Skip to main content
Top
Published in: BMC Pulmonary Medicine 1/2014

Open Access 01-12-2014 | Research article

Increased difference between slow and forced vital capacity is associated with reduced exercise tolerance in COPD patients

Authors: Wei Yuan, Xin He, Qiu-Fen Xu, Hao-Yan Wang, Richard Casaburi

Published in: BMC Pulmonary Medicine | Issue 1/2014

Login to get access

Abstract

Background

A higher slow vital capacity (VC) compared with forced vital capacity (FVC) indicates small airway collapse and air trapping. We hypothesized that a larger difference between VC and FVC (VC-FVC) would predict impaired exercise capacity in patients with chronic obstructive pulmonary disease (COPD).

Methods

Pulmonary function and incremental cardiopulmonary exercise responses were assessed in 97 COPD patients. Patients were then divided into two groups: one in which VC > FVC (n = 77) and the other in which VC ≤ FVC (n = 20).

Results

Patients with VC > FVC had lower FEV1 and peak oxygen uptake (VO2/kg) compared with patients with VC ≤ FVC. There was a significant inverse correlation for the entire group between VC-FVC and peak VO2/kg (r = -0.404; p < 0.001). There was also a direct correlation between FEV1% pred and peak VO2/kg (r = 0.418; p < 0.001). The results of the multivariate regression analysis with peak VO2/kg as the dependent variable showed that VC-FVC, FEV1(% pred) and age were all significant independent predictors of peak VO2/kg. The model explained 35.9% of the peak VO2/kg variance.

Conclusions

The difference between VC and FVC, easily measured by spirometry, can be used not only as an index of severity of airflow limitation, but also to predict exercise performance in COPD patients.
Appendix
Available only for authorised users
Literature
2.
go back to reference Oga T, Nishimura K, Tsukino M, et al: Exercise capacity deterioration in patients with COPD: Longitudinal evaluation over 5 years. Chest. 2005, 128: 62-69. 10.1378/chest.128.1.62.CrossRefPubMed Oga T, Nishimura K, Tsukino M, et al: Exercise capacity deterioration in patients with COPD: Longitudinal evaluation over 5 years. Chest. 2005, 128: 62-69. 10.1378/chest.128.1.62.CrossRefPubMed
3.
go back to reference O’Donnell DE, Lam M, Webb KA: Spirometric correlates of improvement in exercise performance after anticholinergic therapy in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999, 160: 542-549. 10.1164/ajrccm.160.2.9901038.CrossRefPubMed O’Donnell DE, Lam M, Webb KA: Spirometric correlates of improvement in exercise performance after anticholinergic therapy in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999, 160: 542-549. 10.1164/ajrccm.160.2.9901038.CrossRefPubMed
4.
go back to reference O’Donnell DE, Voduc N, Fitzpatrick M, Webb KA: Effect of salmeterol on the ventilatory response to exercise in chronic obstructive pulmonary disease. Eur Respir J. 2004, 24: 86-94. 10.1183/09031936.04.00072703.CrossRefPubMed O’Donnell DE, Voduc N, Fitzpatrick M, Webb KA: Effect of salmeterol on the ventilatory response to exercise in chronic obstructive pulmonary disease. Eur Respir J. 2004, 24: 86-94. 10.1183/09031936.04.00072703.CrossRefPubMed
5.
go back to reference O’Donnell DE, Sciurba F, Celli B, Mahler DA, Webb KA, Kalberg CJ, Knobil K: Effect of fluticasone propionate/salmeterol on lung hyperinflation and exercise endurance in COPD. Chest. 2006, 130: 647-656. 10.1378/chest.130.3.647.CrossRefPubMed O’Donnell DE, Sciurba F, Celli B, Mahler DA, Webb KA, Kalberg CJ, Knobil K: Effect of fluticasone propionate/salmeterol on lung hyperinflation and exercise endurance in COPD. Chest. 2006, 130: 647-656. 10.1378/chest.130.3.647.CrossRefPubMed
6.
go back to reference Garcia-Rio F, Lores V, Mediano O, et al: Daily physical activity in patients with chronic obstructive pulmonary disease is mainly associated with dynamic hyperinflation. Am J Respir Crit Care Med. 2009, 180: 506-512. 10.1164/rccm.200812-1873OC.CrossRefPubMed Garcia-Rio F, Lores V, Mediano O, et al: Daily physical activity in patients with chronic obstructive pulmonary disease is mainly associated with dynamic hyperinflation. Am J Respir Crit Care Med. 2009, 180: 506-512. 10.1164/rccm.200812-1873OC.CrossRefPubMed
7.
go back to reference O’Donnell DE, Revill SM, Webb KA: Dynamic hyperinflation and exercise intolerance in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001, 164: 770-777. 10.1164/ajrccm.164.5.2012122.CrossRefPubMed O’Donnell DE, Revill SM, Webb KA: Dynamic hyperinflation and exercise intolerance in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001, 164: 770-777. 10.1164/ajrccm.164.5.2012122.CrossRefPubMed
8.
go back to reference Ferguson GT: Why does the lung hyperinflate?. Proc Am Thorac Soc. 2006, 3: 176-179. 10.1513/pats.200508-094DO.CrossRefPubMed Ferguson GT: Why does the lung hyperinflate?. Proc Am Thorac Soc. 2006, 3: 176-179. 10.1513/pats.200508-094DO.CrossRefPubMed
9.
go back to reference Lammi MR, Ciccolella D, Marchetti N, Kohler M, Criner G: Increased oxygen pulse after lung volume reduction surgery is associated with reduced dynamic hyperinflation. Eur Respir J. 2012, 40: 837-843. 10.1183/09031936.00169311.CrossRefPubMed Lammi MR, Ciccolella D, Marchetti N, Kohler M, Criner G: Increased oxygen pulse after lung volume reduction surgery is associated with reduced dynamic hyperinflation. Eur Respir J. 2012, 40: 837-843. 10.1183/09031936.00169311.CrossRefPubMed
10.
go back to reference O’Donnell DE, Guenette JA, Maltais F, Webb KA: Decline of resting inspiratory capacity in COPD. Chest. 2012, 141: 753-762. 10.1378/chest.11-0787.CrossRefPubMed O’Donnell DE, Guenette JA, Maltais F, Webb KA: Decline of resting inspiratory capacity in COPD. Chest. 2012, 141: 753-762. 10.1378/chest.11-0787.CrossRefPubMed
11.
go back to reference Chhabra SK: Forced vital capacity, slow vital capacity, or inspiratory vital capacity: which is the best measure of vital capacity. J Asthma. 1998, 35: 361-365. 10.3109/02770909809075669.CrossRefPubMed Chhabra SK: Forced vital capacity, slow vital capacity, or inspiratory vital capacity: which is the best measure of vital capacity. J Asthma. 1998, 35: 361-365. 10.3109/02770909809075669.CrossRefPubMed
12.
go back to reference Brusasco V, Pellegrino A, Rodarte JR: Vital capacities in acute and chronic airway obstruction: dependence on flow and volume histories. Eur Respir J. 1997, 10: 1316-1320. 10.1183/09031936.97.10061316.CrossRefPubMed Brusasco V, Pellegrino A, Rodarte JR: Vital capacities in acute and chronic airway obstruction: dependence on flow and volume histories. Eur Respir J. 1997, 10: 1316-1320. 10.1183/09031936.97.10061316.CrossRefPubMed
13.
go back to reference O’Brien C, Guest PJ, Hill SL, et al: Physiological and radiological characterization of patients diagnosed with chronic obstructive pulmonary disease in primary care. Thorax. 2000, 55: 635-642. 10.1136/thorax.55.8.635.CrossRefPubMedPubMedCentral O’Brien C, Guest PJ, Hill SL, et al: Physiological and radiological characterization of patients diagnosed with chronic obstructive pulmonary disease in primary care. Thorax. 2000, 55: 635-642. 10.1136/thorax.55.8.635.CrossRefPubMedPubMedCentral
14.
go back to reference Miller MR, Hankinson J, Brusasco V, et al: Standardisation of spirometry. Eur Respir J. 2005, 26: 319-338. 10.1183/09031936.05.00034805.CrossRefPubMed Miller MR, Hankinson J, Brusasco V, et al: Standardisation of spirometry. Eur Respir J. 2005, 26: 319-338. 10.1183/09031936.05.00034805.CrossRefPubMed
15.
go back to reference American Thoracic Society/American College of Chest Physicians: ATS/ACCP Statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2003, 167: 211-277.CrossRef American Thoracic Society/American College of Chest Physicians: ATS/ACCP Statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2003, 167: 211-277.CrossRef
16.
go back to reference Cohen J, Postma DS, Vin-Klooster K, et al: FVC to slow inspiratory vital capacity ratio, a potential marker for small airways obstruction. Chest. 2007, 132: 1198-1203. 10.1378/chest.06-2763.CrossRefPubMed Cohen J, Postma DS, Vin-Klooster K, et al: FVC to slow inspiratory vital capacity ratio, a potential marker for small airways obstruction. Chest. 2007, 132: 1198-1203. 10.1378/chest.06-2763.CrossRefPubMed
17.
go back to reference Chan ED, Irvin CG: The detection of collapsible airways contributing to airflow limitation. Chest. 1995, 107: 856-859. 10.1378/chest.107.3.856.CrossRefPubMed Chan ED, Irvin CG: The detection of collapsible airways contributing to airflow limitation. Chest. 1995, 107: 856-859. 10.1378/chest.107.3.856.CrossRefPubMed
18.
go back to reference Levitzky MG: Pulmonary physiology. 1982, New York: McGraw-Hill, 1-12. Levitzky MG: Pulmonary physiology. 1982, New York: McGraw-Hill, 1-12.
Metadata
Title
Increased difference between slow and forced vital capacity is associated with reduced exercise tolerance in COPD patients
Authors
Wei Yuan
Xin He
Qiu-Fen Xu
Hao-Yan Wang
Richard Casaburi
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Pulmonary Medicine / Issue 1/2014
Electronic ISSN: 1471-2466
DOI
https://doi.org/10.1186/1471-2466-14-16

Other articles of this Issue 1/2014

BMC Pulmonary Medicine 1/2014 Go to the issue