Skip to main content
Top
Published in: BMC Public Health 1/2014

Open Access 01-12-2014 | Research article

Modelling the effects of media during an influenza epidemic

Authors: Shannon Collinson, Jane M Heffernan

Published in: BMC Public Health | Issue 1/2014

Login to get access

Abstract

Background

Mass media is used to inform individuals regarding diseases within a population. The effects of mass media during disease outbreaks have been studied in the mathematical modelling literature, by including ‘media functions’ that affect transmission rates in mathematical epidemiological models. The choice of function to employ, however, varies, and thus, epidemic outcomes that are important to inform public health may be affected.

Methods

We present a survey of the disease modelling literature with the effects of mass media. We present a comparison of the functions employed and compare epidemic results parameterized for an influenza outbreak. An agent-based Monte Carlo simulation is created to access variability around key epidemic measurements, and a sensitivity analysis is completed in order to gain insight into which model parameters have the largest influence on epidemic outcomes.

Results

Epidemic outcome depends on the media function chosen. Parameters that most influence key epidemic outcomes are different for each media function.

Conclusion

Different functions used to represent the effects of media during an epidemic will affect the outcomes of a disease model, including the variability in key epidemic measurements. Thus, media functions may not best represent the effects of media during an epidemic. A new method for modelling the effects of media needs to be considered.
Appendix
Available only for authorised users
Literature
1.
go back to reference Brauer F: Mathematical epidemiology is not an oxymoron. BMC Pub Health. 2009, 9 (Suppl1): S2-CrossRef Brauer F: Mathematical epidemiology is not an oxymoron. BMC Pub Health. 2009, 9 (Suppl1): S2-CrossRef
2.
3.
go back to reference Public Health Agency of Canada: Highlights from the Canadian Pandemic Influenza Plan for the Health Sector. 2006, Canada: Public Health Agency of Canada Public Health Agency of Canada: Highlights from the Canadian Pandemic Influenza Plan for the Health Sector. 2006, Canada: Public Health Agency of Canada
4.
go back to reference Centers for Disease Control and Prevention: Estimating Seasonal Influenza-Associated Deaths in the United States: CDC Study Confirms Variability of Flu. 2011, Atlanta, GA, USA: Centers for Disease Control and Prevention Centers for Disease Control and Prevention: Estimating Seasonal Influenza-Associated Deaths in the United States: CDC Study Confirms Variability of Flu. 2011, Atlanta, GA, USA: Centers for Disease Control and Prevention
5.
go back to reference Viswanath K, Ramanadhan S, Kontos EZ: Mass media. Macrosocial Determinants of Population Health. Chap.13. Edited by: Galea S, Ann Arbor. 2007, MI, USA: Springer, 275-294.CrossRef Viswanath K, Ramanadhan S, Kontos EZ: Mass media. Macrosocial Determinants of Population Health. Chap.13. Edited by: Galea S, Ann Arbor. 2007, MI, USA: Springer, 275-294.CrossRef
6.
go back to reference Liu R, Wu J, Zhu H: Media/psychological impact on multiple outbreaks of emerging infectious diseases. Comput Math Methods Med. 2007, 8: 153-164. 10.1080/17486700701425870.CrossRef Liu R, Wu J, Zhu H: Media/psychological impact on multiple outbreaks of emerging infectious diseases. Comput Math Methods Med. 2007, 8: 153-164. 10.1080/17486700701425870.CrossRef
7.
go back to reference Tchuenche JM, Dube N, Bhunu CP, Smith RJ, Bauch CT: The impact of media coverage on the transmission dynamics of human influenza. BMC Pub Health. 2011, 11 (Suppl1): S5- Tchuenche JM, Dube N, Bhunu CP, Smith RJ, Bauch CT: The impact of media coverage on the transmission dynamics of human influenza. BMC Pub Health. 2011, 11 (Suppl1): S5-
8.
go back to reference Pang J, Cui J-a J-a: An SIRS epidemiological model with nonlinear incidence rate incorporating media coverage. Second International Conference on Information and Computing Science. 2009, USA: IEEE, 116-119. Pang J, Cui J-a J-a: An SIRS epidemiological model with nonlinear incidence rate incorporating media coverage. Second International Conference on Information and Computing Science. 2009, USA: IEEE, 116-119.
9.
go back to reference Cui J-a, Sun Y, Zhu H: The impact of media on the control of infectious diseases. J Dyn Differential Equations. 2008, 20: 31-53. 10.1007/s10884-007-9075-0.CrossRef Cui J-a, Sun Y, Zhu H: The impact of media on the control of infectious diseases. J Dyn Differential Equations. 2008, 20: 31-53. 10.1007/s10884-007-9075-0.CrossRef
10.
go back to reference Cui J-a, Tao X, Zhu H: An SIS infection model incorporating media coverage. Rocky Mt J Math. 2008, 38: 1323-1334. 10.1216/RMJ-2008-38-5-1323.CrossRef Cui J-a, Tao X, Zhu H: An SIS infection model incorporating media coverage. Rocky Mt J Math. 2008, 38: 1323-1334. 10.1216/RMJ-2008-38-5-1323.CrossRef
11.
go back to reference Li Y, Ma C, Cui J: The effect of constant and mixed impulsive vaccination on SIS epidemic models incorporating media coverage. Rocky Mot J Math. 2008, 38: 1437-1455. 10.1216/RMJ-2008-38-5-1437.CrossRef Li Y, Ma C, Cui J: The effect of constant and mixed impulsive vaccination on SIS epidemic models incorporating media coverage. Rocky Mot J Math. 2008, 38: 1437-1455. 10.1216/RMJ-2008-38-5-1437.CrossRef
13.
go back to reference Sun C, Yang W, Arino J, Khan K: Effect of media-induced social distancing on disease transmission in a two patch setting. Math Biosci. 2011, 230: 87-95. 10.1016/j.mbs.2011.01.005.CrossRefPubMed Sun C, Yang W, Arino J, Khan K: Effect of media-induced social distancing on disease transmission in a two patch setting. Math Biosci. 2011, 230: 87-95. 10.1016/j.mbs.2011.01.005.CrossRefPubMed
14.
go back to reference Xiao D, Ruan S: Global analysis of an epidemic model with nonmonotone incidence rate. Math Biosci. 2007, 208: 419-429. 10.1016/j.mbs.2006.09.025.CrossRefPubMed Xiao D, Ruan S: Global analysis of an epidemic model with nonmonotone incidence rate. Math Biosci. 2007, 208: 419-429. 10.1016/j.mbs.2006.09.025.CrossRefPubMed
15.
go back to reference Allen LJS: An Introduction to Stochastic Epidemic Models. Mathematical Epidemiology. Lecture Notes in Mathematics. Edited by: Brauer F, van den Driessche P, Wu J. 2008, Lubbock, TX, USA: Springer, 81-130.CrossRef Allen LJS: An Introduction to Stochastic Epidemic Models. Mathematical Epidemiology. Lecture Notes in Mathematics. Edited by: Brauer F, van den Driessche P, Wu J. 2008, Lubbock, TX, USA: Springer, 81-130.CrossRef
16.
go back to reference Heffernan JM, Wahl LM: Monte Carlo estimates of natural variation in HIV infection. J Theor Biol. 2005, 236: 137-153. 10.1016/j.jtbi.2005.03.002.CrossRefPubMed Heffernan JM, Wahl LM: Monte Carlo estimates of natural variation in HIV infection. J Theor Biol. 2005, 236: 137-153. 10.1016/j.jtbi.2005.03.002.CrossRefPubMed
17.
go back to reference Keeling MJ: Metapopulation moments: coupling, stochasticity and persistence. J Anim Ecol. 2000, 69: 725-736. 10.1046/j.1365-2656.2000.00430.x.CrossRef Keeling MJ: Metapopulation moments: coupling, stochasticity and persistence. J Anim Ecol. 2000, 69: 725-736. 10.1046/j.1365-2656.2000.00430.x.CrossRef
18.
go back to reference Keeling MJ: Multiplicative moments and measures of persistence in ecology. J Theor Biol. 2000, 205: 269-281. 10.1006/jtbi.2000.2066.CrossRefPubMed Keeling MJ: Multiplicative moments and measures of persistence in ecology. J Theor Biol. 2000, 205: 269-281. 10.1006/jtbi.2000.2066.CrossRefPubMed
19.
go back to reference Krishnarajah I, Cook A, Marion G, Gibson G: Novel moment closure approximations in stochastic epidemics. Bull Math Biol. 2005, 67: 855-873. 10.1016/j.bulm.2004.11.002.CrossRefPubMed Krishnarajah I, Cook A, Marion G, Gibson G: Novel moment closure approximations in stochastic epidemics. Bull Math Biol. 2005, 67: 855-873. 10.1016/j.bulm.2004.11.002.CrossRefPubMed
20.
go back to reference Pourbohloul B, Ahued A, Davoudi B, Meza R, Meyers LA, Skowronski DM, Villasenor I, Galvan F, Cravioto P, Earn DJD, Dushoff J, Fisman D, Edmunds WJ, Huper N, Scarpino SV, Trujillo J, Lutzow M, Morales J, Contreras A, Chavez C, Patrick DM, Brunham RC: Initial human transmission dynamics of the pandemic (H1N1) 2009 virus in North America. Influenza Other Respi Viruses. 2009, 3: 215-222. 10.1111/j.1750-2659.2009.00100.x.CrossRefPubMedCentral Pourbohloul B, Ahued A, Davoudi B, Meza R, Meyers LA, Skowronski DM, Villasenor I, Galvan F, Cravioto P, Earn DJD, Dushoff J, Fisman D, Edmunds WJ, Huper N, Scarpino SV, Trujillo J, Lutzow M, Morales J, Contreras A, Chavez C, Patrick DM, Brunham RC: Initial human transmission dynamics of the pandemic (H1N1) 2009 virus in North America. Influenza Other Respi Viruses. 2009, 3: 215-222. 10.1111/j.1750-2659.2009.00100.x.CrossRefPubMedCentral
21.
go back to reference Mostaço-Guidolin LC, Pizzi NJ, Moghadas SM: A classical approach for estimating the transmissibility of the 2009 H1N1 pandemic. Can Appl Math Q. 2011, 19: 185-194. Mostaço-Guidolin LC, Pizzi NJ, Moghadas SM: A classical approach for estimating the transmissibility of the 2009 H1N1 pandemic. Can Appl Math Q. 2011, 19: 185-194.
22.
23.
go back to reference Blower SM, Dowlatabadi H: Sensitivity and uncertainty analysis of complex models of disease transmission: An HIV model, as an example. Int Stat Rev. 1994, 62: 229-43. 10.2307/1403510.CrossRef Blower SM, Dowlatabadi H: Sensitivity and uncertainty analysis of complex models of disease transmission: An HIV model, as an example. Int Stat Rev. 1994, 62: 229-43. 10.2307/1403510.CrossRef
24.
go back to reference Mykhalovskiy E, Weir L: The global public health intelligence network and early warning outbreak detection. Can J Public Health. 2006, 97 (1): 42-44.PubMed Mykhalovskiy E, Weir L: The global public health intelligence network and early warning outbreak detection. Can J Public Health. 2006, 97 (1): 42-44.PubMed
25.
go back to reference Fanti KA, Vanman E, Henrich CC, Avraamides MN: Desensitization to media violence over a short period of time. Aggress Behav. 2009, 35: 179-187. 10.1002/ab.20295.CrossRefPubMed Fanti KA, Vanman E, Henrich CC, Avraamides MN: Desensitization to media violence over a short period of time. Aggress Behav. 2009, 35: 179-187. 10.1002/ab.20295.CrossRefPubMed
26.
go back to reference Griffiths MD, Shuckford GLJ: Desensitization to television violence: a new model. New Ideas Psychol. 1989, 7: 85-89. 10.1016/0732-118X(89)90039-1.CrossRef Griffiths MD, Shuckford GLJ: Desensitization to television violence: a new model. New Ideas Psychol. 1989, 7: 85-89. 10.1016/0732-118X(89)90039-1.CrossRef
27.
go back to reference Kinnick KN, Krugman DM, Cameron GT: Compassion fatigue: Communication and burnout towards social problems. J Mass Commun Q. 1996, 73: 687-707. Kinnick KN, Krugman DM, Cameron GT: Compassion fatigue: Communication and burnout towards social problems. J Mass Commun Q. 1996, 73: 687-707.
28.
go back to reference McBurney DH, Balaban CD, Christopher DE, Harvey C: Adaptation to capsaicin within and across days. Physiol Behav. 1997, 61: 181-190. 10.1016/S0031-9384(96)00366-6.CrossRefPubMed McBurney DH, Balaban CD, Christopher DE, Harvey C: Adaptation to capsaicin within and across days. Physiol Behav. 1997, 61: 181-190. 10.1016/S0031-9384(96)00366-6.CrossRefPubMed
29.
go back to reference Smith KC, Rimal RN, Sandberg H, Storey JD, Lagasse L, Maulsby C, Rhoades E, Barnett DJ, Omer SB, Links JM: Understanding newsworthiness of an emerging pandemic: International newspaper coverage of the H1N1 outbreak. Influenza Other Respi Viruses. 2012, 7: 847-853.CrossRef Smith KC, Rimal RN, Sandberg H, Storey JD, Lagasse L, Maulsby C, Rhoades E, Barnett DJ, Omer SB, Links JM: Understanding newsworthiness of an emerging pandemic: International newspaper coverage of the H1N1 outbreak. Influenza Other Respi Viruses. 2012, 7: 847-853.CrossRef
30.
go back to reference Wang Y, Cao J, Jin Z, Zhang H, Sun G-Q: Impact of media coverage on epidemic spreading in complex networks. Physica A: Stat Mech Appl. 2013, 392 (23): 5824-5835. 10.1016/j.physa.2013.07.067.CrossRef Wang Y, Cao J, Jin Z, Zhang H, Sun G-Q: Impact of media coverage on epidemic spreading in complex networks. Physica A: Stat Mech Appl. 2013, 392 (23): 5824-5835. 10.1016/j.physa.2013.07.067.CrossRef
Metadata
Title
Modelling the effects of media during an influenza epidemic
Authors
Shannon Collinson
Jane M Heffernan
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2014
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/1471-2458-14-376

Other articles of this Issue 1/2014

BMC Public Health 1/2014 Go to the issue