Skip to main content
Top
Published in: BMC Cancer 1/2014

Open Access 01-12-2014 | Research article

Cancer-associated fibroblasts induce high mobility group box 1 and contribute to resistance to doxorubicin in breast cancer cells

Authors: Kamolporn Amornsupak, Tonkla Insawang, Peti Thuwajit, Pornchai O-Charoenrat, Suzanne A Eccles, Chanitra Thuwajit

Published in: BMC Cancer | Issue 1/2014

Login to get access

Abstract

Background

Cancer-associated fibroblasts and high mobility group box 1 (HMGB1) protein have been suggested to mediate cancer progression and chemotherapy resistance. The role of such fibroblasts in HMGB1 production in breast cancer is unclear. This study aimed to investigate the effects of cancer-associated fibroblasts on HMGB1 expression in breast cancer cells and its role in chemotherapeutic response.

Methods

Breast cancer-associated fibroblasts (BCFs) and non-tumor-associated fibroblasts (NTFs) were isolated from human breast cancers or adjacent normal tissues and established as primary cultures in vitro. After confirmation of the activated status of these fibroblasts, conditioned-media (CM) were collected and applied to MDA-MB-231 human triple negative breast cancer cells. The levels of intracellular and extracellular HMGB1 were measured by real-time PCR and/or Western blot. The response of BCF-CM-pre-treated cancer cells to doxorubicin (Dox) was compared with those pre-treated with NTF-CM or control cultures. The effect of an HMGB1 neutralizing antibody on Dox resistance induced by extracellular HMGB1 from non-viable Dox-treated cancer cells or recombinant HMGB1 was also investigated.

Results

Immunocytochemical analysis revealed that BCFs and NTFs were alpha-smooth muscle actin (ASMA) positive and cytokeratin 19 (CK19) negative cells: a phenotype consistent with that of activated fibroblasts. We confirmed that the CM from BCFs (but not NTFs), could significantly induce breast cancer cell migration. Intracellular HMGB1 expression was induced in BCF-CM-treated breast cancer cells and also in Dox-treated cells. Extracellular HMGB1 was strongly expressed in the CM after Dox-induced MDA-MB-231 cell death and was higher in cells pre-treated with BCF-CM than NTF-CM. Pre-treatment of breast cancer cells with BCF-CM induced a degree of resistance to Dox in accordance with the increased level of secreted HMGB1. Recombinant HMGB1 was shown to increase Dox resistance and this was associated with evidence of autophagy. Anti-HMGB1 neutralizing antibody significantly reduced the effect of extracellular HMGB1 released from dying cancer cells or of recombinant HMGB1 on Dox resistance.

Conclusions

These findings highlight the potential of stromal fibroblasts to contribute to chemoresistance in breast cancer cells in part through fibroblast-induced HMGB1 production.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin. 2011, 61 (2): 69-90. 10.3322/caac.20107.CrossRefPubMed Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin. 2011, 61 (2): 69-90. 10.3322/caac.20107.CrossRefPubMed
2.
go back to reference Attasara P, Buasom R: Hospital-based cancer registry 2010. Natl Cancer Inst Thai. 2010, 24: 1-52. Attasara P, Buasom R: Hospital-based cancer registry 2010. Natl Cancer Inst Thai. 2010, 24: 1-52.
3.
go back to reference Hernandez-Aya LF, Gonzalez-Angulo AM: Adjuvant systemic therapies in breast cancer. Surg Clin North Am. 2013, 93 (2): 473-491. 10.1016/j.suc.2012.12.002.CrossRefPubMed Hernandez-Aya LF, Gonzalez-Angulo AM: Adjuvant systemic therapies in breast cancer. Surg Clin North Am. 2013, 93 (2): 473-491. 10.1016/j.suc.2012.12.002.CrossRefPubMed
4.
go back to reference Gonzalez-Angulo AM, Morales-Vasquez F, Hortobagyi GN: Overview of resistance to systemic therapy in patients with breast cancer. Adv Exp Med Biol. 2007, 608: 1-22. 10.1007/978-0-387-74039-3_1.CrossRefPubMed Gonzalez-Angulo AM, Morales-Vasquez F, Hortobagyi GN: Overview of resistance to systemic therapy in patients with breast cancer. Adv Exp Med Biol. 2007, 608: 1-22. 10.1007/978-0-387-74039-3_1.CrossRefPubMed
5.
go back to reference Sebens S, Schafer H: The tumor stroma as mediator of drug resistance–a potential target to improve cancer therapy?. Curr Pharm Biotechnol. 2012, 13 (11): 2259-2272. 10.2174/138920112802501999.CrossRefPubMed Sebens S, Schafer H: The tumor stroma as mediator of drug resistance–a potential target to improve cancer therapy?. Curr Pharm Biotechnol. 2012, 13 (11): 2259-2272. 10.2174/138920112802501999.CrossRefPubMed
6.
go back to reference Franco OE, Shaw AK, Strand DW, Hayward SW: Cancer associated fibroblasts in cancer pathogenesis. Semin Cell Dev Biol. 2010, 21 (1): 33-39. 10.1016/j.semcdb.2009.10.010.CrossRefPubMed Franco OE, Shaw AK, Strand DW, Hayward SW: Cancer associated fibroblasts in cancer pathogenesis. Semin Cell Dev Biol. 2010, 21 (1): 33-39. 10.1016/j.semcdb.2009.10.010.CrossRefPubMed
7.
go back to reference Thibault B, Castells M, Delord JP, Couderc B: Ovarian cancer microenvironment: implications for cancer dissemination and chemoresistance acquisition. Cancer Metastasis Rev. 2014, 33 (1): 17-39. 10.1007/s10555-013-9456-2.CrossRefPubMed Thibault B, Castells M, Delord JP, Couderc B: Ovarian cancer microenvironment: implications for cancer dissemination and chemoresistance acquisition. Cancer Metastasis Rev. 2014, 33 (1): 17-39. 10.1007/s10555-013-9456-2.CrossRefPubMed
8.
go back to reference Utispan K, Thuwajit P, Abiko Y, Charngkaew K, Paupairoj A, Chau-in S, Thuwajit C: Gene expression profiling of cholangiocarcinoma-derived fibroblast reveals alterations related to tumor progression and indicates periostin as a poor prognostic marker. Mol Cancer. 2010, 9: 13-10.1186/1476-4598-9-13.CrossRefPubMedPubMedCentral Utispan K, Thuwajit P, Abiko Y, Charngkaew K, Paupairoj A, Chau-in S, Thuwajit C: Gene expression profiling of cholangiocarcinoma-derived fibroblast reveals alterations related to tumor progression and indicates periostin as a poor prognostic marker. Mol Cancer. 2010, 9: 13-10.1186/1476-4598-9-13.CrossRefPubMedPubMedCentral
9.
go back to reference Muerkoster SS, Werbing V, Koch D, Sipos B, Ammerpohl O, Kalthoff H, Tsao MS, Folsch UR, Schafer H: Role of myofibroblasts in innate chemoresistance of pancreatic carcinoma–epigenetic downregulation of caspases. Int J Cancer. 2008, 123 (8): 1751-1760. 10.1002/ijc.23703.CrossRefPubMed Muerkoster SS, Werbing V, Koch D, Sipos B, Ammerpohl O, Kalthoff H, Tsao MS, Folsch UR, Schafer H: Role of myofibroblasts in innate chemoresistance of pancreatic carcinoma–epigenetic downregulation of caspases. Int J Cancer. 2008, 123 (8): 1751-1760. 10.1002/ijc.23703.CrossRefPubMed
10.
go back to reference Muerkoster S, Wegehenkel K, Arlt A, Witt M, Sipos B, Kruse ML, Sebens T, Kloppel G, Kalthoff H, Folsch UR, Schafer H: Tumor stroma interactions induce chemoresistance in pancreatic ductal carcinoma cells involving increased secretion and paracrine effects of nitric oxide and interleukin-1beta. Cancer Res. 2004, 64 (4): 1331-1337. 10.1158/0008-5472.CAN-03-1860.CrossRefPubMed Muerkoster S, Wegehenkel K, Arlt A, Witt M, Sipos B, Kruse ML, Sebens T, Kloppel G, Kalthoff H, Folsch UR, Schafer H: Tumor stroma interactions induce chemoresistance in pancreatic ductal carcinoma cells involving increased secretion and paracrine effects of nitric oxide and interleukin-1beta. Cancer Res. 2004, 64 (4): 1331-1337. 10.1158/0008-5472.CAN-03-1860.CrossRefPubMed
11.
go back to reference Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, Porter D, Hu M, Chin L, Richardson A, Schnitt S, Sellers WR, Polyak K: Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell. 2004, 6 (1): 17-32. 10.1016/j.ccr.2004.06.010.CrossRefPubMed Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, Porter D, Hu M, Chin L, Richardson A, Schnitt S, Sellers WR, Polyak K: Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell. 2004, 6 (1): 17-32. 10.1016/j.ccr.2004.06.010.CrossRefPubMed
12.
go back to reference Hasebe T, Sasaki S, Imoto S, Ochiai A: Proliferative activity of intratumoral fibroblasts is closely correlated with lymph node and distant organ metastases of invasive ductal carcinoma of the breast. Am J Pathol. 2000, 156 (5): 1701-1710. 10.1016/S0002-9440(10)65041-9.CrossRefPubMedPubMedCentral Hasebe T, Sasaki S, Imoto S, Ochiai A: Proliferative activity of intratumoral fibroblasts is closely correlated with lymph node and distant organ metastases of invasive ductal carcinoma of the breast. Am J Pathol. 2000, 156 (5): 1701-1710. 10.1016/S0002-9440(10)65041-9.CrossRefPubMedPubMedCentral
13.
go back to reference Hasebe T, Sasaki S, Imoto S, Ochiai A: Highly proliferative fibroblasts forming fibrotic focus govern metastasis of invasive ductal carcinoma of the breast. Mod Pathol. 2001, 14 (4): 325-337. 10.1038/modpathol.3880310.CrossRefPubMed Hasebe T, Sasaki S, Imoto S, Ochiai A: Highly proliferative fibroblasts forming fibrotic focus govern metastasis of invasive ductal carcinoma of the breast. Mod Pathol. 2001, 14 (4): 325-337. 10.1038/modpathol.3880310.CrossRefPubMed
14.
go back to reference Busch S, Acar A, Magnusson Y, Gregersson P, Ryden L, Landberg G: TGF-beta receptor type-2 expression in cancer-associated fibroblasts regulates breast cancer cell growth and survival and is a prognostic marker in pre-menopausal breast cancer. Oncogene. 2013, doi: 10.1038/onc.2013.527 Busch S, Acar A, Magnusson Y, Gregersson P, Ryden L, Landberg G: TGF-beta receptor type-2 expression in cancer-associated fibroblasts regulates breast cancer cell growth and survival and is a prognostic marker in pre-menopausal breast cancer. Oncogene. 2013, doi: 10.1038/onc.2013.527
15.
go back to reference Mao Y, Keller ET, Garfield DH, Shen K, Wang J: Stromal cells in tumor microenvironment and breast cancer. Cancer Metastasis Rev. 2013, 32 (1–2): 303-315.CrossRefPubMedPubMedCentral Mao Y, Keller ET, Garfield DH, Shen K, Wang J: Stromal cells in tumor microenvironment and breast cancer. Cancer Metastasis Rev. 2013, 32 (1–2): 303-315.CrossRefPubMedPubMedCentral
16.
go back to reference Farmer P, Bonnefoi H, Anderle P, Cameron D, Wirapati P, Becette V, Andre S, Piccart M, Campone M, Brain E, Macgrogan G, Petit T, Jassem J, Bibeau F, Blot E, Bogaerts J, Aguet M, Bergh J, Iggo R, Delorenzi M: A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat Med. 2009, 15 (1): 68-74. 10.1038/nm.1908.CrossRefPubMed Farmer P, Bonnefoi H, Anderle P, Cameron D, Wirapati P, Becette V, Andre S, Piccart M, Campone M, Brain E, Macgrogan G, Petit T, Jassem J, Bibeau F, Blot E, Bogaerts J, Aguet M, Bergh J, Iggo R, Delorenzi M: A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat Med. 2009, 15 (1): 68-74. 10.1038/nm.1908.CrossRefPubMed
17.
go back to reference Loeffler M, Kruger JA, Niethammer AG, Reisfeld RA: Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake. J Clin Invest. 2006, 116 (7): 1955-1962. 10.1172/JCI26532.CrossRefPubMedPubMedCentral Loeffler M, Kruger JA, Niethammer AG, Reisfeld RA: Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake. J Clin Invest. 2006, 116 (7): 1955-1962. 10.1172/JCI26532.CrossRefPubMedPubMedCentral
18.
go back to reference Shekhar MP, Santner S, Carolin KA, Tait L: Direct involvement of breast tumor fibroblasts in the modulation of tamoxifen sensitivity. Am J Pathol. 2007, 170 (5): 1546-1560. 10.2353/ajpath.2007.061004.CrossRefPubMedPubMedCentral Shekhar MP, Santner S, Carolin KA, Tait L: Direct involvement of breast tumor fibroblasts in the modulation of tamoxifen sensitivity. Am J Pathol. 2007, 170 (5): 1546-1560. 10.2353/ajpath.2007.061004.CrossRefPubMedPubMedCentral
19.
go back to reference Martinez-Outschoorn UE, Goldberg A, Lin Z, Ko YH, Flomenberg N, Wang C, Pavlides S, Pestell RG, Howell A, Sotgia F, Lisanti MP: Anti-estrogen resistance in breast cancer is induced by the tumor microenvironment and can be overcome by inhibiting mitochondrial function in epithelial cancer cells. Cancer Biol Ther. 2011, 12 (10): 924-938. 10.4161/cbt.12.10.17780.CrossRefPubMedPubMedCentral Martinez-Outschoorn UE, Goldberg A, Lin Z, Ko YH, Flomenberg N, Wang C, Pavlides S, Pestell RG, Howell A, Sotgia F, Lisanti MP: Anti-estrogen resistance in breast cancer is induced by the tumor microenvironment and can be overcome by inhibiting mitochondrial function in epithelial cancer cells. Cancer Biol Ther. 2011, 12 (10): 924-938. 10.4161/cbt.12.10.17780.CrossRefPubMedPubMedCentral
20.
go back to reference Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ: HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol. 2010, 28: 367-388. 10.1146/annurev.immunol.021908.132603.CrossRefPubMed Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ: HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol. 2010, 28: 367-388. 10.1146/annurev.immunol.021908.132603.CrossRefPubMed
21.
go back to reference Ellerman JE, Brown CK, de Vera M, Zeh HJ, Billiar T, Rubartelli A, Lotze MT: Masquerader: high mobility group box-1 and cancer. Clin Cancer Res. 2007, 13 (10): 2836-2848. 10.1158/1078-0432.CCR-06-1953.CrossRefPubMed Ellerman JE, Brown CK, de Vera M, Zeh HJ, Billiar T, Rubartelli A, Lotze MT: Masquerader: high mobility group box-1 and cancer. Clin Cancer Res. 2007, 13 (10): 2836-2848. 10.1158/1078-0432.CCR-06-1953.CrossRefPubMed
22.
go back to reference Dong Xda E, Ito N, Lotze MT, Demarco RA, Popovic P, Shand SH, Watkins S, Winikoff S, Brown CK, Bartlett DL, Zeh HJ3rd: High mobility group box I (HMGB1) release from tumor cells after treatment: implications for development of targeted chemoimmunotherapy. J Immunother. 2007, 30 (6): 596-606. 10.1097/CJI.0b013e31804efc76.CrossRefPubMed Dong Xda E, Ito N, Lotze MT, Demarco RA, Popovic P, Shand SH, Watkins S, Winikoff S, Brown CK, Bartlett DL, Zeh HJ3rd: High mobility group box I (HMGB1) release from tumor cells after treatment: implications for development of targeted chemoimmunotherapy. J Immunother. 2007, 30 (6): 596-606. 10.1097/CJI.0b013e31804efc76.CrossRefPubMed
23.
go back to reference Ito N, DeMarco RA, Mailliard RB, Han J, Rabinowich H, Kalinski P, Stolz DB, Zeh HJ, Lotze MT: Cytolytic cells induce HMGB1 release from melanoma cell lines. J Leukoc Biol. 2007, 81 (1): 75-83.CrossRefPubMed Ito N, DeMarco RA, Mailliard RB, Han J, Rabinowich H, Kalinski P, Stolz DB, Zeh HJ, Lotze MT: Cytolytic cells induce HMGB1 release from melanoma cell lines. J Leukoc Biol. 2007, 81 (1): 75-83.CrossRefPubMed
24.
go back to reference Lee H, Song M, Shin N, Shin CH, Min BS, Kim HS, Yoo JS, Kim H: Diagnostic significance of serum HMGB1 in colorectal carcinomas. PLoS One. 2012, 7 (4): e34318-10.1371/journal.pone.0034318.CrossRefPubMedPubMedCentral Lee H, Song M, Shin N, Shin CH, Min BS, Kim HS, Yoo JS, Kim H: Diagnostic significance of serum HMGB1 in colorectal carcinomas. PLoS One. 2012, 7 (4): e34318-10.1371/journal.pone.0034318.CrossRefPubMedPubMedCentral
25.
go back to reference Jube S, Rivera ZS, Bianchi ME, Powers A, Wang E, Pagano I, Pass HI, Gaudino G, Carbone M, Yang H: Cancer cell secretion of the DAMP protein HMGB1 supports progression in malignant mesothelioma. Cancer Res. 2012, 72 (13): 3290-3301. 10.1158/0008-5472.CAN-11-3481.CrossRefPubMedPubMedCentral Jube S, Rivera ZS, Bianchi ME, Powers A, Wang E, Pagano I, Pass HI, Gaudino G, Carbone M, Yang H: Cancer cell secretion of the DAMP protein HMGB1 supports progression in malignant mesothelioma. Cancer Res. 2012, 72 (13): 3290-3301. 10.1158/0008-5472.CAN-11-3481.CrossRefPubMedPubMedCentral
26.
go back to reference Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, Maiuri MC, Ullrich E, Saulnier P, Yang H, Amigorena S, Ryffel B, Barrat FJ, Saftig P, Levi F, Lidereau R, Nogues C, Mira JP, Chompret A, Joulin V, Clavel-Chapelon F, Bourhis J, André F, Delaloge S, Tursz T, Kroemer G, Zitvogel L: Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. 2007, 13 (9): 1050-1059. 10.1038/nm1622.CrossRefPubMed Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, Maiuri MC, Ullrich E, Saulnier P, Yang H, Amigorena S, Ryffel B, Barrat FJ, Saftig P, Levi F, Lidereau R, Nogues C, Mira JP, Chompret A, Joulin V, Clavel-Chapelon F, Bourhis J, André F, Delaloge S, Tursz T, Kroemer G, Zitvogel L: Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. 2007, 13 (9): 1050-1059. 10.1038/nm1622.CrossRefPubMed
27.
go back to reference Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, Frazier A, Yang H, Ivanova S, Borovikova L, Manogue KR, Faist E, Abraham E, Andersson J, Andersson U, Molina PE, Abumrad NN, Sama A, Tracey KJ: HMG-1 as a late mediator of endotoxin lethality in mice. Science. 1999, 285 (5425): 248-251. 10.1126/science.285.5425.248.CrossRefPubMed Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, Frazier A, Yang H, Ivanova S, Borovikova L, Manogue KR, Faist E, Abraham E, Andersson J, Andersson U, Molina PE, Abumrad NN, Sama A, Tracey KJ: HMG-1 as a late mediator of endotoxin lethality in mice. Science. 1999, 285 (5425): 248-251. 10.1126/science.285.5425.248.CrossRefPubMed
28.
go back to reference Bartling B, Fuchs C, Silber RE, Simm A: Fibroblasts mediate induction of high mobility group box protein 1 in lung epithelial cancer cells by diffusible factors. Int J Mol Med. 2007, 20 (2): 217-224.PubMed Bartling B, Fuchs C, Silber RE, Simm A: Fibroblasts mediate induction of high mobility group box protein 1 in lung epithelial cancer cells by diffusible factors. Int J Mol Med. 2007, 20 (2): 217-224.PubMed
29.
go back to reference Luo Y, Chihara Y, Fujimoto K, Sasahira T, Kuwada M, Fujiwara R, Fujii K, Ohmori H, Kuniyasu H: High mobility group box 1 released from necrotic cells enhances regrowth and metastasis of cancer cells that have survived chemotherapy. Eur J Cancer. 2013, 49 (3): 741-751. 10.1016/j.ejca.2012.09.016.CrossRefPubMed Luo Y, Chihara Y, Fujimoto K, Sasahira T, Kuwada M, Fujiwara R, Fujii K, Ohmori H, Kuniyasu H: High mobility group box 1 released from necrotic cells enhances regrowth and metastasis of cancer cells that have survived chemotherapy. Eur J Cancer. 2013, 49 (3): 741-751. 10.1016/j.ejca.2012.09.016.CrossRefPubMed
30.
go back to reference Xing F, Saidou J, Watabe K: Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci. 2010, 15: 166-179. 10.2741/3613.CrossRef Xing F, Saidou J, Watabe K: Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci. 2010, 15: 166-179. 10.2741/3613.CrossRef
31.
go back to reference Castells M, Thibault B, Delord JP, Couderc B: Implication of tumor microenvironment in chemoresistance: tumor-associated stromal cells protect tumor cells from cell death. Int J Mol Sci. 2012, 13 (8): 9545-9571.CrossRefPubMedPubMedCentral Castells M, Thibault B, Delord JP, Couderc B: Implication of tumor microenvironment in chemoresistance: tumor-associated stromal cells protect tumor cells from cell death. Int J Mol Sci. 2012, 13 (8): 9545-9571.CrossRefPubMedPubMedCentral
32.
go back to reference Tiago M, Oliveira EM, Brohem CA, Pennacchi PC, Paes RD, Haga RB, Campa A, Barros SB, Smalley KS, Silvya ME: Fibroblasts protect melanoma cells from the cytotoxic effects of doxorubicin. Tissue Eng Part A. 2014, 20 (17–18): 2412-2421.CrossRefPubMedPubMedCentral Tiago M, Oliveira EM, Brohem CA, Pennacchi PC, Paes RD, Haga RB, Campa A, Barros SB, Smalley KS, Silvya ME: Fibroblasts protect melanoma cells from the cytotoxic effects of doxorubicin. Tissue Eng Part A. 2014, 20 (17–18): 2412-2421.CrossRefPubMedPubMedCentral
33.
go back to reference Nakagawa H, Liyanarachchi S, Davuluri RV, Auer H, Martin EW, de la Chapelle A, Frankel WL: Role of cancer-associated stromal fibroblasts in metastatic colon cancer to the liver and their expression profiles. Oncogene. 2004, 23 (44): 7366-7377. 10.1038/sj.onc.1208013.CrossRefPubMed Nakagawa H, Liyanarachchi S, Davuluri RV, Auer H, Martin EW, de la Chapelle A, Frankel WL: Role of cancer-associated stromal fibroblasts in metastatic colon cancer to the liver and their expression profiles. Oncogene. 2004, 23 (44): 7366-7377. 10.1038/sj.onc.1208013.CrossRefPubMed
34.
go back to reference Al-Rakan MA, Colak D, Hendrayani SF, Al-Bakheet A, Al-Mohanna FH, Kaya N, Al-Malik O, Aboussekhra A: Breast stromal fibroblasts from histologically normal surgical margins are pro-carcinogenic. J Pathol. 2013, 231 (4): 457-465. 10.1002/path.4256.CrossRefPubMedPubMedCentral Al-Rakan MA, Colak D, Hendrayani SF, Al-Bakheet A, Al-Mohanna FH, Kaya N, Al-Malik O, Aboussekhra A: Breast stromal fibroblasts from histologically normal surgical margins are pro-carcinogenic. J Pathol. 2013, 231 (4): 457-465. 10.1002/path.4256.CrossRefPubMedPubMedCentral
35.
go back to reference Sarrio D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J: Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res. 2008, 68 (4): 989-997. 10.1158/0008-5472.CAN-07-2017.CrossRefPubMed Sarrio D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J: Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res. 2008, 68 (4): 989-997. 10.1158/0008-5472.CAN-07-2017.CrossRefPubMed
36.
go back to reference Jeong H, Ryu YJ, An J, Lee Y, Kim A: Epithelial-mesenchymal transition in breast cancer correlates with high histological grade and triple-negative phenotype. Histopathology. 2012, 60 (6B): E87-E95. 10.1111/j.1365-2559.2012.04195.x.CrossRefPubMed Jeong H, Ryu YJ, An J, Lee Y, Kim A: Epithelial-mesenchymal transition in breast cancer correlates with high histological grade and triple-negative phenotype. Histopathology. 2012, 60 (6B): E87-E95. 10.1111/j.1365-2559.2012.04195.x.CrossRefPubMed
37.
go back to reference Chuaysri C, Thuwajit P, Paupairoj A, Chau-In S, Suthiphongchai T, Thuwajit C: Alpha-smooth muscle actin-positive fibroblasts promote biliary cell proliferation and correlate with poor survival in cholangiocarcinoma. Oncol Rep. 2009, 21 (4): 957-969.PubMed Chuaysri C, Thuwajit P, Paupairoj A, Chau-In S, Suthiphongchai T, Thuwajit C: Alpha-smooth muscle actin-positive fibroblasts promote biliary cell proliferation and correlate with poor survival in cholangiocarcinoma. Oncol Rep. 2009, 21 (4): 957-969.PubMed
38.
go back to reference Tabata C, Shibata E, Tabata R, Kanemura S, Mikami K, Nogi Y, Masachika E, Nishizaki T, Nakano T: Serum HMGB1 as a prognostic marker for malignant pleural mesothelioma. BMC Cancer. 2013, 13: 205-10.1186/1471-2407-13-205.CrossRefPubMedPubMedCentral Tabata C, Shibata E, Tabata R, Kanemura S, Mikami K, Nogi Y, Masachika E, Nishizaki T, Nakano T: Serum HMGB1 as a prognostic marker for malignant pleural mesothelioma. BMC Cancer. 2013, 13: 205-10.1186/1471-2407-13-205.CrossRefPubMedPubMedCentral
39.
go back to reference Yan W, Chang Y, Liang X, Cardinal JS, Huang H, Thorne SH, Monga SP, Geller DA, Lotze MT, Tsung A: High-mobility group box 1 activates caspase-1 and promotes hepatocellular carcinoma invasiveness and metastases. Hepatology. 2012, 55 (6): 1863-1875. 10.1002/hep.25572.CrossRefPubMedPubMedCentral Yan W, Chang Y, Liang X, Cardinal JS, Huang H, Thorne SH, Monga SP, Geller DA, Lotze MT, Tsung A: High-mobility group box 1 activates caspase-1 and promotes hepatocellular carcinoma invasiveness and metastases. Hepatology. 2012, 55 (6): 1863-1875. 10.1002/hep.25572.CrossRefPubMedPubMedCentral
40.
go back to reference Willenbrock S, Braun O, Baumgart J, Lange S, Junghanss C, Heisterkamp A, Nolte I, Bullerdiek J, Murua Escobar H: TNF-alpha induced secretion of HMGB1 from non-immune canine mammary epithelial cells (MTH53A). Cytokine. 2012, 57 (2): 210-220. 10.1016/j.cyto.2011.11.011.CrossRefPubMed Willenbrock S, Braun O, Baumgart J, Lange S, Junghanss C, Heisterkamp A, Nolte I, Bullerdiek J, Murua Escobar H: TNF-alpha induced secretion of HMGB1 from non-immune canine mammary epithelial cells (MTH53A). Cytokine. 2012, 57 (2): 210-220. 10.1016/j.cyto.2011.11.011.CrossRefPubMed
41.
go back to reference Hao Q, Du XQ, Fu X, Tian J: Expression and clinical significance of HMGB1 and RAGE in cervical squamous cell carcinoma. Zhonghua Zhong Liu Za Zhi. 2008, 30 (4): 292-295.PubMed Hao Q, Du XQ, Fu X, Tian J: Expression and clinical significance of HMGB1 and RAGE in cervical squamous cell carcinoma. Zhonghua Zhong Liu Za Zhi. 2008, 30 (4): 292-295.PubMed
42.
go back to reference Wild CA, Brandau S, Lotfi R, Mattheis S, Gu X, Lang S, Bergmann C: HMGB1 is overexpressed in tumor cells and promotes activity of regulatory T cells in patients with head and neck cancer. Oral Oncol. 2012, 48 (5): 409-416. 10.1016/j.oraloncology.2011.12.009.CrossRefPubMed Wild CA, Brandau S, Lotfi R, Mattheis S, Gu X, Lang S, Bergmann C: HMGB1 is overexpressed in tumor cells and promotes activity of regulatory T cells in patients with head and neck cancer. Oral Oncol. 2012, 48 (5): 409-416. 10.1016/j.oraloncology.2011.12.009.CrossRefPubMed
43.
go back to reference Wu D, Ding Y, Wang S, Zhang Q, Liu L: Increased expression of high mobility group box 1 (HMGB1) is associated with progression and poor prognosis in human nasopharyngeal carcinoma. J Pathol. 2008, 216 (2): 167-175. 10.1002/path.2391.CrossRefPubMed Wu D, Ding Y, Wang S, Zhang Q, Liu L: Increased expression of high mobility group box 1 (HMGB1) is associated with progression and poor prognosis in human nasopharyngeal carcinoma. J Pathol. 2008, 216 (2): 167-175. 10.1002/path.2391.CrossRefPubMed
44.
go back to reference Meyer A, Staratschek-Jox A, Springwald A, Wenk H, Wolf J, Wickenhauser C, Bullerdiek J: Non-Hodgkin lymphoma expressing high levels of the danger-signalling protein HMGB1. Leuk Lymphoma. 2008, 49 (6): 1184-1189. 10.1080/10428190802064909.CrossRefPubMed Meyer A, Staratschek-Jox A, Springwald A, Wenk H, Wolf J, Wickenhauser C, Bullerdiek J: Non-Hodgkin lymphoma expressing high levels of the danger-signalling protein HMGB1. Leuk Lymphoma. 2008, 49 (6): 1184-1189. 10.1080/10428190802064909.CrossRefPubMed
45.
go back to reference Belge G, Meyer A, Klemke M, Burchardt K, Stern C, Wosniok W, Loeschke S, Bullerdiek J: Upregulation of HMGA2 in thyroid carcinomas: a novel molecular marker to distinguish between benign and malignant follicular neoplasias. Genes Chromosomes Cancer. 2008, 47 (1): 56-63. 10.1002/gcc.20505.CrossRefPubMed Belge G, Meyer A, Klemke M, Burchardt K, Stern C, Wosniok W, Loeschke S, Bullerdiek J: Upregulation of HMGA2 in thyroid carcinomas: a novel molecular marker to distinguish between benign and malignant follicular neoplasias. Genes Chromosomes Cancer. 2008, 47 (1): 56-63. 10.1002/gcc.20505.CrossRefPubMed
46.
go back to reference Flohr AM, Rogalla P, Meiboom M, Borrmann L, Krohn M, Thode-Halle B, Bullerdiek J: Variation of HMGB1 expression in breast cancer. Anticancer Res. 2001, 21 (6A): 3881-3885.PubMed Flohr AM, Rogalla P, Meiboom M, Borrmann L, Krohn M, Thode-Halle B, Bullerdiek J: Variation of HMGB1 expression in breast cancer. Anticancer Res. 2001, 21 (6A): 3881-3885.PubMed
47.
go back to reference Brezniceanu ML, Volp K, Bosser S, Solbach C, Lichter P, Joos S, Zornig M: HMGB1 inhibits cell death in yeast and mammalian cells and is abundantly expressed in human breast carcinoma. FASEB J. 2003, 17 (10): 1295-1297.PubMed Brezniceanu ML, Volp K, Bosser S, Solbach C, Lichter P, Joos S, Zornig M: HMGB1 inhibits cell death in yeast and mammalian cells and is abundantly expressed in human breast carcinoma. FASEB J. 2003, 17 (10): 1295-1297.PubMed
48.
go back to reference Kostova N, Zlateva S, Ugrinova I, Pasheva E: The expression of HMGB1 protein and its receptor RAGE in human malignant tumors. Mol Cell Biochem. 2010, 337 (1–2): 251-258.CrossRefPubMed Kostova N, Zlateva S, Ugrinova I, Pasheva E: The expression of HMGB1 protein and its receptor RAGE in human malignant tumors. Mol Cell Biochem. 2010, 337 (1–2): 251-258.CrossRefPubMed
49.
go back to reference Todorova J, Pasheva E: High mobility group B1 protein interacts with its receptor RAGE in tumor cells but not in normal tissues. Oncol Lett. 2012, 3 (1): 214-218.PubMed Todorova J, Pasheva E: High mobility group B1 protein interacts with its receptor RAGE in tumor cells but not in normal tissues. Oncol Lett. 2012, 3 (1): 214-218.PubMed
50.
go back to reference Ranzato E, Patrone M, Pedrazzi M, Burlando B: Hmgb1 promotes wound healing of 3T3 mouse fibroblasts via RAGE-dependent ERK1/2 activation. Cell Biochem Biophys. 2010, 57 (1): 9-17. 10.1007/s12013-010-9077-0.CrossRefPubMed Ranzato E, Patrone M, Pedrazzi M, Burlando B: Hmgb1 promotes wound healing of 3T3 mouse fibroblasts via RAGE-dependent ERK1/2 activation. Cell Biochem Biophys. 2010, 57 (1): 9-17. 10.1007/s12013-010-9077-0.CrossRefPubMed
51.
go back to reference Hou CH, Fong YC, Tang CH: HMGB-1 induces IL-6 production in human synovial fibroblasts through c-Src, Akt and NF-kappaB pathways. J Cell Physiol. 2011, 226 (8): 2006-2015. 10.1002/jcp.22541.CrossRefPubMed Hou CH, Fong YC, Tang CH: HMGB-1 induces IL-6 production in human synovial fibroblasts through c-Src, Akt and NF-kappaB pathways. J Cell Physiol. 2011, 226 (8): 2006-2015. 10.1002/jcp.22541.CrossRefPubMed
52.
go back to reference Liu L, Yang M, Kang R, Wang Z, Zhao Y, Yu Y, Xie M, Yin X, Livesey KM, Loze MT, Tang D, Cao L: DAMP-mediated autophagy contributes to drug resistance. Autophagy. 2011, 7 (1): 112-114. 10.4161/auto.7.1.14005.CrossRefPubMedPubMedCentral Liu L, Yang M, Kang R, Wang Z, Zhao Y, Yu Y, Xie M, Yin X, Livesey KM, Loze MT, Tang D, Cao L: DAMP-mediated autophagy contributes to drug resistance. Autophagy. 2011, 7 (1): 112-114. 10.4161/auto.7.1.14005.CrossRefPubMedPubMedCentral
53.
go back to reference Liu L, Yang M, Kang R, Wang Z, Zhao Y, Yu Y, Xie M, Yin X, Livesey KM, Lotze MT, Tang D, Cao L: HMGB1-induced autophagy promotes chemotherapy resistance in leukemia cells. Leukemia. 2011, 25 (1): 23-31. 10.1038/leu.2010.225.CrossRefPubMed Liu L, Yang M, Kang R, Wang Z, Zhao Y, Yu Y, Xie M, Yin X, Livesey KM, Lotze MT, Tang D, Cao L: HMGB1-induced autophagy promotes chemotherapy resistance in leukemia cells. Leukemia. 2011, 25 (1): 23-31. 10.1038/leu.2010.225.CrossRefPubMed
54.
go back to reference Chittaranjan S, Bortnik S, Dragowska WH, Xu J, Abeysundara N, Leung A, Go NE, DeVorkin L, Weppler SA, Gelmon K, Yapp DT, Bally MB, Gorski SM: Autophagy inhibition augments the anticancer effects of epirubicin treatment in anthracycline-sensitive and -resistant triple-negative breast cancer. Clin Cancer Res. 2014, 20 (12): 3159-3173. 10.1158/1078-0432.CCR-13-2060.CrossRefPubMed Chittaranjan S, Bortnik S, Dragowska WH, Xu J, Abeysundara N, Leung A, Go NE, DeVorkin L, Weppler SA, Gelmon K, Yapp DT, Bally MB, Gorski SM: Autophagy inhibition augments the anticancer effects of epirubicin treatment in anthracycline-sensitive and -resistant triple-negative breast cancer. Clin Cancer Res. 2014, 20 (12): 3159-3173. 10.1158/1078-0432.CCR-13-2060.CrossRefPubMed
55.
go back to reference Smolarczyk R, Cichon T, Matuszczak S, Mitrus I, Lesiak M, Kobusinska M, Kamysz W, Jarosz M, Sieron A, Szala S: The role of Glycyrrhizin, an inhibitor of HMGB1 protein, in anticancer therapy. Arch Immunol Ther Exp (Warsz). 2012, 60 (5): 391-399. 10.1007/s00005-012-0183-0.CrossRef Smolarczyk R, Cichon T, Matuszczak S, Mitrus I, Lesiak M, Kobusinska M, Kamysz W, Jarosz M, Sieron A, Szala S: The role of Glycyrrhizin, an inhibitor of HMGB1 protein, in anticancer therapy. Arch Immunol Ther Exp (Warsz). 2012, 60 (5): 391-399. 10.1007/s00005-012-0183-0.CrossRef
56.
go back to reference Guerriero JL, Ditsworth D, Catanzaro JM, Sabino G, Furie MB, Kew RR, Crawford HC, Zong WX: DNA alkylating therapy induces tumor regression through an HMGB1-mediated activation of innate immunity. J Immunol. 2011, 186 (6): 3517-3526. 10.4049/jimmunol.1003267.CrossRefPubMedPubMedCentral Guerriero JL, Ditsworth D, Catanzaro JM, Sabino G, Furie MB, Kew RR, Crawford HC, Zong WX: DNA alkylating therapy induces tumor regression through an HMGB1-mediated activation of innate immunity. J Immunol. 2011, 186 (6): 3517-3526. 10.4049/jimmunol.1003267.CrossRefPubMedPubMedCentral
57.
go back to reference Stoetzer OJ, Fersching DM, Salat C, Steinkohl O, Gabka CJ, Hamann U, Braun M, Feller AM, Heinemann V, Siegele B, Nagel D, Holdenrieder S: Circulating immunogenic cell death biomarkers HMGB1 and RAGE in breast cancer patients during neoadjuvant chemotherapy. Tumour Biol. 2013, 34 (1): 81-90. 10.1007/s13277-012-0513-1.CrossRefPubMed Stoetzer OJ, Fersching DM, Salat C, Steinkohl O, Gabka CJ, Hamann U, Braun M, Feller AM, Heinemann V, Siegele B, Nagel D, Holdenrieder S: Circulating immunogenic cell death biomarkers HMGB1 and RAGE in breast cancer patients during neoadjuvant chemotherapy. Tumour Biol. 2013, 34 (1): 81-90. 10.1007/s13277-012-0513-1.CrossRefPubMed
Metadata
Title
Cancer-associated fibroblasts induce high mobility group box 1 and contribute to resistance to doxorubicin in breast cancer cells
Authors
Kamolporn Amornsupak
Tonkla Insawang
Peti Thuwajit
Pornchai O-Charoenrat
Suzanne A Eccles
Chanitra Thuwajit
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2014
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-14-955

Other articles of this Issue 1/2014

BMC Cancer 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine