Skip to main content
Top
Published in: BMC Cancer 1/2014

Open Access 01-12-2014 | Research article

Modification of topoisomerases in mammospheres derived from breast cancer cell line: clinical implications for combined treatments with tyrosine kinase inhibitors

Authors: Refael Peleg, Marianna Romzova, Inga Kogan-Zviagin, Ron N Apte, Esther Priel

Published in: BMC Cancer | Issue 1/2014

Login to get access

Abstract

Background

Accumulating evidences suggest that tumors are driven by a small population of cells, termed “cancer stem cells” (CSCs), which may be resistant to current therapeutic approaches. In breast carcinoma, the CSCs have been identified as a CD44+/CD24 cell population. These rare cells are able to grow as non-adherent sphere-like structures, termed “mammospheres”, which enables their isolation and expansion in culture. To design efficient strategies for the complete eradication of CSCs, it is important to identify enzymes and proteins that are known as anti-cancer targets, and differ in their properties from those present in the none CSCs. Here we investigated the activity and expression of type I and type II DNA topoisomerases (topo I and topo II) in CSCs and their response to anti-topoisomerase inhibitors.

Methods

MCF7 breast cancer cells, PC3 prostate cancer cells and 4 T1-Luc-Oct3/4pG mouse mammary carcinoma cells were grown on low-attachment dishes in specific medium and allowed to form spheres. Enrichment of CSC population was verified by immunostaining, flow cytometry or fluorescent microscopy imaging. Nuclear protein extracts were prepared and topoisomerases activity and protein levels were determined. Cell viability was examined by the MTT and Neutral Red assays.

Results

Unlike the adherent MCF7 cell line, topo I activity is decreased and topo II activity is increased in the CSCs. However, the relative levels of the enzyme proteins were similar in both mammospheres and adherent cells. Topo I activity in mammospheres is regulated, at least in part, by PARP-1, as observed by the recovery of topo I activity after treatment with PARP-1 inhibitor 3-Aminobenzamide. Mammosphere-derived cells show reduced sensitivity to topo I inhibitor, camptothecin, and increased sensitivity to topo II inhibitor etoposide. Intact mammospheres show increased resistance to both drugs. A combined treatment of intact mammospheres with either CPT and gefitinib, or etoposide and erlotinib, increased the anti-cancer effect of both drugs.

Conclusions

The data of this study suggest that the understanding of biological behavior of essential enzymes such as topoisomerases, in CSCs’ progression and early stages of tumor development, is important for developing new strategies for cancer treatment as well as new therapies for advanced disease.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wicha MS, Liu S, Dontu G: Cancer stem cells: an old idea - a paradigm shift. Cancer Res. 2006, 66 (4): 1883-1890. 10.1158/0008-5472.CAN-05-3153.CrossRefPubMed Wicha MS, Liu S, Dontu G: Cancer stem cells: an old idea - a paradigm shift. Cancer Res. 2006, 66 (4): 1883-1890. 10.1158/0008-5472.CAN-05-3153.CrossRefPubMed
2.
3.
go back to reference Behbod F, Rosen JM: Will cancer stem cells provide new therapeutic targets?. Carcinogenesis. 2004, 26 (4): 703-711.CrossRefPubMed Behbod F, Rosen JM: Will cancer stem cells provide new therapeutic targets?. Carcinogenesis. 2004, 26 (4): 703-711.CrossRefPubMed
4.
go back to reference Bhattacharyya S, Khanduja KL: New hope in the horizon: cancer stem cells. Acta Biochim Biophys Sin (Shanghai). 2010, 42 (4): 237-242. 10.1093/abbs/gmq013.CrossRef Bhattacharyya S, Khanduja KL: New hope in the horizon: cancer stem cells. Acta Biochim Biophys Sin (Shanghai). 2010, 42 (4): 237-242. 10.1093/abbs/gmq013.CrossRef
5.
go back to reference Charafe-Jauffret E, Monville F, Ginestier C, Dontu G, Birnbaum D, Wicha MS: Cancer stem cells in breast: current option and future challenges. Pathobiology. 2008, 75 (2): 75-84. 10.1159/000123845.CrossRefPubMedPubMedCentral Charafe-Jauffret E, Monville F, Ginestier C, Dontu G, Birnbaum D, Wicha MS: Cancer stem cells in breast: current option and future challenges. Pathobiology. 2008, 75 (2): 75-84. 10.1159/000123845.CrossRefPubMedPubMedCentral
6.
go back to reference du Potet E, Cameron L, Habib NA, Levicar N: Cancer stem cells in solid tumors. Stem Cells & Regenerative Medicine: From Molecular Embryology to Tissue Engineering. Edited by: Appasani K, Appasani RK. 2011, LLC, New York: Edition Humana Press (Springer Science+Business Media), 59-76.CrossRef du Potet E, Cameron L, Habib NA, Levicar N: Cancer stem cells in solid tumors. Stem Cells & Regenerative Medicine: From Molecular Embryology to Tissue Engineering. Edited by: Appasani K, Appasani RK. 2011, LLC, New York: Edition Humana Press (Springer Science+Business Media), 59-76.CrossRef
7.
go back to reference Ishikawa F, Yoshida S, Saito Y, Hijikata A, Kitamura H, Tanaka S, Nakamura R, Tanaka T, Tomiyama H, Saito N, Fukata M, Miyamoto T, Lyons B, Ohshima K, Uchida N, Taniguchi S, Ohara O, Akashi K, Harada M, Shultz LD: Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol. 2007, 25 (11): 1315-1321. 10.1038/nbt1350.CrossRefPubMed Ishikawa F, Yoshida S, Saito Y, Hijikata A, Kitamura H, Tanaka S, Nakamura R, Tanaka T, Tomiyama H, Saito N, Fukata M, Miyamoto T, Lyons B, Ohshima K, Uchida N, Taniguchi S, Ohara O, Akashi K, Harada M, Shultz LD: Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol. 2007, 25 (11): 1315-1321. 10.1038/nbt1350.CrossRefPubMed
8.
go back to reference Visvader JE, Lindeman GJ: Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008, 8 (10): 755-768. 10.1038/nrc2499.CrossRefPubMed Visvader JE, Lindeman GJ: Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008, 8 (10): 755-768. 10.1038/nrc2499.CrossRefPubMed
10.
go back to reference Chen SH, Chan NL, Hsieh TS: New mechanistic and functional insights into DNA topoisomerases. Annu Rev Biochem. 2013, 82: 139-170. 10.1146/annurev-biochem-061809-100002.CrossRefPubMed Chen SH, Chan NL, Hsieh TS: New mechanistic and functional insights into DNA topoisomerases. Annu Rev Biochem. 2013, 82: 139-170. 10.1146/annurev-biochem-061809-100002.CrossRefPubMed
11.
go back to reference Montecucco A, Biamonti G: Cellular response to etoposide treatment. Cancer Lett. 2007, 252 (1): 9-18. 10.1016/j.canlet.2006.11.005.CrossRefPubMed Montecucco A, Biamonti G: Cellular response to etoposide treatment. Cancer Lett. 2007, 252 (1): 9-18. 10.1016/j.canlet.2006.11.005.CrossRefPubMed
12.
go back to reference Haglof KJ, Popa E, Hochster HS: Recent developments in the clinical activity of topoisomerase-1 inhibitors. Cancer Ther. 2006, 1 (2): 117-145. Haglof KJ, Popa E, Hochster HS: Recent developments in the clinical activity of topoisomerase-1 inhibitors. Cancer Ther. 2006, 1 (2): 117-145.
13.
go back to reference Pommier Y: Topoisomerase I inhibitors: camptothecins and beyond. Nat Rev Cancer. 2006, 6 (10): 789-802. 10.1038/nrc1977.CrossRefPubMed Pommier Y: Topoisomerase I inhibitors: camptothecins and beyond. Nat Rev Cancer. 2006, 6 (10): 789-802. 10.1038/nrc1977.CrossRefPubMed
14.
go back to reference Ciardiello F, Bianco R, Damiano V, De Lorenzo S, Pepe S, De Placido S, Fan Z, Mendelsohn J, Bianco AR, Tortora G: Antitumor activity of sequential treatment with topotecan and anti-epidermal growth factor receptor monoclonal antibody C225. Clin Cancer Res. 1999, 5 (4): 909-916.PubMed Ciardiello F, Bianco R, Damiano V, De Lorenzo S, Pepe S, De Placido S, Fan Z, Mendelsohn J, Bianco AR, Tortora G: Antitumor activity of sequential treatment with topotecan and anti-epidermal growth factor receptor monoclonal antibody C225. Clin Cancer Res. 1999, 5 (4): 909-916.PubMed
15.
go back to reference Chen J, Smith M, Kolinsky K, Adames V, Mehta N, Fritzky L, Rashed M, Wheeldon E, Linn M, Higgins B: Antitumor activity of HER1/EGFR tyrosine kinase inhibitor erlotinib, alone and in combination with CPT-11 (irinotecan) in human colorectal cancer xenograft models. Cancer Chemother Pharmacol. 2007, 59 (5): 651-659. 10.1007/s00280-006-0320-8.CrossRefPubMed Chen J, Smith M, Kolinsky K, Adames V, Mehta N, Fritzky L, Rashed M, Wheeldon E, Linn M, Higgins B: Antitumor activity of HER1/EGFR tyrosine kinase inhibitor erlotinib, alone and in combination with CPT-11 (irinotecan) in human colorectal cancer xenograft models. Cancer Chemother Pharmacol. 2007, 59 (5): 651-659. 10.1007/s00280-006-0320-8.CrossRefPubMed
16.
go back to reference Koizumi F, Kanzawa F, Ueda Y, Koh Y, Tsukiyama S, Taguchi F, Tamura T, Saijo N, Nishio K: Synergistic interaction between the EGFR tyrosine kinase inhibitor gefitinib (“Iressa”) and the DNA topoisomerase I inhibitor CPT-11 (irinotecan) in human colorectal cancer cells. Int J Cancer. 2004, 108 (3): 464-472. 10.1002/ijc.11539.CrossRefPubMed Koizumi F, Kanzawa F, Ueda Y, Koh Y, Tsukiyama S, Taguchi F, Tamura T, Saijo N, Nishio K: Synergistic interaction between the EGFR tyrosine kinase inhibitor gefitinib (“Iressa”) and the DNA topoisomerase I inhibitor CPT-11 (irinotecan) in human colorectal cancer cells. Int J Cancer. 2004, 108 (3): 464-472. 10.1002/ijc.11539.CrossRefPubMed
17.
go back to reference Peleg R, Bobilev D, Priel E: Topoisomerase I as a target of erlotinib and gefitinib: Efficacy of combined treatments with camptothecin. Int J Oncol. 2014, 44 (3): 934-942.PubMed Peleg R, Bobilev D, Priel E: Topoisomerase I as a target of erlotinib and gefitinib: Efficacy of combined treatments with camptothecin. Int J Oncol. 2014, 44 (3): 934-942.PubMed
18.
go back to reference Johnston MD, Finter NB, Young PA: Dye uptake method for assay of interferon activity. Methods Enzymol. 1981, 78 (Pt A): 394-399.CrossRefPubMed Johnston MD, Finter NB, Young PA: Dye uptake method for assay of interferon activity. Methods Enzymol. 1981, 78 (Pt A): 394-399.CrossRefPubMed
19.
go back to reference Sambrook J, Fritsch EF, Maniatis T: Molecular cloning: A laboratory manual. 1989, NY: Cold Spring Harbor Laboratory Press: Cold Spring Harbor Laboratory Sambrook J, Fritsch EF, Maniatis T: Molecular cloning: A laboratory manual. 1989, NY: Cold Spring Harbor Laboratory Press: Cold Spring Harbor Laboratory
20.
go back to reference Auer B, Vosberg HP, Buhre U, Klocker H, Hirsch-Kauffmann M, Schweiger M: Intracellular distribution of DNA topoisomerase I in fibroblasts from patients with Fanconi’s anaemia. Hum Genet. 1982, 61 (4): 369-371.CrossRefPubMed Auer B, Vosberg HP, Buhre U, Klocker H, Hirsch-Kauffmann M, Schweiger M: Intracellular distribution of DNA topoisomerase I in fibroblasts from patients with Fanconi’s anaemia. Hum Genet. 1982, 61 (4): 369-371.CrossRefPubMed
21.
go back to reference Kaufmann SH, Svingen PA: Immunoblot analysis and band depletion assays. Methods in Molecular Biology, DNA topoisomerase protocols: DNA topology and enzymes, Volume 94. Edited by: Bjornsti MA, Osheroff N. 1999, Totowa, NJ: Humana Press Inc, 253-268.CrossRef Kaufmann SH, Svingen PA: Immunoblot analysis and band depletion assays. Methods in Molecular Biology, DNA topoisomerase protocols: DNA topology and enzymes, Volume 94. Edited by: Bjornsti MA, Osheroff N. 1999, Totowa, NJ: Humana Press Inc, 253-268.CrossRef
22.
go back to reference Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, Wicha MS: In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 2003, 17 (10): 1253-1270. 10.1101/gad.1061803.CrossRefPubMedPubMedCentral Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, Wicha MS: In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 2003, 17 (10): 1253-1270. 10.1101/gad.1061803.CrossRefPubMedPubMedCentral
23.
go back to reference Grimshaw MJ, Cooper L, Papazisis K, Coleman JA, Bohnenkamp HR, Chiapero-Stanke L, Taylor-Papadimitriou J, Burchell JM: Mammosphere culture of metastatic breast cancer cells enriches for tumorigenic breast cancer cells. Breast Cancer Res. 2008, 10 (3): R52-10.1186/bcr2106.CrossRefPubMedPubMedCentral Grimshaw MJ, Cooper L, Papazisis K, Coleman JA, Bohnenkamp HR, Chiapero-Stanke L, Taylor-Papadimitriou J, Burchell JM: Mammosphere culture of metastatic breast cancer cells enriches for tumorigenic breast cancer cells. Breast Cancer Res. 2008, 10 (3): R52-10.1186/bcr2106.CrossRefPubMedPubMedCentral
24.
go back to reference Wang JC: DNA topoisomerases. Annu Rev Biochem. 1996, 65: 635-692. 10.1146/annurev.bi.65.070196.003223.CrossRefPubMed Wang JC: DNA topoisomerases. Annu Rev Biochem. 1996, 65: 635-692. 10.1146/annurev.bi.65.070196.003223.CrossRefPubMed
25.
go back to reference Turinetto V, Orlando L, Sanchez-Ripoll Y, Kumpfmueller B, Storm MP, Porcedda P, Minieri V, Saviozzi S, Accomasso L, Cibrario Rocchietti E, Moorwood K, Circosta P, Cignetti A, Welham MJ, Giachino C: High basal γH2AX levels sustain self-renewal of mouse embryonic and induced pluripotent stem cells. Stem Cells. 2012, 30 (7): 1414-1423. 10.1002/stem.1133.CrossRefPubMed Turinetto V, Orlando L, Sanchez-Ripoll Y, Kumpfmueller B, Storm MP, Porcedda P, Minieri V, Saviozzi S, Accomasso L, Cibrario Rocchietti E, Moorwood K, Circosta P, Cignetti A, Welham MJ, Giachino C: High basal γH2AX levels sustain self-renewal of mouse embryonic and induced pluripotent stem cells. Stem Cells. 2012, 30 (7): 1414-1423. 10.1002/stem.1133.CrossRefPubMed
26.
go back to reference Han L, Shi S, Gong T, Zhang Z, Sun X: Cancer stem cells: therapeutic implications and perspectives in cancer therapy. Acta Pharm Sin B. 2013, 3 (2): 65-75. 10.1016/j.apsb.2013.02.006.CrossRef Han L, Shi S, Gong T, Zhang Z, Sun X: Cancer stem cells: therapeutic implications and perspectives in cancer therapy. Acta Pharm Sin B. 2013, 3 (2): 65-75. 10.1016/j.apsb.2013.02.006.CrossRef
27.
go back to reference Gerstenfeld LC, Finer MH, Boedtker H: Altered beta-actin gene expression in phorbol myristate acetate-treated chondrocytes and fibroblasts. Mol Cell Biol. 1985, 5 (6): 1425-1433.CrossRefPubMedPubMedCentral Gerstenfeld LC, Finer MH, Boedtker H: Altered beta-actin gene expression in phorbol myristate acetate-treated chondrocytes and fibroblasts. Mol Cell Biol. 1985, 5 (6): 1425-1433.CrossRefPubMedPubMedCentral
28.
go back to reference Kim Y, Sharov AA, McDole K, Cheng M, Hao H, Fan CM, Gaiano N, Ko MS, Zheng Y: Mouse B-type lamins are required for proper organogenesis but not by embryonic stem cells. Science. 2011, 334 (6063): 1706-1710. 10.1126/science.1211222.CrossRefPubMedPubMedCentral Kim Y, Sharov AA, McDole K, Cheng M, Hao H, Fan CM, Gaiano N, Ko MS, Zheng Y: Mouse B-type lamins are required for proper organogenesis but not by embryonic stem cells. Science. 2011, 334 (6063): 1706-1710. 10.1126/science.1211222.CrossRefPubMedPubMedCentral
29.
go back to reference Dechat T, Pfleghaar K, Sengupta K, Shimi T, Shumaker DK, Solimando L, Goldman RD: Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev. 2008, 22 (7): 832-853. 10.1101/gad.1652708.CrossRefPubMedPubMedCentral Dechat T, Pfleghaar K, Sengupta K, Shimi T, Shumaker DK, Solimando L, Goldman RD: Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev. 2008, 22 (7): 832-853. 10.1101/gad.1652708.CrossRefPubMedPubMedCentral
30.
go back to reference Bauer PI, Chen HJ, Kenesi E, Kenessey I, Buki KG, Kirsten E, Hakam A, Hwang JI, Kun E: Molecular interactions between poly(ADP-ribose) polymerase (PARP I) and Topoisomerase I (Topo I): idenification of topology of binding. FEBS Lett. 2001, 506 (3): 239-242. 10.1016/S0014-5793(01)02919-2.CrossRefPubMed Bauer PI, Chen HJ, Kenesi E, Kenessey I, Buki KG, Kirsten E, Hakam A, Hwang JI, Kun E: Molecular interactions between poly(ADP-ribose) polymerase (PARP I) and Topoisomerase I (Topo I): idenification of topology of binding. FEBS Lett. 2001, 506 (3): 239-242. 10.1016/S0014-5793(01)02919-2.CrossRefPubMed
31.
go back to reference Homburg S, Visochek L, Moran N, Dantzer F, Priel E, Asculai E, Schwartz D, Rotter V, Dekel N, Cohen-Armon M: A Fast Signal-induced Activation of Poly ADP-ribose Polymerase: A Novel Downstream Target of Phospholipase C. J Cell Biol. 2000, 150 (2): 293-308. 10.1083/jcb.150.2.293.CrossRefPubMedPubMedCentral Homburg S, Visochek L, Moran N, Dantzer F, Priel E, Asculai E, Schwartz D, Rotter V, Dekel N, Cohen-Armon M: A Fast Signal-induced Activation of Poly ADP-ribose Polymerase: A Novel Downstream Target of Phospholipase C. J Cell Biol. 2000, 150 (2): 293-308. 10.1083/jcb.150.2.293.CrossRefPubMedPubMedCentral
32.
go back to reference Pommier Y, Pourquier P, Fan Y, Strumberg D: Mechanism of action of eukaryotic DNA topoisomerase I and drugs targeted to the enzyme. Biochim Biophys Acta. 1998, 1400 (1–3): 83-105.CrossRefPubMed Pommier Y, Pourquier P, Fan Y, Strumberg D: Mechanism of action of eukaryotic DNA topoisomerase I and drugs targeted to the enzyme. Biochim Biophys Acta. 1998, 1400 (1–3): 83-105.CrossRefPubMed
33.
go back to reference Yung TMC, Sato S, Satoh MS: Poly(ADP-ribosyl)ation as a DNA damage-induced post-translational modification regulating poly(ADP-ribose) polymerase-1-topoisomerase I interaction. J Biol Chem. 2004, 279 (38): 39686-39696. 10.1074/jbc.M402729200.CrossRefPubMed Yung TMC, Sato S, Satoh MS: Poly(ADP-ribosyl)ation as a DNA damage-induced post-translational modification regulating poly(ADP-ribose) polymerase-1-topoisomerase I interaction. J Biol Chem. 2004, 279 (38): 39686-39696. 10.1074/jbc.M402729200.CrossRefPubMed
34.
go back to reference Kraus WL: Transcriptional control by PARP-1: Chromatin modulation, enhancer-binding, coregulation, and insulation. Curr Opin Cell Biol. 2008, 20 (3): 294-302. 10.1016/j.ceb.2008.03.006.CrossRefPubMedPubMedCentral Kraus WL: Transcriptional control by PARP-1: Chromatin modulation, enhancer-binding, coregulation, and insulation. Curr Opin Cell Biol. 2008, 20 (3): 294-302. 10.1016/j.ceb.2008.03.006.CrossRefPubMedPubMedCentral
35.
go back to reference Tricoli JV, Sahai BM, McCormick PJ, Jarlinski SJ, Bertram JS, Kowalski D: DNA topoisomerase I and II activities during cell proliferation and the cell cycle in cultured mouse embryo fibroblast (C3H 10 T1/2) cells. Exp Cell Res. 1985, 158 (1): 1-14. 10.1016/0014-4827(85)90426-4.CrossRefPubMed Tricoli JV, Sahai BM, McCormick PJ, Jarlinski SJ, Bertram JS, Kowalski D: DNA topoisomerase I and II activities during cell proliferation and the cell cycle in cultured mouse embryo fibroblast (C3H 10 T1/2) cells. Exp Cell Res. 1985, 158 (1): 1-14. 10.1016/0014-4827(85)90426-4.CrossRefPubMed
36.
go back to reference Abu-Remaileh M, Gerson A, Farago M, Nathan G, Alkalay I, Zins Rousso S, Gur M, Fainsod A, Bergman Y: Oct-3/4 regulates stem cell identity and cell fate decisions by modulating Wnt/β-catenin signalling. EMBO J. 2010, 29 (19): 3236-3248. 10.1038/emboj.2010.200.CrossRefPubMedPubMedCentral Abu-Remaileh M, Gerson A, Farago M, Nathan G, Alkalay I, Zins Rousso S, Gur M, Fainsod A, Bergman Y: Oct-3/4 regulates stem cell identity and cell fate decisions by modulating Wnt/β-catenin signalling. EMBO J. 2010, 29 (19): 3236-3248. 10.1038/emboj.2010.200.CrossRefPubMedPubMedCentral
37.
go back to reference Zhang F, Rothermund K, Gangadharan SB, Pommier Y, Prochownik EV, Lazo JS: Phenotypic screening reveals topoisomerase I as a breast cancer stem cell therapeutic target. Oncotarget. 2012, 3 (9): 998-1010.CrossRefPubMedPubMedCentral Zhang F, Rothermund K, Gangadharan SB, Pommier Y, Prochownik EV, Lazo JS: Phenotypic screening reveals topoisomerase I as a breast cancer stem cell therapeutic target. Oncotarget. 2012, 3 (9): 998-1010.CrossRefPubMedPubMedCentral
38.
go back to reference Roy A, Tesauro C, Frøhlich R, Hede MS, Nielsen MJ, Kjeldsen E, Bonven B, Stougaard M, Gromova I, Knudsen BR: Decreased camptothecin sensitivity of the stem-cell-like fraction of Caco2 cells correlates with an altered phosphorylation pattern of topoisomerase I. PLoS One. 2014, 9 (6): e99628-10.1371/journal.pone.0099628.CrossRefPubMedPubMedCentral Roy A, Tesauro C, Frøhlich R, Hede MS, Nielsen MJ, Kjeldsen E, Bonven B, Stougaard M, Gromova I, Knudsen BR: Decreased camptothecin sensitivity of the stem-cell-like fraction of Caco2 cells correlates with an altered phosphorylation pattern of topoisomerase I. PLoS One. 2014, 9 (6): e99628-10.1371/journal.pone.0099628.CrossRefPubMedPubMedCentral
39.
go back to reference Sugimoto Y, Tsukahara S, Oh-hara T, Liu LF, Tsuruo T: Elevated expression of DNA topoisomerase II in camptothecin-resistant human tumor cell lines. Cancer Res. 1990, 50 (24): 7962-7965.PubMed Sugimoto Y, Tsukahara S, Oh-hara T, Liu LF, Tsuruo T: Elevated expression of DNA topoisomerase II in camptothecin-resistant human tumor cell lines. Cancer Res. 1990, 50 (24): 7962-7965.PubMed
40.
go back to reference Miao ZH, Player A, Shankavaram U, Wang YH, Zimonjic DB, Lorenzi PL, Liao ZY, Liu H, Shimura T, Zhang HL, Meng LH, Zhang YW, Kawasaki ES, Popescu NC, Aladjem MI, Goldstein DJ, Weinstein JN, Pommier Y: Nonclassic functions of human Topoisomerase I: Genome-wide and pharmacologic analyses. Cancer Res. 2007, 67 (18): 8752-8761. 10.1158/0008-5472.CAN-06-4554.CrossRefPubMed Miao ZH, Player A, Shankavaram U, Wang YH, Zimonjic DB, Lorenzi PL, Liao ZY, Liu H, Shimura T, Zhang HL, Meng LH, Zhang YW, Kawasaki ES, Popescu NC, Aladjem MI, Goldstein DJ, Weinstein JN, Pommier Y: Nonclassic functions of human Topoisomerase I: Genome-wide and pharmacologic analyses. Cancer Res. 2007, 67 (18): 8752-8761. 10.1158/0008-5472.CAN-06-4554.CrossRefPubMed
41.
go back to reference Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, Lander ES: Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009, 138 (4): 645-659. 10.1016/j.cell.2009.06.034.CrossRefPubMedPubMedCentral Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, Lander ES: Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009, 138 (4): 645-659. 10.1016/j.cell.2009.06.034.CrossRefPubMedPubMedCentral
42.
go back to reference Lee E, Lim SJ: The association of increased lung resistance protein expression with acquired etoposide resistance in human H460 lung cancer cell lines. Arch Pharm Res. 2006, 29 (11): 1018-1023. 10.1007/BF02969286.CrossRefPubMed Lee E, Lim SJ: The association of increased lung resistance protein expression with acquired etoposide resistance in human H460 lung cancer cell lines. Arch Pharm Res. 2006, 29 (11): 1018-1023. 10.1007/BF02969286.CrossRefPubMed
43.
go back to reference Selever J, Gu G, Lewis MT, Beyer A, Herynk MH, Covington KR, Tsimelzon A, Dontu G, Provost P, Di Pietro A, Boumendjel A, Albain K, Miele L, Weiss H, Barone I, Ando S, Fuqua SA: Dicer-mediated upregulation of BCRP confers tamoxifen resistance in human breast cancer cells. Clin Cancer Res. 2011, 17 (20): 6510-6521. 10.1158/1078-0432.CCR-11-1403.CrossRefPubMedPubMedCentral Selever J, Gu G, Lewis MT, Beyer A, Herynk MH, Covington KR, Tsimelzon A, Dontu G, Provost P, Di Pietro A, Boumendjel A, Albain K, Miele L, Weiss H, Barone I, Ando S, Fuqua SA: Dicer-mediated upregulation of BCRP confers tamoxifen resistance in human breast cancer cells. Clin Cancer Res. 2011, 17 (20): 6510-6521. 10.1158/1078-0432.CCR-11-1403.CrossRefPubMedPubMedCentral
44.
45.
go back to reference Yang CH, Huang CJ, Yang CS, Chu YC, Cheng AL, Whang-Peng J, Yang PC: Gefitinib reverses chemotherapy resistance in gefitinib-insensitive multidrug resistant cancer cells expressing ATP-binding cassette family protein. Cancer Res. 2005, 65 (15): 6943-6949. 10.1158/0008-5472.CAN-05-0641.CrossRefPubMed Yang CH, Huang CJ, Yang CS, Chu YC, Cheng AL, Whang-Peng J, Yang PC: Gefitinib reverses chemotherapy resistance in gefitinib-insensitive multidrug resistant cancer cells expressing ATP-binding cassette family protein. Cancer Res. 2005, 65 (15): 6943-6949. 10.1158/0008-5472.CAN-05-0641.CrossRefPubMed
46.
go back to reference Yanase K, Tsukahara S, Asada S, Ishikawa E, Imai Y, Sugimoto Y: Gefitinib reverses breast cancer resistance protein-mediated drug resistance. Mol Cancer Ther. 2004, 3 (9): 1119-1125.PubMed Yanase K, Tsukahara S, Asada S, Ishikawa E, Imai Y, Sugimoto Y: Gefitinib reverses breast cancer resistance protein-mediated drug resistance. Mol Cancer Ther. 2004, 3 (9): 1119-1125.PubMed
47.
go back to reference Shi Z, Peng XX, Kim IW, Shukla S, Si QS, Robey RW, Bates SE, Shen T, Ashby CR, Fu LW, Ambudkar SV, Chen ZS: Erlotinib (Tarceva, OSI-774) antagonizes ATP-binding cassette subfamily B member 1 and ATP-binding cassette subfamily G member 2-mediated drug resistance. Cancer Res. 2007, 67 (22): 11012-11020. 10.1158/0008-5472.CAN-07-2686.CrossRefPubMed Shi Z, Peng XX, Kim IW, Shukla S, Si QS, Robey RW, Bates SE, Shen T, Ashby CR, Fu LW, Ambudkar SV, Chen ZS: Erlotinib (Tarceva, OSI-774) antagonizes ATP-binding cassette subfamily B member 1 and ATP-binding cassette subfamily G member 2-mediated drug resistance. Cancer Res. 2007, 67 (22): 11012-11020. 10.1158/0008-5472.CAN-07-2686.CrossRefPubMed
48.
go back to reference Marchetti S, de Vries NA, Buckle T, Bolijn MJ, van Eijndhoven MA, Beijnen JH, Mazzanti R, van Tellingen O, Schellens JH: Effect of the ATP-binding cassette drug transporters ABCB1, ABCG2, and ABCC2 on erlotinib hydrochloride (Tarceva) disposition in in vitro and in vivo pharmacokinetic studies employing Bcrp1−/−/Mdr1a/1b−/− (triple-knockout) and wild-type mice. Mol Cancer Ther. 2008, 7 (8): 2280-2287. 10.1158/1535-7163.MCT-07-2250.CrossRefPubMed Marchetti S, de Vries NA, Buckle T, Bolijn MJ, van Eijndhoven MA, Beijnen JH, Mazzanti R, van Tellingen O, Schellens JH: Effect of the ATP-binding cassette drug transporters ABCB1, ABCG2, and ABCC2 on erlotinib hydrochloride (Tarceva) disposition in in vitro and in vivo pharmacokinetic studies employing Bcrp1−/−/Mdr1a/1b−/− (triple-knockout) and wild-type mice. Mol Cancer Ther. 2008, 7 (8): 2280-2287. 10.1158/1535-7163.MCT-07-2250.CrossRefPubMed
Metadata
Title
Modification of topoisomerases in mammospheres derived from breast cancer cell line: clinical implications for combined treatments with tyrosine kinase inhibitors
Authors
Refael Peleg
Marianna Romzova
Inga Kogan-Zviagin
Ron N Apte
Esther Priel
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2014
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-14-910

Other articles of this Issue 1/2014

BMC Cancer 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine