Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2010

Open Access 01-12-2010 | Research article

Role of the supine lateral radiograph of the spine in vertebroplasty for osteoporotic vertebral compression fracture: a prospective study

Authors: Meng-Huang Wu, Tsung-Jen Huang, Chin-Chang Cheng, Yen-Yao Li, Robert Wen-Wei Hsu

Published in: BMC Musculoskeletal Disorders | Issue 1/2010

Login to get access

Abstract

Background

Severely collapsed vertebral compression fracture (VCF) is usually considered as a contraindication for vertebroplasty because of critically decreased vertebral height (less than one-third the original height). However, osteoporotic VCF can possess dynamic mobility with intravertebral cleft (IVC), which can be demonstrated on supine lateral radiographs (SuLR) and standing lateral radiographs (StLR). The purposes of this study were to: (1) evaluate the efficacy of SuLR to detect IVCs and assess the intravertebral mobility in VCFs, and (2) evaluate the short-term results of vertebroplasty in severely collapsed VCFs with IVCs.

Methods

We enrolled 37 patients with 40 symptomatic osteoporotic VCFs for vertebroplasty; 11 had severely collapsed VCFs with concurrent IVCs detected on the SuLR, the others had not-severely collapsed VCFs. A preoperative StLR, SuLR, magnetic resonance imaging (MRI), and postoperative StLR were taken from all patients. Radiographs were digitized to calculate vertebral body morphometrics including vertebral height ratio and Cobb's kyphotic angle. The intensity of the patient's pain was assessed by the visual analogue scale (VAS) on the day before operation and 1 day, 1 month, and 4 months after operation. The patient's VAS scores and image measurement results were assessed with the paired t-test and Pearson correlation tests; Mann-Whitney U test was used for VAS subgroup comparison. Significance was defined as p < 0.05.

Results

IVCs in patients with not-severely collapsed VCFs were detected in 21 vertebrae (72.4%) by MRI, in 15 vertebrae (51.7%) by preoperative SuLR, and in 7 vertebrae (24.1%) by preoperative StLR. Using the MRI as a gold standard to detect IVCs, SuLR exhibit a sensitivity of 0.71 as compared to StLR that yield a sensitivity of 0.33. In patients with VCFs with IVCs detected on SuLR, the average of the postoperative restoration in vertebral height ratio was significantly higher than that in those without IVCs (17.1% vs. 6.4%). There was no statistical difference in the VAS score between severely collapsed VCFs with IVCs detected on SuLR and not-severely collapsed VCFs at any follow-up time point.

Conclusions

The SuLR efficiently detects an IVC in VCF, which indicates a better vertebral height correction after vertebroplasty compared to VCF without IVC. Before performing a costly MRI, SuLR can identify more IVCs than StLR in patients with severely collapsed VCFs, whom may become the candidates for vertebroplasty.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cotten A, Boutry N, Cortet B, Assaker R, Demondion X, Leblond D, Chastanet P, Duquesnoy B, Deramond H: Percutaneous vertebroplasty: state of the art. Radiographics. 1998, 18: 311-320. discussion 320-313CrossRefPubMed Cotten A, Boutry N, Cortet B, Assaker R, Demondion X, Leblond D, Chastanet P, Duquesnoy B, Deramond H: Percutaneous vertebroplasty: state of the art. Radiographics. 1998, 18: 311-320. discussion 320-313CrossRefPubMed
2.
go back to reference Deramond H, Depriester C, Galibert P, Le Gars D: Percutaneous vertebroplasty with polymethylmethacrylate. Technique, indications, and results. Radiol Clin North Am. 1998, 36: 533-546. 10.1016/S0033-8389(05)70042-7.CrossRefPubMed Deramond H, Depriester C, Galibert P, Le Gars D: Percutaneous vertebroplasty with polymethylmethacrylate. Technique, indications, and results. Radiol Clin North Am. 1998, 36: 533-546. 10.1016/S0033-8389(05)70042-7.CrossRefPubMed
3.
go back to reference Galibert P, Deramond H, Rosat P, Le Gars D: [Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty]. Neurochirurgie. 1987, 33: 166-168.PubMed Galibert P, Deramond H, Rosat P, Le Gars D: [Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty]. Neurochirurgie. 1987, 33: 166-168.PubMed
4.
go back to reference Barr JD, Barr MS, Lemley TJ, McCann RM: Percutaneous vertebroplasty for pain relief and spinal stabilization. Spine. 2000, 25: 923-928. 10.1097/00007632-200004150-00005.CrossRefPubMed Barr JD, Barr MS, Lemley TJ, McCann RM: Percutaneous vertebroplasty for pain relief and spinal stabilization. Spine. 2000, 25: 923-928. 10.1097/00007632-200004150-00005.CrossRefPubMed
5.
go back to reference O'Brien JP, Sims JT, Evans AJ: Vertebroplasty in patients with severe vertebral compression fractures: a technical report. AJNR Am J Neuroradiol. 2000, 21: 1555-1558.PubMed O'Brien JP, Sims JT, Evans AJ: Vertebroplasty in patients with severe vertebral compression fractures: a technical report. AJNR Am J Neuroradiol. 2000, 21: 1555-1558.PubMed
6.
go back to reference Peh WC, Gilula LA, Peck DD: Percutaneous vertebroplasty for severe osteoporotic vertebral body compression fractures. Radiology. 2002, 223: 121-126. 10.1148/radiol.2231010234.CrossRefPubMed Peh WC, Gilula LA, Peck DD: Percutaneous vertebroplasty for severe osteoporotic vertebral body compression fractures. Radiology. 2002, 223: 121-126. 10.1148/radiol.2231010234.CrossRefPubMed
7.
go back to reference McKiernan F, Jensen R, Faciszewski T: The dynamic mobility of vertebral compression fractures. J Bone Miner Res. 2003, 18: 24-29. 10.1359/jbmr.2003.18.1.24.CrossRefPubMed McKiernan F, Jensen R, Faciszewski T: The dynamic mobility of vertebral compression fractures. J Bone Miner Res. 2003, 18: 24-29. 10.1359/jbmr.2003.18.1.24.CrossRefPubMed
8.
go back to reference Kim DY, Lee SH, Jang JS, Chung SK, Lee HY: Intravertebral vacuum phenomenon in osteoporotic compression fracture: report of 67 cases with quantitative evaluation of intravertebral instability. J Neurosurg. 2004, 100 (1 Suppl Spine): 24-31.PubMed Kim DY, Lee SH, Jang JS, Chung SK, Lee HY: Intravertebral vacuum phenomenon in osteoporotic compression fracture: report of 67 cases with quantitative evaluation of intravertebral instability. J Neurosurg. 2004, 100 (1 Suppl Spine): 24-31.PubMed
9.
go back to reference Chen LH, Lai PL, Chen WJ: Unipedicle percutaneous vertebroplasty for spinal intraosseous vacuum cleft. Clin Orthop Relat Res. 2005, 435: 148-153. 10.1097/01.blo.0000155346.12405.70.CrossRefPubMed Chen LH, Lai PL, Chen WJ: Unipedicle percutaneous vertebroplasty for spinal intraosseous vacuum cleft. Clin Orthop Relat Res. 2005, 435: 148-153. 10.1097/01.blo.0000155346.12405.70.CrossRefPubMed
10.
go back to reference Moher D, Schulz KF, Altman DG: The CONSORT statement: revised recommendations for improving the quality of reports of parallel group randomized trials. BMC Med Res Methodol. 2001, 1: 2-10.1186/1471-2288-1-2.CrossRefPubMedPubMedCentral Moher D, Schulz KF, Altman DG: The CONSORT statement: revised recommendations for improving the quality of reports of parallel group randomized trials. BMC Med Res Methodol. 2001, 1: 2-10.1186/1471-2288-1-2.CrossRefPubMedPubMedCentral
11.
go back to reference Dupuy DE, Palmer WE, Rosenthal DI: Vertebral fluid collection associated with vertebral collapse. AJR Am J Roentgenol. 1996, 167: 1535-1538.CrossRefPubMed Dupuy DE, Palmer WE, Rosenthal DI: Vertebral fluid collection associated with vertebral collapse. AJR Am J Roentgenol. 1996, 167: 1535-1538.CrossRefPubMed
12.
go back to reference Teng MM, Wei CJ, Wei LC, Luo CB, Lirng JF, Chang FC, Liu CL, Chang CY: Kyphosis correction and height restoration effects of percutaneous vertebroplasty. AJNR Am J Neuroradiol. 2003, 24: 1893-1900.PubMed Teng MM, Wei CJ, Wei LC, Luo CB, Lirng JF, Chang FC, Liu CL, Chang CY: Kyphosis correction and height restoration effects of percutaneous vertebroplasty. AJNR Am J Neuroradiol. 2003, 24: 1893-1900.PubMed
13.
go back to reference Quiding H, Oksala E, Happonen RP, Lehtimaki K, Ojala T: The visual analog scale in multiple-dose evaluations of analgesics. J Clin Pharmacol. 1981, 21: 424-429.CrossRefPubMed Quiding H, Oksala E, Happonen RP, Lehtimaki K, Ojala T: The visual analog scale in multiple-dose evaluations of analgesics. J Clin Pharmacol. 1981, 21: 424-429.CrossRefPubMed
14.
go back to reference McKiernan F, Faciszewski T, Jensen R: Latent mobility of osteoporotic vertebral compression fractures. J Vasc Interv Radiol. 2006, 17: 1479-1487. 10.1097/01.RVI.0000235742.26624.37.CrossRefPubMed McKiernan F, Faciszewski T, Jensen R: Latent mobility of osteoporotic vertebral compression fractures. J Vasc Interv Radiol. 2006, 17: 1479-1487. 10.1097/01.RVI.0000235742.26624.37.CrossRefPubMed
15.
go back to reference Weill A, Chiras J, Simon JM, Rose M, Sola-Martinez T, Enkaoua E: Spinal metastases: indications for and results of percutaneous injection of acrylic surgical cement. Radiology. 1996, 199: 241-247.CrossRefPubMed Weill A, Chiras J, Simon JM, Rose M, Sola-Martinez T, Enkaoua E: Spinal metastases: indications for and results of percutaneous injection of acrylic surgical cement. Radiology. 1996, 199: 241-247.CrossRefPubMed
16.
go back to reference Laredo JD, Hamze B: Complications of percutaneous vertebroplasty and their prevention. Skeletal Radiol. 2004, 33: 493-505. 10.1007/s00256-004-0776-8.CrossRefPubMed Laredo JD, Hamze B: Complications of percutaneous vertebroplasty and their prevention. Skeletal Radiol. 2004, 33: 493-505. 10.1007/s00256-004-0776-8.CrossRefPubMed
17.
go back to reference Meeder PJ, DaFonseca K, Hillmeier J, Grafe I, Noeldge G, Kasperk C: Kyphoplasty and vertebroplasty in fractures in the elderly: effort and effect. Chirurg. 2003, 74: 994-999. 10.1007/s00104-003-0748-x.CrossRefPubMed Meeder PJ, DaFonseca K, Hillmeier J, Grafe I, Noeldge G, Kasperk C: Kyphoplasty and vertebroplasty in fractures in the elderly: effort and effect. Chirurg. 2003, 74: 994-999. 10.1007/s00104-003-0748-x.CrossRefPubMed
18.
go back to reference Pitton MB, Morgen N, Herber S, Drees P, Bohm B, Duber C: Height gain of vertebral bodies and stabilization of vertebral geometry over one year after vertebroplasty of osteoporotic vertebral fractures. Eur Radiol. 2008, 18: 608-615. 10.1007/s00330-007-0776-x.CrossRefPubMed Pitton MB, Morgen N, Herber S, Drees P, Bohm B, Duber C: Height gain of vertebral bodies and stabilization of vertebral geometry over one year after vertebroplasty of osteoporotic vertebral fractures. Eur Radiol. 2008, 18: 608-615. 10.1007/s00330-007-0776-x.CrossRefPubMed
19.
go back to reference Pitton MB, Koch U, Drees P, Duber C: Midterm Follow-Up of Vertebral Geometry and Remodeling of the Vertebral Bidisk Unit (VDU) After Percutaneous Vertebroplasty of Osteoporotic Vertebral Fractures. Cardiovasc Intervent Radiol. 2009, 32: 1004-1010. 10.1007/s00270-009-9521-y.CrossRefPubMed Pitton MB, Koch U, Drees P, Duber C: Midterm Follow-Up of Vertebral Geometry and Remodeling of the Vertebral Bidisk Unit (VDU) After Percutaneous Vertebroplasty of Osteoporotic Vertebral Fractures. Cardiovasc Intervent Radiol. 2009, 32: 1004-1010. 10.1007/s00270-009-9521-y.CrossRefPubMed
Metadata
Title
Role of the supine lateral radiograph of the spine in vertebroplasty for osteoporotic vertebral compression fracture: a prospective study
Authors
Meng-Huang Wu
Tsung-Jen Huang
Chin-Chang Cheng
Yen-Yao Li
Robert Wen-Wei Hsu
Publication date
01-12-2010
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2010
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/1471-2474-11-164

Other articles of this Issue 1/2010

BMC Musculoskeletal Disorders 1/2010 Go to the issue