Skip to main content
Top
Published in: BMC Public Health 1/2013

Open Access 01-12-2013 | Research article

High intensity interval running enhances measures of physical fitness but not metabolic measures of cardiovascular disease risk in healthy adolescents

Authors: Duncan S Buchan, Stewart Ollis, John D Young, Stephen-Mark Cooper, Julian PH Shield, Julien S Baker

Published in: BMC Public Health | Issue 1/2013

Login to get access

Abstract

Background

With accumulating evidence suggesting that CVD has its origins in childhood, the purpose of this study was to examine whether a high intensity training (HIT) intervention could enhance the CVD risk profile of secondary school aged adolescents in a time efficient manner.

Methods

Participants in the study were adolescent school children (64 boys, 25 girls, 16.7 ± 0.6 years). The intervention group (30 boys, 12 girls) performed three weekly exercise sessions over 7 weeks with each session consisting of either four to six repeats of maximal sprint running within a 20 m area with 30 s recovery. The control group were instructed to continue their normal behaviour. All participants had indices of obesity, blood pressure and nine biochemical risk markers for cardiovascular disease recorded as well as four physical performance measures at baseline and post-intervention. Feedback was provided through informal discussion throughout the intervention period as well as post-intervention focus groups. Statistical differences between and within groups were determined by use of paired samples t-tests and ANCOVA.

Results

Significant enhancements (P ≤ 0.05) in vertical jump performance, 10 m sprint speed and cardiorespiratory fitness was evident in the intervention group whereas a significant decrease in both agility and vertical jump performance was evident in the control group. Participants in the intervention group also experienced a significant decrease in systolic blood pressure post-intervention. Limited changes occurred with respect to the biochemical markers although both groups did experience a significant increase in LDL post-intervention whilst the control group experienced a significant decrease in total cholesterol. No apparent differences were evident between groups post intervention for any of the biochemical markers. Feedback indicated that participants endorsed the use of the intervention as an effective means of exercise.

Conclusions

Our results demonstrate that high intensity exercise interventions may be used in the school setting for adolescents as a means of improving measures of physical fitness. Further investigations involving a larger cohort of participants, taken from different schools, is recommended.

Trial registration

Appendix
Available only for authorised users
Literature
1.
go back to reference Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, Ford E, Furie K, Gillespie C: Heart disease and stroke statistics–2010 update: a report from the American Heart Association. Circulation. 2009, 121 (7): e46-e215.PubMed Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, Ford E, Furie K, Gillespie C: Heart disease and stroke statistics–2010 update: a report from the American Heart Association. Circulation. 2009, 121 (7): e46-e215.PubMed
2.
go back to reference Freedman DS, Khan LK, Dietz WH, Srinivasan SR, Berenson GS: Relationship of childhood obesity to coronary heart disease risk factors in adulthood: the Bogalusa Heart Study. Pediatrics. 2001, 108 (3): 712-718. 10.1542/peds.108.3.712.CrossRefPubMed Freedman DS, Khan LK, Dietz WH, Srinivasan SR, Berenson GS: Relationship of childhood obesity to coronary heart disease risk factors in adulthood: the Bogalusa Heart Study. Pediatrics. 2001, 108 (3): 712-718. 10.1542/peds.108.3.712.CrossRefPubMed
3.
go back to reference Raitakari OT, Juonala M, Kahonen M, Taittonen L, Laitinen T, Maki-Torkko N, Jarvisalo MJ, Uhari M, Jokinen E, Ronnemaa T: Cardiovascular risk factors in childhood and carotid artery intima-media thickness in adulthood: the Cardiovascular Risk in Young Finns Study. J A M A. 2003, 290 (17): 2277-2283. 10.1001/jama.290.17.2277.CrossRefPubMed Raitakari OT, Juonala M, Kahonen M, Taittonen L, Laitinen T, Maki-Torkko N, Jarvisalo MJ, Uhari M, Jokinen E, Ronnemaa T: Cardiovascular risk factors in childhood and carotid artery intima-media thickness in adulthood: the Cardiovascular Risk in Young Finns Study. J A M A. 2003, 290 (17): 2277-2283. 10.1001/jama.290.17.2277.CrossRefPubMed
4.
go back to reference Cook DG, Mendall MA, Whincup PH, Carey IM, Ballam L, Morris JE, Miller GJ, Strachan DP: C-reactive protein concentration in children: relationship to adiposity and other cardiovascular risk factors. Atherosclerosis. 2000, 149 (1): 139-150. 10.1016/S0021-9150(99)00312-3.CrossRefPubMed Cook DG, Mendall MA, Whincup PH, Carey IM, Ballam L, Morris JE, Miller GJ, Strachan DP: C-reactive protein concentration in children: relationship to adiposity and other cardiovascular risk factors. Atherosclerosis. 2000, 149 (1): 139-150. 10.1016/S0021-9150(99)00312-3.CrossRefPubMed
5.
go back to reference Juhola J, Magnussen CG, Viikari JS, Kahonen M, Hutri-Kahonen N, Jula A, Lehtimaki T, Akerblom HK, Pietikainen M, Laitinen T: Tracking of serum lipid levels, blood pressure, and body mass index from childhood to adulthood: the Cardiovascular Risk in Young Finns Study. J Pediatr. 2011, 159 (4): 584-590. 10.1016/j.jpeds.2011.03.021.CrossRefPubMed Juhola J, Magnussen CG, Viikari JS, Kahonen M, Hutri-Kahonen N, Jula A, Lehtimaki T, Akerblom HK, Pietikainen M, Laitinen T: Tracking of serum lipid levels, blood pressure, and body mass index from childhood to adulthood: the Cardiovascular Risk in Young Finns Study. J Pediatr. 2011, 159 (4): 584-590. 10.1016/j.jpeds.2011.03.021.CrossRefPubMed
6.
go back to reference Punthakee Z, Delvin EE, O'Loughlin J, Paradis G, Levy E, Platt RW, Lambert M: Adiponectin, adiposity, and insulin resistance in children and adolescents. J Clin Endocrinol Metab. 2006, 91 (6): 2119-2125. 10.1210/jc.2005-2346.CrossRefPubMed Punthakee Z, Delvin EE, O'Loughlin J, Paradis G, Levy E, Platt RW, Lambert M: Adiponectin, adiposity, and insulin resistance in children and adolescents. J Clin Endocrinol Metab. 2006, 91 (6): 2119-2125. 10.1210/jc.2005-2346.CrossRefPubMed
7.
go back to reference Ferreira I, van de Laar RJ, Prins MH, Twisk JW, Stehouwer CD: Carotid Stiffness in Young Adults: A Life-Course Analysis of its Early Determinants. Hypertension. 2012, 59 (1): 54-61. 10.1161/HYPERTENSIONAHA.110.156109.CrossRefPubMed Ferreira I, van de Laar RJ, Prins MH, Twisk JW, Stehouwer CD: Carotid Stiffness in Young Adults: A Life-Course Analysis of its Early Determinants. Hypertension. 2012, 59 (1): 54-61. 10.1161/HYPERTENSIONAHA.110.156109.CrossRefPubMed
8.
go back to reference Ekelund U, Tomkinson G, Armstrong N: What proportion of youth are physically active? Measurement issues, levels and recent time trends. Br J Sports Med. 2011, 45 (11): 859-865. 10.1136/bjsports-2011-090190.CrossRefPubMed Ekelund U, Tomkinson G, Armstrong N: What proportion of youth are physically active? Measurement issues, levels and recent time trends. Br J Sports Med. 2011, 45 (11): 859-865. 10.1136/bjsports-2011-090190.CrossRefPubMed
9.
go back to reference Chief Medical Officers of England S, Wales, and Northern Ireland: Start Active, Stay Active. A report on physical activity for health from the four home countries’ Chief Medical Officer. 2011, London: Department of Health Chief Medical Officers of England S, Wales, and Northern Ireland: Start Active, Stay Active. A report on physical activity for health from the four home countries’ Chief Medical Officer. 2011, London: Department of Health
10.
go back to reference Dobbins M, De Corby K, Robeson P, Husson H, Tirilis D: School-based physical activity programs for promoting physical activity and fitness in children and adolescents aged 6–18. Cochrane Database Syst Rev. 2009, 1: CD007651 Dobbins M, De Corby K, Robeson P, Husson H, Tirilis D: School-based physical activity programs for promoting physical activity and fitness in children and adolescents aged 6–18. Cochrane Database Syst Rev. 2009, 1: CD007651
11.
go back to reference Strong WB, Malina RM, Blimkie CJ, Daniels SR, Dishman RK, Gutin B, Hergenroeder AC, Must A, Nixon PA, Pivarnik JM: Evidence based physical activity for school-age youth. J Pediatr. 2005, 146 (6): 732-737. 10.1016/j.jpeds.2005.01.055.CrossRefPubMed Strong WB, Malina RM, Blimkie CJ, Daniels SR, Dishman RK, Gutin B, Hergenroeder AC, Must A, Nixon PA, Pivarnik JM: Evidence based physical activity for school-age youth. J Pediatr. 2005, 146 (6): 732-737. 10.1016/j.jpeds.2005.01.055.CrossRefPubMed
12.
go back to reference Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, Macdonald MJ, McGee SL, Gibala MJ: Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol. 2008, 586 (1): 151-160.CrossRefPubMed Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, Macdonald MJ, McGee SL, Gibala MJ: Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol. 2008, 586 (1): 151-160.CrossRefPubMed
13.
go back to reference Tjonna AE, Stolen TO, Bye A, Volden M, Slordahl SA, Odegard R, Skogvoll E, Wisloff U: Aerobic interval training reduces cardiovascular risk factors more than a multitreatment approach in overweight adolescents. Clin Sci. 2009, 116 (4): 317-326. 10.1042/CS20080249.CrossRefPubMed Tjonna AE, Stolen TO, Bye A, Volden M, Slordahl SA, Odegard R, Skogvoll E, Wisloff U: Aerobic interval training reduces cardiovascular risk factors more than a multitreatment approach in overweight adolescents. Clin Sci. 2009, 116 (4): 317-326. 10.1042/CS20080249.CrossRefPubMed
14.
go back to reference Gutin B, Barbeau P, Owens S, Lemmon CR, Bauman M, Allison J, Kang HS, Litaker MS: Effects of exercise intensity on cardiovascular fitness, total body composition, and visceral adiposity of obese adolescents. Am J Clin Nutr. 2002, 75 (5): 818-826.PubMed Gutin B, Barbeau P, Owens S, Lemmon CR, Bauman M, Allison J, Kang HS, Litaker MS: Effects of exercise intensity on cardiovascular fitness, total body composition, and visceral adiposity of obese adolescents. Am J Clin Nutr. 2002, 75 (5): 818-826.PubMed
15.
go back to reference Babraj JA, Vollaard NB, Keast C, Guppy FM, Cottrell G, Timmons JA: Extremely short duration high intensity interval training substantially improves insulin action in young healthy males. BMC Endocr Disord. 2009, 9: 3-10.1186/1472-6823-9-3.CrossRefPubMedPubMedCentral Babraj JA, Vollaard NB, Keast C, Guppy FM, Cottrell G, Timmons JA: Extremely short duration high intensity interval training substantially improves insulin action in young healthy males. BMC Endocr Disord. 2009, 9: 3-10.1186/1472-6823-9-3.CrossRefPubMedPubMedCentral
16.
go back to reference Buchan DS, Ollis S, Young JD, Thomas NE, Cooper SM, Tong TK, Nie J, Malina RM, Baker JS: The effects of time and intensity of exercise on novel and established markers of CVD in adolescent youth. Am J Hum Biol. 2011, 23 (4): 517-526. 10.1002/ajhb.21166.CrossRefPubMed Buchan DS, Ollis S, Young JD, Thomas NE, Cooper SM, Tong TK, Nie J, Malina RM, Baker JS: The effects of time and intensity of exercise on novel and established markers of CVD in adolescent youth. Am J Hum Biol. 2011, 23 (4): 517-526. 10.1002/ajhb.21166.CrossRefPubMed
17.
go back to reference Godin G, Desharnais R, Valois R, Lepage L, Jobin J, Bradet R: Differences in perceived barriers to exercise between high and low intenders: observations among different populations. Am J Health Promot. 1994, 8 (4): 279-285. 10.4278/0890-1171-8.4.279.CrossRef Godin G, Desharnais R, Valois R, Lepage L, Jobin J, Bradet R: Differences in perceived barriers to exercise between high and low intenders: observations among different populations. Am J Health Promot. 1994, 8 (4): 279-285. 10.4278/0890-1171-8.4.279.CrossRef
18.
go back to reference Buchan DS, Ollis S, Thomas NE, Baker JS: The influence of a high intensity physical activity intervention on a selection of health related outcomes: an ecological approach. BMC Publ Health. 2010, 10 (1): 8-10.1186/1471-2458-10-8.CrossRef Buchan DS, Ollis S, Thomas NE, Baker JS: The influence of a high intensity physical activity intervention on a selection of health related outcomes: an ecological approach. BMC Publ Health. 2010, 10 (1): 8-10.1186/1471-2458-10-8.CrossRef
19.
go back to reference Buchan DS, Ollis S, Thomas NE, Buchanan N, Cooper SM, Malina RM, Baker JS: Physical activity interventions: effects of duration and intensity. Scand J Med Sci Sports. 2011, 21 (6): e341-e350. 10.1111/j.1600-0838.2011.01303.x.CrossRefPubMed Buchan DS, Ollis S, Thomas NE, Buchanan N, Cooper SM, Malina RM, Baker JS: Physical activity interventions: effects of duration and intensity. Scand J Med Sci Sports. 2011, 21 (6): e341-e350. 10.1111/j.1600-0838.2011.01303.x.CrossRefPubMed
20.
go back to reference Stokols D, Allen J, Bellingham RL: The social ecology of health promotion: implications for research and practice. Am J Health Promot. 1996, 10 (4): 247-251. 10.4278/0890-1171-10.4.247.CrossRefPubMed Stokols D, Allen J, Bellingham RL: The social ecology of health promotion: implications for research and practice. Am J Health Promot. 1996, 10 (4): 247-251. 10.4278/0890-1171-10.4.247.CrossRefPubMed
21.
go back to reference King AC, Stokols D, Talen E, Brassington GS, Killingsworth R: Theoretical approaches to the promotion of physical activity: forging a transdisciplinary paradigm. Am J Prev Med. 2002, 23 (2 Suppl): 15-25.CrossRefPubMed King AC, Stokols D, Talen E, Brassington GS, Killingsworth R: Theoretical approaches to the promotion of physical activity: forging a transdisciplinary paradigm. Am J Prev Med. 2002, 23 (2 Suppl): 15-25.CrossRefPubMed
22.
go back to reference Gillies P: Effectiveness of Alliances and Partnerships for Health Promotion. Health Promot Int. 1998, 13 (2): 99-120. 10.1093/heapro/13.2.99.CrossRef Gillies P: Effectiveness of Alliances and Partnerships for Health Promotion. Health Promot Int. 1998, 13 (2): 99-120. 10.1093/heapro/13.2.99.CrossRef
23.
24.
go back to reference Baker J, Ramsbottom R, Hazeldine R: Maximal shuttle running over 40 m as a measure of anaerobic performance. Br J Sports Med. 1993, 27 (4): 228-232. 10.1136/bjsm.27.4.228.CrossRefPubMedPubMedCentral Baker J, Ramsbottom R, Hazeldine R: Maximal shuttle running over 40 m as a measure of anaerobic performance. Br J Sports Med. 1993, 27 (4): 228-232. 10.1136/bjsm.27.4.228.CrossRefPubMedPubMedCentral
25.
go back to reference Tanner JM, Whitehouse RH: Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch Dis Child. 1976, 51 (3): 170-179. 10.1136/adc.51.3.170.CrossRefPubMedPubMedCentral Tanner JM, Whitehouse RH: Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch Dis Child. 1976, 51 (3): 170-179. 10.1136/adc.51.3.170.CrossRefPubMedPubMedCentral
26.
go back to reference Leger LA, Mercier D, Gadoury C, Lambert J: The multistage 20 metre shuttle run test for aerobic fitness. J Sports Sci. 1988, 6 (2): 93-101. 10.1080/02640418808729800.CrossRefPubMed Leger LA, Mercier D, Gadoury C, Lambert J: The multistage 20 metre shuttle run test for aerobic fitness. J Sports Sci. 1988, 6 (2): 93-101. 10.1080/02640418808729800.CrossRefPubMed
27.
go back to reference Draper JA, Lancaster MG: The 505 test: a test for agility in the horizontal plane. Aust J Sci Med Sport. 1985, 17 (1): 15-18. Draper JA, Lancaster MG: The 505 test: a test for agility in the horizontal plane. Aust J Sci Med Sport. 1985, 17 (1): 15-18.
28.
go back to reference Kowalski KC, Crocker PRE, Kowalski NP: Convergent validity of the physical activity questionnaire for adolescents. Pediatr Exerc Sci. 1997, 9: 342-352. Kowalski KC, Crocker PRE, Kowalski NP: Convergent validity of the physical activity questionnaire for adolescents. Pediatr Exerc Sci. 1997, 9: 342-352.
29.
go back to reference Food Standards Agency: McCance and Widdowson’s the Composition of Foods. 2002, Cambridge UK: Royal Society of Chemistry, 29-379. 6 Food Standards Agency: McCance and Widdowson’s the Composition of Foods. 2002, Cambridge UK: Royal Society of Chemistry, 29-379. 6
30.
go back to reference Pronk NP: Short term effects of exercise on plasma lipids and lipoproteins in humans. Sports Med. 1993, 16 (6): 431-448. 10.2165/00007256-199316060-00006.CrossRefPubMed Pronk NP: Short term effects of exercise on plasma lipids and lipoproteins in humans. Sports Med. 1993, 16 (6): 431-448. 10.2165/00007256-199316060-00006.CrossRefPubMed
31.
go back to reference Friedewald WT, Levy RI, Fredrickson DS: Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972, 18 (6): 499-502.PubMed Friedewald WT, Levy RI, Fredrickson DS: Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972, 18 (6): 499-502.PubMed
32.
go back to reference Kirby SL, Greaves L, Reid C: Research Social Change: Methods Beyond the Mainstream. 2006, Ontario: Broadview Press, 219-254. 2 Kirby SL, Greaves L, Reid C: Research Social Change: Methods Beyond the Mainstream. 2006, Ontario: Broadview Press, 219-254. 2
33.
go back to reference Park I, Schutz RW: An introduction to latent growth models: analysis of repeated measures physical performance data. Res Q Exerc Sport. 2005, 76 (2): 176-192. 10.1080/02701367.2005.10599279.CrossRefPubMed Park I, Schutz RW: An introduction to latent growth models: analysis of repeated measures physical performance data. Res Q Exerc Sport. 2005, 76 (2): 176-192. 10.1080/02701367.2005.10599279.CrossRefPubMed
35.
go back to reference Cole TJ, Bellizzi MC, Flegal KM, Dietz WH: Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 2000, 320 (7244): 1240-1243. 10.1136/bmj.320.7244.1240.CrossRefPubMedPubMedCentral Cole TJ, Bellizzi MC, Flegal KM, Dietz WH: Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 2000, 320 (7244): 1240-1243. 10.1136/bmj.320.7244.1240.CrossRefPubMedPubMedCentral
37.
go back to reference American College of Sports Medicine: ACSM’s guidelines for exercise testing and prescription. 2008, Philadelphia: Lippincott, Williams & Wilkins American College of Sports Medicine: ACSM’s guidelines for exercise testing and prescription. 2008, Philadelphia: Lippincott, Williams & Wilkins
38.
go back to reference Clausen JP: Effect of physical training on cardiovascular adjustments to exercise in man. Physiol Rev. 1977, 57 (4): 779-815.PubMed Clausen JP: Effect of physical training on cardiovascular adjustments to exercise in man. Physiol Rev. 1977, 57 (4): 779-815.PubMed
39.
go back to reference Cornelissen VA, Fagard RH: Effects of endurance training on blood pressure, blood pressure-regulating mechanisms, and cardiovascular risk factors. Hypertension. 2005, 46 (4): 667-675. 10.1161/01.HYP.0000184225.05629.51.CrossRefPubMed Cornelissen VA, Fagard RH: Effects of endurance training on blood pressure, blood pressure-regulating mechanisms, and cardiovascular risk factors. Hypertension. 2005, 46 (4): 667-675. 10.1161/01.HYP.0000184225.05629.51.CrossRefPubMed
40.
go back to reference Rakobowchuk M, Tanguay S, Burgomaster KA, Howarth KR, Gibala MJ, MacDonald MJ: Sprint interval and traditional endurance training induce similar improvements in peripheral arterial stiffness and flow-mediated dilation in healthy humans. Am J Physiol Regul Integr Comp Physiol. 2008, 295 (1): R236-R242. 10.1152/ajpregu.00069.2008.CrossRefPubMedPubMedCentral Rakobowchuk M, Tanguay S, Burgomaster KA, Howarth KR, Gibala MJ, MacDonald MJ: Sprint interval and traditional endurance training induce similar improvements in peripheral arterial stiffness and flow-mediated dilation in healthy humans. Am J Physiol Regul Integr Comp Physiol. 2008, 295 (1): R236-R242. 10.1152/ajpregu.00069.2008.CrossRefPubMedPubMedCentral
41.
go back to reference Macpherson RE, Hazell TJ, Olver TD, Paterson DH, Lemon PW: Run sprint interval training improves aerobic performance but not maximal cardiac output. Med Sci Sports Exerc. 2011, 43 (1): 115-122. 10.1249/MSS.0b013e3181e5eacd.CrossRefPubMed Macpherson RE, Hazell TJ, Olver TD, Paterson DH, Lemon PW: Run sprint interval training improves aerobic performance but not maximal cardiac output. Med Sci Sports Exerc. 2011, 43 (1): 115-122. 10.1249/MSS.0b013e3181e5eacd.CrossRefPubMed
42.
go back to reference Gibala MJ, Little JP, Van Essen M, Wilkin GP, Burgomaster KA, Safdar A, Raha S, Tarnopolsky MA: Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol. 2006, 575 (Pt 3): 901-911.CrossRefPubMedPubMedCentral Gibala MJ, Little JP, Van Essen M, Wilkin GP, Burgomaster KA, Safdar A, Raha S, Tarnopolsky MA: Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol. 2006, 575 (Pt 3): 901-911.CrossRefPubMedPubMedCentral
43.
go back to reference Ortega FB, Artero EG, Ruiz JR, Espana-Romero V, Jimenez-Pavon D, Vicente-Rodriguez G, Moreno LA, Manios Y, Beghin L, Ottevaere C: Physical fitness levels among European adolescents: the HELENA study. Br J Sports Med. 2011, 45 (1): 20-29. 10.1136/bjsm.2009.062679.CrossRefPubMed Ortega FB, Artero EG, Ruiz JR, Espana-Romero V, Jimenez-Pavon D, Vicente-Rodriguez G, Moreno LA, Manios Y, Beghin L, Ottevaere C: Physical fitness levels among European adolescents: the HELENA study. Br J Sports Med. 2011, 45 (1): 20-29. 10.1136/bjsm.2009.062679.CrossRefPubMed
44.
go back to reference Bogdanis GC, Nevill ME, Boobis LH, Lakomy HK: Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J Appl Physiol. 1996, 80 (3): 876-884.PubMed Bogdanis GC, Nevill ME, Boobis LH, Lakomy HK: Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J Appl Physiol. 1996, 80 (3): 876-884.PubMed
45.
go back to reference Spriet LL, Lindinger MI, McKelvie RS, Heigenhauser GJ, Jones NL: Muscle glycogenolysis and H+ concentration during maximal intermittent cycling. J Appl Physiol. 1989, 66 (1): 8-13.PubMed Spriet LL, Lindinger MI, McKelvie RS, Heigenhauser GJ, Jones NL: Muscle glycogenolysis and H+ concentration during maximal intermittent cycling. J Appl Physiol. 1989, 66 (1): 8-13.PubMed
46.
go back to reference Hazell TJ, Macpherson RE, Gravelle BM, Lemon PW: 10 or 30-s sprint interval training bouts enhance both aerobic and anaerobic performance. Eur J Appl Physiol. 2010, 110 (1): 153-160. 10.1007/s00421-010-1474-y.CrossRefPubMed Hazell TJ, Macpherson RE, Gravelle BM, Lemon PW: 10 or 30-s sprint interval training bouts enhance both aerobic and anaerobic performance. Eur J Appl Physiol. 2010, 110 (1): 153-160. 10.1007/s00421-010-1474-y.CrossRefPubMed
47.
go back to reference Baquet G, Guinhouya C, Dupont G, Nourry C, Berthoin S: Effects of a short-term interval training program on physical fitness in prepubertal children. J Strength Cond Res. 2004, 18 (4): 708-713.PubMed Baquet G, Guinhouya C, Dupont G, Nourry C, Berthoin S: Effects of a short-term interval training program on physical fitness in prepubertal children. J Strength Cond Res. 2004, 18 (4): 708-713.PubMed
48.
go back to reference Durandt J, Tee JC, Prim SK, Lambert MI: Physical fitness components associated with performance in a multiple-sprint test. Int J Sports Physiol Perform. 2006, 1 (2): 150-160.PubMed Durandt J, Tee JC, Prim SK, Lambert MI: Physical fitness components associated with performance in a multiple-sprint test. Int J Sports Physiol Perform. 2006, 1 (2): 150-160.PubMed
49.
go back to reference Lionis C, Kafatos A, Vlachonikolis J, Vakaki M, Tzortzi M, Petraki A: The effects of a health education intervention program among Cretan adolescents. Prev Med. 1991, 20 (6): 685-699. 10.1016/0091-7435(91)90064-B.CrossRefPubMed Lionis C, Kafatos A, Vlachonikolis J, Vakaki M, Tzortzi M, Petraki A: The effects of a health education intervention program among Cretan adolescents. Prev Med. 1991, 20 (6): 685-699. 10.1016/0091-7435(91)90064-B.CrossRefPubMed
50.
go back to reference Manios Y, Kafatos A: Health and nutrition education in elementary schools: changes in health knowledge, nutrient intakes and physical activity over a six year period. Public Health Nutr. 1999, 2 (3A): 445-448.CrossRefPubMed Manios Y, Kafatos A: Health and nutrition education in elementary schools: changes in health knowledge, nutrient intakes and physical activity over a six year period. Public Health Nutr. 1999, 2 (3A): 445-448.CrossRefPubMed
51.
go back to reference Luepker RV, Perry CL, McKinlay SM, Nader PR, Parcel GS, Stone EJ, Webber LS, Elder JP, Feldman HA, Johnson CC: Outcomes of a field trial to improve children's dietary patterns and physical activity. The Child and Adolescent Trial for Cardiovascular Health. CATCH collaborative group. JAMA. 1996, 275 (10): 768-776. 10.1001/jama.1996.03530340032026.CrossRefPubMed Luepker RV, Perry CL, McKinlay SM, Nader PR, Parcel GS, Stone EJ, Webber LS, Elder JP, Feldman HA, Johnson CC: Outcomes of a field trial to improve children's dietary patterns and physical activity. The Child and Adolescent Trial for Cardiovascular Health. CATCH collaborative group. JAMA. 1996, 275 (10): 768-776. 10.1001/jama.1996.03530340032026.CrossRefPubMed
Metadata
Title
High intensity interval running enhances measures of physical fitness but not metabolic measures of cardiovascular disease risk in healthy adolescents
Authors
Duncan S Buchan
Stewart Ollis
John D Young
Stephen-Mark Cooper
Julian PH Shield
Julien S Baker
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2013
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/1471-2458-13-498

Other articles of this Issue 1/2013

BMC Public Health 1/2013 Go to the issue