confidence intervals (CI) and number-needed-to-treat (NNT) were calculated for pooled results. Heterogeneity was examined using Q and I 2 . Mixed-effects ANOVA and simple meta-regression were used to examine changes in FN and LS BMD according to selected categorical and continuous variables. Statistical significance was set at an alpha value ≤0.05 and a trend at >0.05 to ≤ 0.10.

Results

Small, statistically significant exercise minus control group improvements were found for both FN (28 g’s, 1632 participants, g = 0.288, 95% CI = 0.102, 0.474, p = 0.002, Q = 90.5, p < 0.0001, I 2  = 70.1%, NNT = 6) and LS (28 g’s, 1504 participants, g = 0.179, 95% CI = −0.003, 0.361, p = 0.05, Q = 77.7, p < 0.0001, I 2  = 65.3%, NNT = 6) BMD. Clinically, it was estimated that the overall changes in FN and LS would reduce the 20-year relative risk of osteoporotic fracture at any site by approximately 11% and 10%, respectively. None of the mixed-effects ANOVA analyses were statistically significant. Statistically significant, or a trend for statistically significant, associations were observed for changes in FN and LS BMD and 20 different predictors.

Conclusions

The overall findings suggest that exercise may result in clinically relevant benefits to FN and LS BMD in postmenopausal women. Several of the observed associations appear worthy of further investigation in well-designed randomized controlled trials.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kanis JA, on behalf of the World Health Organization Scientific Group: Assessment of osteoporosis at the primary health-care level. Technical Report. 2007, University of Sheffield, UK: World Health Organization Collaborating Centre for Metabolic Bone Diseases, 1-339. Printed by the University of Sheffield Kanis JA, on behalf of the World Health Organization Scientific Group: Assessment of osteoporosis at the primary health-care level. Technical Report. 2007, University of Sheffield, UK: World Health Organization Collaborating Centre for Metabolic Bone Diseases, 1-339. Printed by the University of Sheffield
2.
go back to reference Johnell O, Kanis JA: An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006, 17: 1726-1733. 10.1007/s00198-006-0172-4.CrossRefPubMed Johnell O, Kanis JA: An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006, 17: 1726-1733. 10.1007/s00198-006-0172-4.CrossRefPubMed
3.
go back to reference Kanis JA: Diagnosis of osteoporosis and assessment of fracture risk. Lancet. 2002, 359: 1929-1936. 10.1016/S0140-6736(02)08761-5.CrossRefPubMed Kanis JA: Diagnosis of osteoporosis and assessment of fracture risk. Lancet. 2002, 359: 1929-1936. 10.1016/S0140-6736(02)08761-5.CrossRefPubMed
4.
go back to reference Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A: Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res. 2007, 22: 465-475.CrossRefPubMed Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A: Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res. 2007, 22: 465-475.CrossRefPubMed
6.
go back to reference National Osteoporosis Foundation: Prevention and Healthy Living. 2012, Washington, DC: National Osteoporosis Foundation National Osteoporosis Foundation: Prevention and Healthy Living. 2012, Washington, DC: National Osteoporosis Foundation
7.
go back to reference Physical Activity Guidelines Advisory Committee: Physical Activity Guidelines Advisory Report. 2008, Washington, DC: U.S. Department of Health and Human Services Physical Activity Guidelines Advisory Committee: Physical Activity Guidelines Advisory Report. 2008, Washington, DC: U.S. Department of Health and Human Services
8.
go back to reference Kohrt WM, Bloomfield SA, Little KD, Nelson ME, Yingling VR: American College of Sports Medicine Position Stand: physical activity and bone health. Med Sci Sports Exerc. 2004, 36: 1985-1996. 10.1249/01.MSS.0000142662.21767.58.CrossRefPubMed Kohrt WM, Bloomfield SA, Little KD, Nelson ME, Yingling VR: American College of Sports Medicine Position Stand: physical activity and bone health. Med Sci Sports Exerc. 2004, 36: 1985-1996. 10.1249/01.MSS.0000142662.21767.58.CrossRefPubMed
9.
go back to reference Bassey EJ, Rothwell MC, Littlewood JJ, Pye DW: Pre- and postmenopausal women have different bone mineral density responses to the same high-impact exercise. J Bone Miner Res. 1998, 13: 1805-1813. 10.1359/jbmr.1998.13.12.1805.CrossRefPubMed Bassey EJ, Rothwell MC, Littlewood JJ, Pye DW: Pre- and postmenopausal women have different bone mineral density responses to the same high-impact exercise. J Bone Miner Res. 1998, 13: 1805-1813. 10.1359/jbmr.1998.13.12.1805.CrossRefPubMed
10.
go back to reference Bergstrom I, Landgren B, Brinck J, Freyschuss B: Physical training preserves bone mineral density in postmenopausal women with forearm fractures and low bone mineral density. Osteoporos Int. 2008, 19: 177-183. 10.1007/s00198-007-0445-6.CrossRefPubMed Bergstrom I, Landgren B, Brinck J, Freyschuss B: Physical training preserves bone mineral density in postmenopausal women with forearm fractures and low bone mineral density. Osteoporos Int. 2008, 19: 177-183. 10.1007/s00198-007-0445-6.CrossRefPubMed
11.
go back to reference Bocalini DS, Serra AJ, Dos SL, Murad N, Levy RF: Strength training preserves the bone mineral density of postmenopausal women without hormone replacement therapy. J Aging Health. 2009, 21: 519-527. 10.1177/0898264309332839.CrossRefPubMed Bocalini DS, Serra AJ, Dos SL, Murad N, Levy RF: Strength training preserves the bone mineral density of postmenopausal women without hormone replacement therapy. J Aging Health. 2009, 21: 519-527. 10.1177/0898264309332839.CrossRefPubMed
12.
go back to reference Brentano MA, Cadore EL, da Silva EM, Ambrosini AB, Coertjens M, Petkowicz R, Viero I, Kruel LF: Physiological adaptations to strength and circuit training in postmenopausal women with bone loss. J Strength Cond Res. 2008, 22: 1816-1825. 10.1519/JSC.0b013e31817ae3f1.CrossRefPubMed Brentano MA, Cadore EL, da Silva EM, Ambrosini AB, Coertjens M, Petkowicz R, Viero I, Kruel LF: Physiological adaptations to strength and circuit training in postmenopausal women with bone loss. J Strength Cond Res. 2008, 22: 1816-1825. 10.1519/JSC.0b013e31817ae3f1.CrossRefPubMed
13.
go back to reference Brooke-Wavell KSF, Jones PRM, Hardman AE: Brisk walking reduces calcaneal bone loss in post-menopausal women. Clin Sci. 1997, 92: 75-80.CrossRefPubMed Brooke-Wavell KSF, Jones PRM, Hardman AE: Brisk walking reduces calcaneal bone loss in post-menopausal women. Clin Sci. 1997, 92: 75-80.CrossRefPubMed
14.
go back to reference Chilibeck PD, Davison KS, Whiting SJ, Suzuki Y, Janzen CL, Peloso P: The effect of strength training combined with bisphosphonate (etidronate) therapy on bone mineral, lean tissue, and fat mass in postmenopausal women. Can J Physiol Pharmacol. 2002, 80: 941-950. 10.1139/y02-126.CrossRefPubMed Chilibeck PD, Davison KS, Whiting SJ, Suzuki Y, Janzen CL, Peloso P: The effect of strength training combined with bisphosphonate (etidronate) therapy on bone mineral, lean tissue, and fat mass in postmenopausal women. Can J Physiol Pharmacol. 2002, 80: 941-950. 10.1139/y02-126.CrossRefPubMed
15.
go back to reference Choquette S, Riesco E, Cormier E, Dion T, Aubertin-Leheudre M, Dionne IJ: Effects of soya isoflavones and exercise on body composition and clinical risk factors of cardiovascular diseases in overweight postmenopausal women: a 6-month double-blind controlled trial. Br J Nutr. 2011, 105: 1199-1209. 10.1017/S0007114510004897.CrossRefPubMed Choquette S, Riesco E, Cormier E, Dion T, Aubertin-Leheudre M, Dionne IJ: Effects of soya isoflavones and exercise on body composition and clinical risk factors of cardiovascular diseases in overweight postmenopausal women: a 6-month double-blind controlled trial. Br J Nutr. 2011, 105: 1199-1209. 10.1017/S0007114510004897.CrossRefPubMed
16.
go back to reference Englund U, Littbrand H, Sondell A, Pettersson U, Bucht G: A 1-year combined weight-bearing training program is beneficial for bone mineral density and neuromuscular function in older women. Osteoporos Int. 2005, 16: 1117-1123. 10.1007/s00198-004-1821-0.CrossRefPubMed Englund U, Littbrand H, Sondell A, Pettersson U, Bucht G: A 1-year combined weight-bearing training program is beneficial for bone mineral density and neuromuscular function in older women. Osteoporos Int. 2005, 16: 1117-1123. 10.1007/s00198-004-1821-0.CrossRefPubMed
17.
go back to reference Going S, Lohman T, Houtkooper L, Metcalfe L, Flint-Wagner H, Blew R, Stanford V, Cussler E, Martin J, Teixeira P: Effects of exercise on bone mineral density in calcium-replete postmenopausal women with and without hormone replacement therapy. Osteoporos Int. 2003, 14: 637-643. 10.1007/s00198-003-1436-x.CrossRefPubMed Going S, Lohman T, Houtkooper L, Metcalfe L, Flint-Wagner H, Blew R, Stanford V, Cussler E, Martin J, Teixeira P: Effects of exercise on bone mineral density in calcium-replete postmenopausal women with and without hormone replacement therapy. Osteoporos Int. 2003, 14: 637-643. 10.1007/s00198-003-1436-x.CrossRefPubMed
18.
go back to reference Grove KA, Londeree BR: Bone density in postmenopausal women:high impact versus low impact exercise. Med Sci Sports Exerc. 1992, 24: 1190-1194.CrossRefPubMed Grove KA, Londeree BR: Bone density in postmenopausal women:high impact versus low impact exercise. Med Sci Sports Exerc. 1992, 24: 1190-1194.CrossRefPubMed
19.
go back to reference Hong WL: Tai Chi and resistance training exercise: would these really improve the health of the elderly?. PhD Thesis. 2004, The Chinese University of Hong Kong Hong WL: Tai Chi and resistance training exercise: would these really improve the health of the elderly?. PhD Thesis. 2004, The Chinese University of Hong Kong
20.
go back to reference Iwamoto J, Takeda T, Ichimura S: Effect of exercise training and detraining on bone mineral density in postmenopausal women with osteoporosis. J Orthop Sci. 2001, 6: 128-132. 10.1007/s007760100059.CrossRefPubMed Iwamoto J, Takeda T, Ichimura S: Effect of exercise training and detraining on bone mineral density in postmenopausal women with osteoporosis. J Orthop Sci. 2001, 6: 128-132. 10.1007/s007760100059.CrossRefPubMed
21.
go back to reference Jessup JV, Horne C, Vishen RK, Wheeler D: Effects of exercise on bone density, balance, and self-efficacy in older women. Biol Res Nurs. 2003, 4: 171-180. 10.1177/1099800402239628.CrossRefPubMed Jessup JV, Horne C, Vishen RK, Wheeler D: Effects of exercise on bone density, balance, and self-efficacy in older women. Biol Res Nurs. 2003, 4: 171-180. 10.1177/1099800402239628.CrossRefPubMed
22.
go back to reference Kemmler W, von Stengel S, Engelke K, Haberle L, Kalender WA: Exercise effects on bone mineral density, falls, coronary risk factors, and health care costs in older women: the randomized controlled senior fitness and prevention (SEFIP) study. Arch Int Med. 2010, 170: 179-185. 10.1001/archinternmed.2009.499.CrossRef Kemmler W, von Stengel S, Engelke K, Haberle L, Kalender WA: Exercise effects on bone mineral density, falls, coronary risk factors, and health care costs in older women: the randomized controlled senior fitness and prevention (SEFIP) study. Arch Int Med. 2010, 170: 179-185. 10.1001/archinternmed.2009.499.CrossRef
23.
go back to reference Kerr D, Morton A, Dick I, Prince R: Exercise effects on bone mass in postmenopausal women are site-specific and load-dependent. J Bone Miner Res. 1996, 11: 218-225.CrossRefPubMed Kerr D, Morton A, Dick I, Prince R: Exercise effects on bone mass in postmenopausal women are site-specific and load-dependent. J Bone Miner Res. 1996, 11: 218-225.CrossRefPubMed
24.
go back to reference Kerr D, Ackland T, Maslen B, Morton A, Prince R: Resistance training over 2 years increases bone mass in calcium-replete postmenopausal women. J Bone Miner Res. 2001, 16: 175-181. 10.1359/jbmr.2001.16.1.175.CrossRefPubMed Kerr D, Ackland T, Maslen B, Morton A, Prince R: Resistance training over 2 years increases bone mass in calcium-replete postmenopausal women. J Bone Miner Res. 2001, 16: 175-181. 10.1359/jbmr.2001.16.1.175.CrossRefPubMed
25.
go back to reference Liu-Ambrose TYL, Khan KM, Eng JJ, Heinonen A, McKay HA: Both resistance and agility training increase cortical bone density in 75- to 85-year-old women with low bone mass: a 6-month randomized controlled trial. J Clin Densitom. 2004, 7: 390-398. 10.1385/JCD:7:4:390.CrossRefPubMed Liu-Ambrose TYL, Khan KM, Eng JJ, Heinonen A, McKay HA: Both resistance and agility training increase cortical bone density in 75- to 85-year-old women with low bone mass: a 6-month randomized controlled trial. J Clin Densitom. 2004, 7: 390-398. 10.1385/JCD:7:4:390.CrossRefPubMed
26.
go back to reference Marques EA, Mota J, Machado L, Sousa F, Coelho M, Moreira P, Carvalho J: Multicomponent training program with weight-bearing exercises elicits favorable bone density, muscle strength, and balance adaptations in older women. Calcif Tissue Int. 2011, 88: 117-129. 10.1007/s00223-010-9437-1.CrossRefPubMed Marques EA, Mota J, Machado L, Sousa F, Coelho M, Moreira P, Carvalho J: Multicomponent training program with weight-bearing exercises elicits favorable bone density, muscle strength, and balance adaptations in older women. Calcif Tissue Int. 2011, 88: 117-129. 10.1007/s00223-010-9437-1.CrossRefPubMed
27.
go back to reference Marques EA, Wanderley F, Machado L, Sousa F, Viana JL, Moreira-Goncalves D, Moreira P, Mota J, Carvalho J: Effects of resistance and aerobic exercise on physical function, bone mineral density, OPG and RANKL in older women. Exp Gerontol. 2011, 46: 524-532. 10.1016/j.exger.2011.02.005.CrossRefPubMed Marques EA, Wanderley F, Machado L, Sousa F, Viana JL, Moreira-Goncalves D, Moreira P, Mota J, Carvalho J: Effects of resistance and aerobic exercise on physical function, bone mineral density, OPG and RANKL in older women. Exp Gerontol. 2011, 46: 524-532. 10.1016/j.exger.2011.02.005.CrossRefPubMed
28.
go back to reference Martin D, Notelovitz M: Effects of aerobic training on bone mineral density of postmenopausal women. J Bone Miner Res. 1993, 8: 931-936.CrossRefPubMed Martin D, Notelovitz M: Effects of aerobic training on bone mineral density of postmenopausal women. J Bone Miner Res. 1993, 8: 931-936.CrossRefPubMed
29.
go back to reference Nelson ME, Fiatarone MA, Morganti CM, Trice I, Greenberg RA, Evans WJ: Effects of high-intensity strength training on multiple risk factors for osteoporotic fractures:a randomized controlled trial. JAMA. 1994, 272: 1909-1914. 10.1001/jama.1994.03520240037038.CrossRefPubMed Nelson ME, Fiatarone MA, Morganti CM, Trice I, Greenberg RA, Evans WJ: Effects of high-intensity strength training on multiple risk factors for osteoporotic fractures:a randomized controlled trial. JAMA. 1994, 272: 1909-1914. 10.1001/jama.1994.03520240037038.CrossRefPubMed
30.
go back to reference Newstead A, Smith KI, Bruder J, Keller C: The effect of a jumping exercise intervention on bone mineral density in postmenopausal women. J Geriatr Phys Ther. 2004, 27: 47-52. 10.1519/00139143-200408000-00002.CrossRef Newstead A, Smith KI, Bruder J, Keller C: The effect of a jumping exercise intervention on bone mineral density in postmenopausal women. J Geriatr Phys Ther. 2004, 27: 47-52. 10.1519/00139143-200408000-00002.CrossRef
31.
go back to reference Prince R, Devine A, Criddle A, Kerr D, Kent N, Price R, Ranell A: The effects of calcium supplementation (milk powder or tablets) and exercise on bone density in postmenopausal women. J Bone Miner Res. 1995, 10: 1068-1075.CrossRefPubMed Prince R, Devine A, Criddle A, Kerr D, Kent N, Price R, Ranell A: The effects of calcium supplementation (milk powder or tablets) and exercise on bone density in postmenopausal women. J Bone Miner Res. 1995, 10: 1068-1075.CrossRefPubMed
32.
go back to reference Rhodes EC, Martin AD, Taunton JE, Donnelly M, Warren J, Elliot J: Effects of one year of resistance training on the relation between muscular strength and bone density in elderly women. Br J Sports Med. 2000, 34: 18-22. 10.1136/bjsm.34.1.18.CrossRefPubMedPubMedCentral Rhodes EC, Martin AD, Taunton JE, Donnelly M, Warren J, Elliot J: Effects of one year of resistance training on the relation between muscular strength and bone density in elderly women. Br J Sports Med. 2000, 34: 18-22. 10.1136/bjsm.34.1.18.CrossRefPubMedPubMedCentral
33.
go back to reference Wu J, Oka J, Higuchi M, Tabata I, Toda T, Fujioka M, Fuku N, Teramoto T, Okuhira T, Ueno T: Cooperative effects of isoflavones and exercise on bone and lipid metabolism in postmenopausal Japanese women: a randomized placebo-controlled trial. Metabolism. 2006, 55: 423-433. 10.1016/j.metabol.2005.10.002.CrossRefPubMed Wu J, Oka J, Higuchi M, Tabata I, Toda T, Fujioka M, Fuku N, Teramoto T, Okuhira T, Ueno T: Cooperative effects of isoflavones and exercise on bone and lipid metabolism in postmenopausal Japanese women: a randomized placebo-controlled trial. Metabolism. 2006, 55: 423-433. 10.1016/j.metabol.2005.10.002.CrossRefPubMed
34.
go back to reference Hedges LV, Olkin I: Vote-counting methods in research synthesis. Psychol Bull. 1980, 88: 359-369.CrossRef Hedges LV, Olkin I: Vote-counting methods in research synthesis. Psychol Bull. 1980, 88: 359-369.CrossRef
35.
go back to reference Sacks HS, Berrier J, Reitman D, Ancona-Berk VA, Chalmers TC: Meta-analysis of randomized controlled trials. N Engl J Med. 1987, 316: 450-455. 10.1056/NEJM198702193160806.CrossRefPubMed Sacks HS, Berrier J, Reitman D, Ancona-Berk VA, Chalmers TC: Meta-analysis of randomized controlled trials. N Engl J Med. 1987, 316: 450-455. 10.1056/NEJM198702193160806.CrossRefPubMed
36.
go back to reference Berard A, Bravo G, Gauthier P: Meta-analysis of the effectiveness of physical activity for the prevention of bone loss in postmenopausal women. Osteoporos Int. 1997, 7: 331-337. 10.1007/BF01623773.CrossRefPubMed Berard A, Bravo G, Gauthier P: Meta-analysis of the effectiveness of physical activity for the prevention of bone loss in postmenopausal women. Osteoporos Int. 1997, 7: 331-337. 10.1007/BF01623773.CrossRefPubMed
37.
go back to reference Howe TE, Shea B, Dawson LJ, Downie F, Murray A, Ross C, Harbour RT, Caldwell LM, Creed G: Exercise for preventing and treating osteoporosis in postmenopausal women. Cochrane Database Syst Rev. 2011, 7: CD000333-PubMed Howe TE, Shea B, Dawson LJ, Downie F, Murray A, Ross C, Harbour RT, Caldwell LM, Creed G: Exercise for preventing and treating osteoporosis in postmenopausal women. Cochrane Database Syst Rev. 2011, 7: CD000333-PubMed
38.
go back to reference Kelley GA: Aerobic exercise and lumbar spine bone mineral density in postmenopausal women: a meta-analysis. J Am Geriatr Soc. 1998, 46: 143-152.CrossRefPubMed Kelley GA: Aerobic exercise and lumbar spine bone mineral density in postmenopausal women: a meta-analysis. J Am Geriatr Soc. 1998, 46: 143-152.CrossRefPubMed
39.
go back to reference Kelley GA: Exercise and regional bone mineral density in postmenopausal women: a meta-analytic review of randomized trials. Am J Phys Med Rehabil. 1998, 77: 76-87. 10.1097/00002060-199801000-00015.CrossRefPubMed Kelley GA: Exercise and regional bone mineral density in postmenopausal women: a meta-analytic review of randomized trials. Am J Phys Med Rehabil. 1998, 77: 76-87. 10.1097/00002060-199801000-00015.CrossRefPubMed
40.
go back to reference Kelley GA: Aerobic exercise and bone density at the hip in postmenopausal women: A meta-analysis. Prev Med. 1998, 27: 798-807. 10.1006/pmed.1998.0360.CrossRefPubMed Kelley GA: Aerobic exercise and bone density at the hip in postmenopausal women: A meta-analysis. Prev Med. 1998, 27: 798-807. 10.1006/pmed.1998.0360.CrossRefPubMed
41.
go back to reference Kelley GA, Kelley KS, Tran ZV: Exercise and bone mineral density in men: a meta-analysis. J Appl Physiol. 2000, 88: 1730-1736.PubMed Kelley GA, Kelley KS, Tran ZV: Exercise and bone mineral density in men: a meta-analysis. J Appl Physiol. 2000, 88: 1730-1736.PubMed
42.
go back to reference Kelley GA, Kelley KS, Tran ZV: Resistance training and bone mineral density in women: a meta-analysis of controlled trials. Am J Phys Med Rehabil. 2001, 80: 65-77. 10.1097/00002060-200101000-00017.CrossRefPubMed Kelley GA, Kelley KS, Tran ZV: Resistance training and bone mineral density in women: a meta-analysis of controlled trials. Am J Phys Med Rehabil. 2001, 80: 65-77. 10.1097/00002060-200101000-00017.CrossRefPubMed
43.
go back to reference Kelley GA, Kelley KS, Tran ZV: Exercise and lumbar spine bone mineral density in postmenopausal women: a meta-analysis of individual patient data. J Gerontol: Med Sci. 2002, 57A: M599-M604.CrossRef Kelley GA, Kelley KS, Tran ZV: Exercise and lumbar spine bone mineral density in postmenopausal women: a meta-analysis of individual patient data. J Gerontol: Med Sci. 2002, 57A: M599-M604.CrossRef
44.
go back to reference Kelley GA, Kelley KS: Aerobic exercise and regional bone density in women: a meta-analysis of controlled trials. Am J Med Sports. 2002, 4: 427-433. Kelley GA, Kelley KS: Aerobic exercise and regional bone density in women: a meta-analysis of controlled trials. Am J Med Sports. 2002, 4: 427-433.
45.
go back to reference Kelley GA, Kelley KS, Tran ZV: Efficacy of resistance exercise on lumbar spine and femoral neck bone mineral density in premenopausal women: a meta-analysis of individual patient data. J Womens Health. 2004, 13: 293-300. 10.1089/154099904323016455.CrossRef Kelley GA, Kelley KS, Tran ZV: Efficacy of resistance exercise on lumbar spine and femoral neck bone mineral density in premenopausal women: a meta-analysis of individual patient data. J Womens Health. 2004, 13: 293-300. 10.1089/154099904323016455.CrossRef
46.
go back to reference Kelley GA, Kelley KS: Exercise and bone mineral density at the femoral neck in postmenopausal women: a meta-analysis of controlled clinical trials with individual patient data. Am J Obstet Gynecol. 2006, 194: 760-767. 10.1016/j.ajog.2005.09.006.CrossRefPubMed Kelley GA, Kelley KS: Exercise and bone mineral density at the femoral neck in postmenopausal women: a meta-analysis of controlled clinical trials with individual patient data. Am J Obstet Gynecol. 2006, 194: 760-767. 10.1016/j.ajog.2005.09.006.CrossRefPubMed
47.
go back to reference Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D: The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Int Med. 2009, 151: W65-W94.CrossRefPubMed Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D: The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Int Med. 2009, 151: W65-W94.CrossRefPubMed
48.
go back to reference Marques EA, Mota J, Carvalho J: Exercise effects on bone mineral density in older adults: a meta-analysis of randomized controlled trials. Age (Dordr). 2011, 1-23. Marques EA, Mota J, Carvalho J: Exercise effects on bone mineral density in older adults: a meta-analysis of randomized controlled trials. Age (Dordr). 2011, 1-23.
49.
go back to reference Martyn-St JM, Carroll S: High-intensity resistance training and postmenopausal bone loss: a meta-analysis. Osteoporos Int. 2006, 17: 1225-1240. 10.1007/s00198-006-0083-4.CrossRef Martyn-St JM, Carroll S: High-intensity resistance training and postmenopausal bone loss: a meta-analysis. Osteoporos Int. 2006, 17: 1225-1240. 10.1007/s00198-006-0083-4.CrossRef
50.
go back to reference Martyn-St JM, Carroll S: Meta-analysis of walking for preservation of bone mineral density in postmenopausal women. Bone. 2008, 43: 521-531. 10.1016/j.bone.2008.05.012.CrossRef Martyn-St JM, Carroll S: Meta-analysis of walking for preservation of bone mineral density in postmenopausal women. Bone. 2008, 43: 521-531. 10.1016/j.bone.2008.05.012.CrossRef
51.
go back to reference Martyn-St JM, Carroll S: A meta-analysis of impact exercise on postmenopausal bone loss: the case for mixed loading exercise programmes. Br J Sports Med. 2009, 43: 898-908. 10.1136/bjsm.2008.052704.CrossRef Martyn-St JM, Carroll S: A meta-analysis of impact exercise on postmenopausal bone loss: the case for mixed loading exercise programmes. Br J Sports Med. 2009, 43: 898-908. 10.1136/bjsm.2008.052704.CrossRef
52.
go back to reference Palombaro KM: Effects of walking-only interventions on bone mineral density at various skeletal sites: a meta-analysis. J Geriatr Phys Ther. 2005, 28: 102-107. 10.1519/00139143-200512000-00006.CrossRefPubMed Palombaro KM: Effects of walking-only interventions on bone mineral density at various skeletal sites: a meta-analysis. J Geriatr Phys Ther. 2005, 28: 102-107. 10.1519/00139143-200512000-00006.CrossRefPubMed
53.
go back to reference Wallace BA, Cumming RG: Systematic review of randomized trials of the effect of exercise on bone mass in pre- and postmenopausal women. Calcif Tissue Int. 2000, 67: 10-18. 10.1007/s00223001089.CrossRefPubMed Wallace BA, Cumming RG: Systematic review of randomized trials of the effect of exercise on bone mass in pre- and postmenopausal women. Calcif Tissue Int. 2000, 67: 10-18. 10.1007/s00223001089.CrossRefPubMed
54.
go back to reference Wolff I, van Croonenborg JJ, Kemper HCG, Kostense PJ, Twisk JWR: The effect of exercise training programs on bone mass: a meta-analysis of published controlled trials in pre- and postmenopause women. Osteoporos Int. 1999, 9: 1-12. 10.1007/s001980050109.CrossRefPubMed Wolff I, van Croonenborg JJ, Kemper HCG, Kostense PJ, Twisk JWR: The effect of exercise training programs on bone mass: a meta-analysis of published controlled trials in pre- and postmenopause women. Osteoporos Int. 1999, 9: 1-12. 10.1007/s001980050109.CrossRefPubMed
55.
go back to reference Snow CM, Matkin CC, Shaw JM: Physical Activity and risk for osteoporosis. Osteoporosis. Edited by: Marcus R, Feldman D, Kelsey J. 1996, San Diego: Academic Press, 511-528. Snow CM, Matkin CC, Shaw JM: Physical Activity and risk for osteoporosis. Osteoporosis. Edited by: Marcus R, Feldman D, Kelsey J. 1996, San Diego: Academic Press, 511-528.
56.
go back to reference Sinaki M: Exercise and osteoporosis. Arch Phys Med Rehabil. 1989, 70: 220-229.PubMed Sinaki M: Exercise and osteoporosis. Arch Phys Med Rehabil. 1989, 70: 220-229.PubMed
57.
go back to reference Reference Manager: Reference Manager. 2009, Philadelphia, PA: Thompson ResearchSoft, version 12.0.1 Reference Manager: Reference Manager. 2009, Philadelphia, PA: Thompson ResearchSoft, version 12.0.1
58.
go back to reference Microsoft Excel. 2007, Redmond: Microsoft Corporation, (2007) Microsoft Excel. 2007, Redmond: Microsoft Corporation, (2007)
59.
go back to reference Weeks BK, Beck BR: The BPAQ: a bone-specific physical activity assessment instrument. Osteoporos Int. 2008, 19: 1567-1577. 10.1007/s00198-008-0606-2.CrossRefPubMed Weeks BK, Beck BR: The BPAQ: a bone-specific physical activity assessment instrument. Osteoporos Int. 2008, 19: 1567-1577. 10.1007/s00198-008-0606-2.CrossRefPubMed
61.
go back to reference Ahn S, Becker BJ: Incorporating quality scores in meta-analysis. J Educ Behav Stat. 2011, 36: 555-585. 10.3102/1076998610393968.CrossRef Ahn S, Becker BJ: Incorporating quality scores in meta-analysis. J Educ Behav Stat. 2011, 36: 555-585. 10.3102/1076998610393968.CrossRef
62.
go back to reference Hedges LV, Olkin I: Statistical methods for meta-analysis. 1985, San Diego: Academic Press Hedges LV, Olkin I: Statistical methods for meta-analysis. 1985, San Diego: Academic Press
63.
go back to reference Follmann D, Elliot P, Suh I, Cutler J: Variance imputation for overviews of clinical trials with continuous response. J Clin Epidemiol. 1992, 45: 769-773. 10.1016/0895-4356(92)90054-Q.CrossRefPubMed Follmann D, Elliot P, Suh I, Cutler J: Variance imputation for overviews of clinical trials with continuous response. J Clin Epidemiol. 1992, 45: 769-773. 10.1016/0895-4356(92)90054-Q.CrossRefPubMed
64.
go back to reference Dersimonian R, Laird N: Meta-analysis in clinical trials. Control Clin Trials. 1986, 7: 177-188. 10.1016/0197-2456(86)90046-2.CrossRefPubMed Dersimonian R, Laird N: Meta-analysis in clinical trials. Control Clin Trials. 1986, 7: 177-188. 10.1016/0197-2456(86)90046-2.CrossRefPubMed
65.
go back to reference Baim S, Binkley N, Bilezikian JP, Kendler DL, Hans DB, Lewiecki EM, Silverman S: Official positions of the International Society for Clinical Densitometry and executive summary of the 2007 ISCD Position Development Conference. J Clin Densitom. 2008, 11: 75-91. 10.1016/j.jocd.2007.12.007.CrossRefPubMed Baim S, Binkley N, Bilezikian JP, Kendler DL, Hans DB, Lewiecki EM, Silverman S: Official positions of the International Society for Clinical Densitometry and executive summary of the 2007 ISCD Position Development Conference. J Clin Densitom. 2008, 11: 75-91. 10.1016/j.jocd.2007.12.007.CrossRefPubMed
67.
go back to reference Madsen MV, Gotzsche PC, Hrobjartsson A: Acupuncture treatment for pain: systematic review of randomised clinical trials with acupuncture, placebo acupuncture, and no acupuncture groups. Br Med J. 2009, 338: a3115-10.1136/bmj.a3115.CrossRef Madsen MV, Gotzsche PC, Hrobjartsson A: Acupuncture treatment for pain: systematic review of randomised clinical trials with acupuncture, placebo acupuncture, and no acupuncture groups. Br Med J. 2009, 338: a3115-10.1136/bmj.a3115.CrossRef
68.
go back to reference Kraemer HC, Kupfer DJ: Size of treatment effects and their importance to clinical research and practice. Biol Psychiatry. 2006, 59: 990-996. 10.1016/j.biopsych.2005.09.014.CrossRefPubMed Kraemer HC, Kupfer DJ: Size of treatment effects and their importance to clinical research and practice. Biol Psychiatry. 2006, 59: 990-996. 10.1016/j.biopsych.2005.09.014.CrossRefPubMed
69.
go back to reference U.S.Census Bureau PD: Intercensal Estimates of the Resident Population by Sex and Age for the United States: April 1, 2000 to July 1, 2010 (US-EST00INT-01). 2011, Washington, DC: U.S.Census Bureau PD, 2-17-2012 U.S.Census Bureau PD: Intercensal Estimates of the Resident Population by Sex and Age for the United States: April 1, 2000 to July 1, 2010 (US-EST00INT-01). 2011, Washington, DC: U.S.Census Bureau PD, 2-17-2012
70.
go back to reference US Department of Health and Human Services: Healthy People 2020. 2012, Washington, DC: US Department of Health and Human Services US Department of Health and Human Services: Healthy People 2020. 2012, Washington, DC: US Department of Health and Human Services
71.
go back to reference Health Indicators Warehouse: Aerobic physical activity and muscle-strengthening activity among adults (percent). 2012, Hyattsville: National Center for Health Statistics, 2-16-2012 Health Indicators Warehouse: Aerobic physical activity and muscle-strengthening activity among adults (percent). 2012, Hyattsville: National Center for Health Statistics, 2-16-2012
72.
go back to reference Higgins JPT, Thompson SG, Deeks JJ, Altman DG: Measuring inconsistency in meta-analyses. Br Med J. 2003, 327: 557-560. 10.1136/bmj.327.7414.557.CrossRef Higgins JPT, Thompson SG, Deeks JJ, Altman DG: Measuring inconsistency in meta-analyses. Br Med J. 2003, 327: 557-560. 10.1136/bmj.327.7414.557.CrossRef
73.
go back to reference Higgins JP, Thompson SG, Spiegelhalter DJ: A re-evaluation of random-effects meta-analysis. J R Stat Soc Ser A. 2009, 172: 137-159. 10.1111/j.1467-985X.2008.00552.x.CrossRef Higgins JP, Thompson SG, Spiegelhalter DJ: A re-evaluation of random-effects meta-analysis. J R Stat Soc Ser A. 2009, 172: 137-159. 10.1111/j.1467-985X.2008.00552.x.CrossRef
74.
go back to reference Kelley GA, Kelley KS: Impact of progressive resistance training on lipids and lipoproteins in adults: another look at a meta-analysis using prediction intervals. Prev Med. 2009, 49: 473-475. 10.1016/j.ypmed.2009.09.018.CrossRefPubMed Kelley GA, Kelley KS: Impact of progressive resistance training on lipids and lipoproteins in adults: another look at a meta-analysis using prediction intervals. Prev Med. 2009, 49: 473-475. 10.1016/j.ypmed.2009.09.018.CrossRefPubMed
75.
go back to reference Duval S, Tweedie R: Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000, 56: 455-463. 10.1111/j.0006-341X.2000.00455.x.CrossRefPubMed Duval S, Tweedie R: Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000, 56: 455-463. 10.1111/j.0006-341X.2000.00455.x.CrossRefPubMed
76.
go back to reference Lau J, Schmid CH, Chalmers TC: Cumulative meta-analysis of clinical trials builds evidence for exemplary medical care: the Potsdam International Consultation on Meta-Analysis. J Clin Epidemiol. 1995, 48: 45-57. 10.1016/0895-4356(94)00106-Z.CrossRefPubMed Lau J, Schmid CH, Chalmers TC: Cumulative meta-analysis of clinical trials builds evidence for exemplary medical care: the Potsdam International Consultation on Meta-Analysis. J Clin Epidemiol. 1995, 48: 45-57. 10.1016/0895-4356(94)00106-Z.CrossRefPubMed
77.
go back to reference Borenstein M, Hedges L, Higgins J, Rothstein H: Introduction to meta-analysis. 2009, West Sussex: John Wiley & SonsCrossRef Borenstein M, Hedges L, Higgins J, Rothstein H: Introduction to meta-analysis. 2009, West Sussex: John Wiley & SonsCrossRef
78.
go back to reference Littell JH, Corcoran J, Pillai V: Systematic reviews and meta-analysis. 2008, New York: Oxford University PressCrossRef Littell JH, Corcoran J, Pillai V: Systematic reviews and meta-analysis. 2008, New York: Oxford University PressCrossRef
79.
go back to reference Engels EA, Schmid CH, Terrin N, Olkin I, Lau J: Heterogeneity and statistical significance in meta-analysis: an empirical study of 125 meta-analyses. Stat Med. 2000, 19: 1707-1728. 10.1002/1097-0258(20000715)19:13<1707::AID-SIM491>3.0.CO;2-P.CrossRefPubMed Engels EA, Schmid CH, Terrin N, Olkin I, Lau J: Heterogeneity and statistical significance in meta-analysis: an empirical study of 125 meta-analyses. Stat Med. 2000, 19: 1707-1728. 10.1002/1097-0258(20000715)19:13<1707::AID-SIM491>3.0.CO;2-P.CrossRefPubMed
80.
go back to reference Glass GV, McGaw B, Smith ML: Meta-analysis in social research. 1981, Newbury Park: Sage Glass GV, McGaw B, Smith ML: Meta-analysis in social research. 1981, Newbury Park: Sage
81.
go back to reference Melton LJ, Crowson CS, O'Fallon WM, Wahner HW, Riggs BL: Relative contributions of bone density, bone turnover, and clinical risk factors to long-term fracture prediction. J Bone Miner Res. 2003, 18: 312-318. 10.1359/jbmr.2003.18.2.312.CrossRefPubMed Melton LJ, Crowson CS, O'Fallon WM, Wahner HW, Riggs BL: Relative contributions of bone density, bone turnover, and clinical risk factors to long-term fracture prediction. J Bone Miner Res. 2003, 18: 312-318. 10.1359/jbmr.2003.18.2.312.CrossRefPubMed
82.
go back to reference Cranney A, Guyatt G, Griffith L, Wells G, Tugwell P, Rosen C, tOMG, and the Osteoporosis Research Advisory Group: IX: Summary of meta-analyses of therapies for postmenopausal osteoporosis. Endocr Rev. 2002, 23: 570-578. 10.1210/er.2001-9002.CrossRefPubMed Cranney A, Guyatt G, Griffith L, Wells G, Tugwell P, Rosen C, tOMG, and the Osteoporosis Research Advisory Group: IX: Summary of meta-analyses of therapies for postmenopausal osteoporosis. Endocr Rev. 2002, 23: 570-578. 10.1210/er.2001-9002.CrossRefPubMed
83.
go back to reference MacLean C, Newberry S, Maglione M, McMahon M, Ranganath V, Suttorp M, Mojica W, Timmer M, Alexander A, McNamara M: Systematic review: comparative effectiveness of treatments to prevent fractures in men and women with low bone density or osteoporosis. Ann Int Med. 2008, 148: 197-213.CrossRefPubMed MacLean C, Newberry S, Maglione M, McMahon M, Ranganath V, Suttorp M, Mojica W, Timmer M, Alexander A, McNamara M: Systematic review: comparative effectiveness of treatments to prevent fractures in men and women with low bone density or osteoporosis. Ann Int Med. 2008, 148: 197-213.CrossRefPubMed
84.
go back to reference Pedersen BK, Saltin B: Evidence for prescribing exercise as therapy in chronic disease. Scand J Med Sci Sports. 2006, 16: 3-63. 10.1111/j.1600-0838.2006.00520.x.CrossRefPubMed Pedersen BK, Saltin B: Evidence for prescribing exercise as therapy in chronic disease. Scand J Med Sci Sports. 2006, 16: 3-63. 10.1111/j.1600-0838.2006.00520.x.CrossRefPubMed
85.
go back to reference Sherrington C, Tiedemann A, Fairhall N, Close JC, Lord SR: Exercise to prevent falls in older adults: an updated meta-analysis and best practice recommendations. N S W Public Health Bull. 2011, 22: 78-83. 10.1071/NB10056.CrossRefPubMed Sherrington C, Tiedemann A, Fairhall N, Close JC, Lord SR: Exercise to prevent falls in older adults: an updated meta-analysis and best practice recommendations. N S W Public Health Bull. 2011, 22: 78-83. 10.1071/NB10056.CrossRefPubMed
86.
go back to reference Sterne JA, Davey SG: Sifting the evidence-what's wrong with significance tests?. Br Med J. 2001, 322: 226-231. 10.1136/bmj.322.7280.226.CrossRef Sterne JA, Davey SG: Sifting the evidence-what's wrong with significance tests?. Br Med J. 2001, 322: 226-231. 10.1136/bmj.322.7280.226.CrossRef
87.
go back to reference Barry DW, Kohrt WM: BMD decreases over the course of a year in competitive male cyclists. J Bone Miner Res. 2008, 23: 484-491.CrossRefPubMed Barry DW, Kohrt WM: BMD decreases over the course of a year in competitive male cyclists. J Bone Miner Res. 2008, 23: 484-491.CrossRefPubMed
88.
go back to reference Barry DW, Kohrt WM: Acute effects of 2 hours of moderate-intensity cycling on serum parathyroid hormone and calcium. Calcif Tissue Int. 2007, 80: 359-365. 10.1007/s00223-007-9028-y.CrossRefPubMed Barry DW, Kohrt WM: Acute effects of 2 hours of moderate-intensity cycling on serum parathyroid hormone and calcium. Calcif Tissue Int. 2007, 80: 359-365. 10.1007/s00223-007-9028-y.CrossRefPubMed
89.
go back to reference Rothman KJ: No adjustments are needed for multiple comparisons. Epidemiol. 1990, 1: 43-46. 10.1097/00001648-199001000-00010.CrossRef Rothman KJ: No adjustments are needed for multiple comparisons. Epidemiol. 1990, 1: 43-46. 10.1097/00001648-199001000-00010.CrossRef
90.
go back to reference Bennett JA, Winters-Stone K, Nail LM, Scherer J: Definitions of sedentary in physical-activity-intervention trials: a summary of the literature. J Aging Phys Act. 2006, 14: 456-477.PubMed Bennett JA, Winters-Stone K, Nail LM, Scherer J: Definitions of sedentary in physical-activity-intervention trials: a summary of the literature. J Aging Phys Act. 2006, 14: 456-477.PubMed
91.
go back to reference Liu XS, Stein EM, Zhou B, Zhang CA, Nickolas TL, Cohen A, Thomas V, McMahon DJ, Cosman F, Nieves J: Individual trabecula segmentation (ITS)-based morphological analyses and microfinite element analysis of HR-pQCT images discriminate postmenopausal fragility fractures independent of DXA measurements. J Bone Miner Res. 2012, 27: 263-272. 10.1002/jbmr.562.CrossRefPubMedPubMedCentral Liu XS, Stein EM, Zhou B, Zhang CA, Nickolas TL, Cohen A, Thomas V, McMahon DJ, Cosman F, Nieves J: Individual trabecula segmentation (ITS)-based morphological analyses and microfinite element analysis of HR-pQCT images discriminate postmenopausal fragility fractures independent of DXA measurements. J Bone Miner Res. 2012, 27: 263-272. 10.1002/jbmr.562.CrossRefPubMedPubMedCentral
Metadata
Title
Effects of ground and joint reaction force exercise on lumbar spine and femoral neck bone mineral density in postmenopausal women: a meta-analysis of randomized controlled trials
Authors
George A Kelley
Kristi S Kelley
Wendy M Kohrt
Publication date
01-12-2012
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2012
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/1471-2474-13-177

Other articles of this Issue 1/2012

BMC Musculoskeletal Disorders 1/2012 Go to the issue