Skip to main content
Top
Published in: BMC Cancer 1/2014

Open Access 01-12-2014 | Research article

RNA-binding protein RNPC1: acting as a tumor suppressor in breast cancer

Authors: Jin-Qiu Xue, Tian-Song Xia, Xiu-Qing Liang, Wenbin Zhou, Lin Cheng, Liang Shi, Ying Wang, Qiang Ding

Published in: BMC Cancer | Issue 1/2014

Login to get access

Abstract

Background

RNA binding proteins (RBPs) play a fundamental role in posttranscriptional control of gene expression. Different RBPs have oncogenic or tumor-suppressive functions on human cancers. RNPC1 belongs to the RNA recognition motif (RRM) family of RBPs, which could regulate expression of diverse targets by mRNA stability in human cancer cells. Several studies reported that RNPC1 played an important role in cancer, mostly acting as an oncogene or up-regulating in tumors. However, its role in human breast cancer remains unclear.

Methods

In the present study, we investigated the functional and mechanistic roles of RNPC1 in attenuating invasive signal including reverse epithelial-mesenchymal transition (EMT) to inhibit breast cancer cells aggressiveness in vitro. Moreover, RNPC1 suppress tumorigenicity in vivo. Further, we studied the expression of RNPC1 in breast cancer tissue and adjacent normal breast tissue by quantitative RT-PCR (qRT-PCR) and Western blot.

Results

We observed that RNPC1 expression was silenced in breast cancer cell lines compared to breast epithelial cells. More important, RNPC1 was frequently silenced in breast cancer tissue compared to adjacent normal breast tissue. Low RNPC1 mRNA expression was associated with higher clinical stages and mutp53, while low level of RNPC1 protein was associated with higher lymph node metastasis, mutp53 and lower progesterone receptor (PR). Functional assays showed ectopic expression of RNPC1 could inhibit breast tumor cell proliferation in vivo and in vitro through inducing cell cycle arrest, and further suppress tumor cell migration and invasion partly through repressing mutant p53 (mutp53) induced EMT.

Conclusions

Overall, our findings indicated that RNPC1 had a potential function to play a tumor-suppressor role which may be a potential marker in the therapeutic and prognostic of breast cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Smith RA, Cokkinides V, Brooks D, Saslow D, Brawley OW: Cancer screening in the United States, 2010 A Review of Current American Cancer Society Guidelines and Issues in Cancer Screening. CA Cancer J Clin. 2010, 60 (2): 99-119. 10.3322/caac.20063.CrossRefPubMed Smith RA, Cokkinides V, Brooks D, Saslow D, Brawley OW: Cancer screening in the United States, 2010 A Review of Current American Cancer Society Guidelines and Issues in Cancer Screening. CA Cancer J Clin. 2010, 60 (2): 99-119. 10.3322/caac.20063.CrossRefPubMed
2.
go back to reference Siegel R, Naishadham D, Jemal A: Cancer statistics, 2013. CA Cancer J Clin. 2013, 63 (1): 11-30. 10.3322/caac.21166.CrossRefPubMed Siegel R, Naishadham D, Jemal A: Cancer statistics, 2013. CA Cancer J Clin. 2013, 63 (1): 11-30. 10.3322/caac.21166.CrossRefPubMed
3.
go back to reference Feinberg AP, Tycko B: The history of cancer epigenetics. Nat Rev Cancer. 2004, 4 (2): 143-153. 10.1038/nrc1279.CrossRefPubMed Feinberg AP, Tycko B: The history of cancer epigenetics. Nat Rev Cancer. 2004, 4 (2): 143-153. 10.1038/nrc1279.CrossRefPubMed
4.
go back to reference Kim MY, Hur J, Jeong S: Emerging roles of RNA and RNA-binding protein network in cancer cells. BMB Rep. 2009, 42 (3): 125-130. 10.5483/BMBRep.2009.42.3.125.CrossRefPubMed Kim MY, Hur J, Jeong S: Emerging roles of RNA and RNA-binding protein network in cancer cells. BMB Rep. 2009, 42 (3): 125-130. 10.5483/BMBRep.2009.42.3.125.CrossRefPubMed
5.
go back to reference Krecic AM, Swanson MS: hnRNP complexes: composition, structure, and function. Curr Opin Cell Biol. 1999, 11 (3): 363-371. 10.1016/S0955-0674(99)80051-9.CrossRefPubMed Krecic AM, Swanson MS: hnRNP complexes: composition, structure, and function. Curr Opin Cell Biol. 1999, 11 (3): 363-371. 10.1016/S0955-0674(99)80051-9.CrossRefPubMed
6.
go back to reference Dreyfuss G, Matunis MJ, Pinol-Roma S, Burd CG: hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem. 1993, 62: 289-321. 10.1146/annurev.bi.62.070193.001445.CrossRefPubMed Dreyfuss G, Matunis MJ, Pinol-Roma S, Burd CG: hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem. 1993, 62: 289-321. 10.1146/annurev.bi.62.070193.001445.CrossRefPubMed
7.
go back to reference Audic Y, Hartley RS: Post-transcriptional regulation in cancer. Biol Cell. 2004, 96 (7): 479-498. 10.1016/j.biolcel.2004.05.002.CrossRefPubMed Audic Y, Hartley RS: Post-transcriptional regulation in cancer. Biol Cell. 2004, 96 (7): 479-498. 10.1016/j.biolcel.2004.05.002.CrossRefPubMed
8.
go back to reference Yisraeli JK: VICKZ proteins: a multi-talented family of regulatory RNA-binding proteins. Biol Cell. 2005, 97 (1): 87-96. 10.1042/BC20040151.CrossRefPubMed Yisraeli JK: VICKZ proteins: a multi-talented family of regulatory RNA-binding proteins. Biol Cell. 2005, 97 (1): 87-96. 10.1042/BC20040151.CrossRefPubMed
9.
go back to reference Li HJ, Watford W, Li CL, Parmelee A, Bryant MA, Deng CX, O'Shea J, Lee SB: Ewing sarcoma gene EWS is essential for meiosis and B lymphocyte development. J Clin Invest. 2007, 117 (5): 1314-1323. 10.1172/JCI31222.CrossRefPubMedPubMedCentral Li HJ, Watford W, Li CL, Parmelee A, Bryant MA, Deng CX, O'Shea J, Lee SB: Ewing sarcoma gene EWS is essential for meiosis and B lymphocyte development. J Clin Invest. 2007, 117 (5): 1314-1323. 10.1172/JCI31222.CrossRefPubMedPubMedCentral
10.
go back to reference Sonenberg N, Hinnebusch AG: New modes of translational control in development, behavior, and disease. Mol Cell. 2007, 28 (5): 721-729. 10.1016/j.molcel.2007.11.018.CrossRefPubMed Sonenberg N, Hinnebusch AG: New modes of translational control in development, behavior, and disease. Mol Cell. 2007, 28 (5): 721-729. 10.1016/j.molcel.2007.11.018.CrossRefPubMed
11.
go back to reference Shu L, Yan W, Chen X: RNPC1, an RNA-binding protein and a target of the p53 family, is required for maintaining the stability of the basal and stress-induced p21 transcript. Genes Dev. 2006, 20 (21): 2961-2972. 10.1101/gad.1463306.CrossRefPubMedPubMedCentral Shu L, Yan W, Chen X: RNPC1, an RNA-binding protein and a target of the p53 family, is required for maintaining the stability of the basal and stress-induced p21 transcript. Genes Dev. 2006, 20 (21): 2961-2972. 10.1101/gad.1463306.CrossRefPubMedPubMedCentral
12.
go back to reference Yan W, Zhang J, Zhang Y, Jung YS, Chen X: p73 expression is regulated by RNPC1, a target of the p53 family, via mRNA stability. Mol Cell Biol. 2012, 32 (13): 2336-2348. 10.1128/MCB.00215-12.CrossRefPubMedPubMedCentral Yan W, Zhang J, Zhang Y, Jung YS, Chen X: p73 expression is regulated by RNPC1, a target of the p53 family, via mRNA stability. Mol Cell Biol. 2012, 32 (13): 2336-2348. 10.1128/MCB.00215-12.CrossRefPubMedPubMedCentral
13.
go back to reference Cho SJ, Zhang J, Chen X: RNPC1 modulates the RNA-binding activity of, and cooperates with, HuR to regulate p21 mRNA stability. Nucleic Acids Res. 2010, 38 (7): 2256-2267. 10.1093/nar/gkp1229.CrossRefPubMedPubMedCentral Cho SJ, Zhang J, Chen X: RNPC1 modulates the RNA-binding activity of, and cooperates with, HuR to regulate p21 mRNA stability. Nucleic Acids Res. 2010, 38 (7): 2256-2267. 10.1093/nar/gkp1229.CrossRefPubMedPubMedCentral
14.
go back to reference Yin T, Cho SJ, Chen X: RNPC1, an RNA-binding protein and a p53 target, regulates macrophage inhibitory cytokine-1 (MIC-1) expression through mRNA stability. J Biol Chem. 2013, 288 (33): 23680-23686. 10.1074/jbc.M113.480186.CrossRefPubMedPubMedCentral Yin T, Cho SJ, Chen X: RNPC1, an RNA-binding protein and a p53 target, regulates macrophage inhibitory cytokine-1 (MIC-1) expression through mRNA stability. J Biol Chem. 2013, 288 (33): 23680-23686. 10.1074/jbc.M113.480186.CrossRefPubMedPubMedCentral
15.
go back to reference Zhang J, Jun Cho S, Chen X: RNPC1, an RNA-binding protein and a target of the p53 family, regulates p63 expression through mRNA stability. Proc Natl Acad Sci U S A. 2010, 107 (21): 9614-9619. 10.1073/pnas.0912594107.CrossRefPubMedPubMedCentral Zhang J, Jun Cho S, Chen X: RNPC1, an RNA-binding protein and a target of the p53 family, regulates p63 expression through mRNA stability. Proc Natl Acad Sci U S A. 2010, 107 (21): 9614-9619. 10.1073/pnas.0912594107.CrossRefPubMedPubMedCentral
16.
go back to reference Xu E, Zhang J, Chen X: MDM2 expression is repressed by the RNA-binding protein RNPC1 via mRNA stability. Oncogene. 2013, 32 (17): 2169-2178. 10.1038/onc.2012.238.CrossRefPubMed Xu E, Zhang J, Chen X: MDM2 expression is repressed by the RNA-binding protein RNPC1 via mRNA stability. Oncogene. 2013, 32 (17): 2169-2178. 10.1038/onc.2012.238.CrossRefPubMed
17.
go back to reference Zhang J, Cho SJ, Shu L, Yan W, Guerrero T, Kent M, Skorupski K, Chen H, Chen X: Translational repression of p53 by RNPC1, a p53 target overexpressed in lymphomas. Genes Dev. 2011, 25 (14): 1528-1543. 10.1101/gad.2069311.CrossRefPubMedPubMedCentral Zhang J, Cho SJ, Shu L, Yan W, Guerrero T, Kent M, Skorupski K, Chen H, Chen X: Translational repression of p53 by RNPC1, a p53 target overexpressed in lymphomas. Genes Dev. 2011, 25 (14): 1528-1543. 10.1101/gad.2069311.CrossRefPubMedPubMedCentral
18.
go back to reference Miyamoto S, Hidaka K, Jin D, Morisaki T: RNA-binding proteins Rbm38 and Rbm24 regulate myogenic differentiation via p21-dependent and -independent regulatory pathways. Genes Cells. 2009, 14 (11): 1241-1252. 10.1111/j.1365-2443.2009.01347.x.CrossRefPubMed Miyamoto S, Hidaka K, Jin D, Morisaki T: RNA-binding proteins Rbm38 and Rbm24 regulate myogenic differentiation via p21-dependent and -independent regulatory pathways. Genes Cells. 2009, 14 (11): 1241-1252. 10.1111/j.1365-2443.2009.01347.x.CrossRefPubMed
19.
go back to reference Zheng SL, Xu JF, Isaacs SD, Wiley K, Chang BL, Bleecker ER, Walsh PC, Trent JM, Meyers DA, Isaacs WB: Evidence for a prostate cancer linkage to chromosome 20 in 159 hereditary prostate cancer families. Hum Genet. 2001, 108 (5): 430-435. 10.1007/s004390100513.CrossRefPubMed Zheng SL, Xu JF, Isaacs SD, Wiley K, Chang BL, Bleecker ER, Walsh PC, Trent JM, Meyers DA, Isaacs WB: Evidence for a prostate cancer linkage to chromosome 20 in 159 hereditary prostate cancer families. Hum Genet. 2001, 108 (5): 430-435. 10.1007/s004390100513.CrossRefPubMed
20.
go back to reference Bar-Shira A, Pinthus JH, Rozovsky U, Goldstein M, Sellers WR, Yaron Y, Eshhar Z, Orr-Urtreger A: Multiple genes in human 20q13 chromosomal region are involved in an advanced prostate cancer xenograft. Cancer Res. 2002, 62 (23): 6803-6807.PubMed Bar-Shira A, Pinthus JH, Rozovsky U, Goldstein M, Sellers WR, Yaron Y, Eshhar Z, Orr-Urtreger A: Multiple genes in human 20q13 chromosomal region are involved in an advanced prostate cancer xenograft. Cancer Res. 2002, 62 (23): 6803-6807.PubMed
21.
go back to reference Tanner MM, Grenman S, Koul A, Johannsson O, Meltzer P, Pejovic T, Borg A, Isola JJ: Frequent amplification of chromosomal region 20q12-q13 in ovarian cancer. Genes Cells. 2000, 6 (5): 1833-1839. Tanner MM, Grenman S, Koul A, Johannsson O, Meltzer P, Pejovic T, Borg A, Isola JJ: Frequent amplification of chromosomal region 20q12-q13 in ovarian cancer. Genes Cells. 2000, 6 (5): 1833-1839.
22.
go back to reference Korn WM, Yasutake T, Kuo WL, Warren RS, Collins C, Tomita M, Gray J, Waldman FM: Chromosome arm 20q gains and other genomic alterations in colorectal cancer metastatic to liver, as analyzed by comparative genomic hybridization and fluorescence in situ hybridization. Genes Chromosomes Cancer. 1999, 25 (2): 82-90. 10.1002/(SICI)1098-2264(199906)25:2<82::AID-GCC2>3.0.CO;2-6.CrossRefPubMed Korn WM, Yasutake T, Kuo WL, Warren RS, Collins C, Tomita M, Gray J, Waldman FM: Chromosome arm 20q gains and other genomic alterations in colorectal cancer metastatic to liver, as analyzed by comparative genomic hybridization and fluorescence in situ hybridization. Genes Chromosomes Cancer. 1999, 25 (2): 82-90. 10.1002/(SICI)1098-2264(199906)25:2<82::AID-GCC2>3.0.CO;2-6.CrossRefPubMed
23.
go back to reference Knosel T, Schluns K, Stein U, Schwabe H, Schlag PM, Dietel M, Petersen I: Genetic imbalances with impact on survival in colorectal cancer patients. Histopathology. 2003, 43 (4): 323-331. 10.1046/j.1365-2559.2003.01720.x.CrossRefPubMed Knosel T, Schluns K, Stein U, Schwabe H, Schlag PM, Dietel M, Petersen I: Genetic imbalances with impact on survival in colorectal cancer patients. Histopathology. 2003, 43 (4): 323-331. 10.1046/j.1365-2559.2003.01720.x.CrossRefPubMed
24.
go back to reference Krackhardt AM, Witzens M, Harig S, Hodi FS, Zauls AJ, Chessia M, Barrett P, Gribben JG: Identification of tumor-associated antigens in chronic lymphocytic leukemia by SEREX. Blood. 2002, 100 (6): 2123-2131. 10.1182/blood-2002-02-0513.CrossRefPubMed Krackhardt AM, Witzens M, Harig S, Hodi FS, Zauls AJ, Chessia M, Barrett P, Gribben JG: Identification of tumor-associated antigens in chronic lymphocytic leukemia by SEREX. Blood. 2002, 100 (6): 2123-2131. 10.1182/blood-2002-02-0513.CrossRefPubMed
25.
go back to reference Carvalho B, Postma C, Mongera S, Hopmans E, Diskin S, van de Wiel MA, van Criekinge W, Thas O, Matthaei A, Cuesta MA, Droste JST, Craanen M, Schroeck E, Ylstra B, Meijer GA: Multiple putative oncogenes at the chromosome 20q amplicon contribute to colorectal adenoma to carcinoma progression. Gut. 2009, 58 (1): 79-89. 10.1136/gut.2007.143065.CrossRefPubMed Carvalho B, Postma C, Mongera S, Hopmans E, Diskin S, van de Wiel MA, van Criekinge W, Thas O, Matthaei A, Cuesta MA, Droste JST, Craanen M, Schroeck E, Ylstra B, Meijer GA: Multiple putative oncogenes at the chromosome 20q amplicon contribute to colorectal adenoma to carcinoma progression. Gut. 2009, 58 (1): 79-89. 10.1136/gut.2007.143065.CrossRefPubMed
26.
go back to reference Hotte GJ, Linam-Lennon N, Reynolds JV, Maher SG: Radiation sensitivity of esophageal adenocarcinoma: the contribution of the RNA-binding protein RNPC1 and p21-mediated cell cycle arrest to radioresistance. Radiat Res. 2012, 177 (3): 272-279. 10.1667/RR2776.1.CrossRefPubMed Hotte GJ, Linam-Lennon N, Reynolds JV, Maher SG: Radiation sensitivity of esophageal adenocarcinoma: the contribution of the RNA-binding protein RNPC1 and p21-mediated cell cycle arrest to radioresistance. Radiat Res. 2012, 177 (3): 272-279. 10.1667/RR2776.1.CrossRefPubMed
27.
go back to reference Ginestier C, Cervera N, Finetti P, Esteyries S, Esterni B, Adelaide J, Xerri L, Viens P, Jacquemier J, Charafe-Jauffret E, Chaffanet M, Birnbaum D, Bertucci F: Prognosis and gene expression profiling of 20q13-amplified breast cancers. Clin Cancer Res. 2006, 12 (15): 4533-4544. 10.1158/1078-0432.CCR-05-2339.CrossRefPubMed Ginestier C, Cervera N, Finetti P, Esteyries S, Esterni B, Adelaide J, Xerri L, Viens P, Jacquemier J, Charafe-Jauffret E, Chaffanet M, Birnbaum D, Bertucci F: Prognosis and gene expression profiling of 20q13-amplified breast cancers. Clin Cancer Res. 2006, 12 (15): 4533-4544. 10.1158/1078-0432.CCR-05-2339.CrossRefPubMed
28.
go back to reference Letessier A, Sircoulomb F, Ginestier C, Cervera N, Monville F, Gelsi-Boyer V, Esterni B, Geneix J, Finetti P, Zemmour C, Viens P, Charafe-Jauffret E, Jacquemier J, Birnbaum D, Chaffanet M: Frequency, prognostic impact, and subtype association of 8p12, 8q24, 11q13, 12p13, 17q12, and 20q13 amplifications in breast cancers. BMC Cancer. 2006, 6 (1): 245-10.1186/1471-2407-6-245.CrossRefPubMedPubMedCentral Letessier A, Sircoulomb F, Ginestier C, Cervera N, Monville F, Gelsi-Boyer V, Esterni B, Geneix J, Finetti P, Zemmour C, Viens P, Charafe-Jauffret E, Jacquemier J, Birnbaum D, Chaffanet M: Frequency, prognostic impact, and subtype association of 8p12, 8q24, 11q13, 12p13, 17q12, and 20q13 amplifications in breast cancers. BMC Cancer. 2006, 6 (1): 245-10.1186/1471-2407-6-245.CrossRefPubMedPubMedCentral
29.
go back to reference Feldstein O, Ben-Hamo R, Bashari D, Efroni S, Ginsberg D: RBM38 is a direct transcriptional target of E2F1 that limits E2F1-induced proliferation. Mol Cancer Res. 2012, 10 (9): 1169-1177. 10.1158/1541-7786.MCR-12-0331.CrossRefPubMed Feldstein O, Ben-Hamo R, Bashari D, Efroni S, Ginsberg D: RBM38 is a direct transcriptional target of E2F1 that limits E2F1-induced proliferation. Mol Cancer Res. 2012, 10 (9): 1169-1177. 10.1158/1541-7786.MCR-12-0331.CrossRefPubMed
30.
go back to reference Leveille N, Elkon R, Davalos V, Manoharan V, Hollingworth D, Oude Vrielink J, le Sage C, Melo CA, Horlings HM, Wesseling J, Ule J, Esteller M, Ramos A, Agami R: Selective inhibition of microRNA accessibility by RBM38 is required for p53 activity. Nat Commun. 2011, 2: 513-CrossRefPubMedPubMedCentral Leveille N, Elkon R, Davalos V, Manoharan V, Hollingworth D, Oude Vrielink J, le Sage C, Melo CA, Horlings HM, Wesseling J, Ule J, Esteller M, Ramos A, Agami R: Selective inhibition of microRNA accessibility by RBM38 is required for p53 activity. Nat Commun. 2011, 2: 513-CrossRefPubMedPubMedCentral
31.
go back to reference Zheng MJ, Wang J, Chen YW, Xu L, Xue DD, Fu W, Zhang YF, Du Q, Zhao Y, Ling LJ, Ding Q, Liu XA, Zha XM, Zheng W, Xia TS, Wang S: A novel mouse model of gastric cancer with human gastric microenvironment. Cancer Lett. 2012, 325 (1): 108-115. 10.1016/j.canlet.2012.06.011.CrossRefPubMed Zheng MJ, Wang J, Chen YW, Xu L, Xue DD, Fu W, Zhang YF, Du Q, Zhao Y, Ling LJ, Ding Q, Liu XA, Zha XM, Zheng W, Xia TS, Wang S: A novel mouse model of gastric cancer with human gastric microenvironment. Cancer Lett. 2012, 325 (1): 108-115. 10.1016/j.canlet.2012.06.011.CrossRefPubMed
32.
go back to reference Pan H, Zhou W, He W, Liu X, Ding Q, Ling L, Zha X, Wang S: Genistein inhibits MDA-MB-231 triple-negative breast cancer cell growth by inhibiting NF-kappaB activity via the Notch-1 pathway. Int J Mol Med. 2012, 30 (2): 337-343.PubMed Pan H, Zhou W, He W, Liu X, Ding Q, Ling L, Zha X, Wang S: Genistein inhibits MDA-MB-231 triple-negative breast cancer cell growth by inhibiting NF-kappaB activity via the Notch-1 pathway. Int J Mol Med. 2012, 30 (2): 337-343.PubMed
33.
go back to reference Colburn NH, Bruegge WF, Bates JR, Gray RH, Rossen JD, Kelsey WH, Shimada T: Correlation of anchorage-independent growth with tumorigenicity of chemically transformed mouse epidermal cells. Cancer Res. 1978, 38 (3): 624-634.PubMed Colburn NH, Bruegge WF, Bates JR, Gray RH, Rossen JD, Kelsey WH, Shimada T: Correlation of anchorage-independent growth with tumorigenicity of chemically transformed mouse epidermal cells. Cancer Res. 1978, 38 (3): 624-634.PubMed
34.
go back to reference Evan GI, Vousden KH: Proliferation, cell cycle and apoptosis in cancer. Nature. 2001, 411 (6835): 342-348. 10.1038/35077213.CrossRefPubMed Evan GI, Vousden KH: Proliferation, cell cycle and apoptosis in cancer. Nature. 2001, 411 (6835): 342-348. 10.1038/35077213.CrossRefPubMed
35.
go back to reference Cho SJ, Jung YS, Zhang J, Chen X: The RNA-binding protein RNPC1 stabilizes the mRNA encoding the RNA-binding protein HuR and cooperates with HuR to suppress cell proliferation. J Biol Chem. 2012, 287 (18): 14535-14544. 10.1074/jbc.M111.326827.CrossRefPubMedPubMedCentral Cho SJ, Jung YS, Zhang J, Chen X: The RNA-binding protein RNPC1 stabilizes the mRNA encoding the RNA-binding protein HuR and cooperates with HuR to suppress cell proliferation. J Biol Chem. 2012, 287 (18): 14535-14544. 10.1074/jbc.M111.326827.CrossRefPubMedPubMedCentral
36.
go back to reference Stetler-Stevenson WG, Aznavoorian S, Liotta LA: Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol. 1993, 9: 541-573. 10.1146/annurev.cb.09.110193.002545.CrossRefPubMed Stetler-Stevenson WG, Aznavoorian S, Liotta LA: Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol. 1993, 9: 541-573. 10.1146/annurev.cb.09.110193.002545.CrossRefPubMed
37.
go back to reference Thiery JP, Sleeman JP: Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006, 7 (2): 131-142. 10.1038/nrm1835.CrossRefPubMed Thiery JP, Sleeman JP: Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006, 7 (2): 131-142. 10.1038/nrm1835.CrossRefPubMed
38.
go back to reference Kang Y, Massague J: Epithelial-mesenchymal transitions: twist in development and metastasis. Cell. 2004, 118 (3): 277-279. 10.1016/j.cell.2004.07.011.CrossRefPubMed Kang Y, Massague J: Epithelial-mesenchymal transitions: twist in development and metastasis. Cell. 2004, 118 (3): 277-279. 10.1016/j.cell.2004.07.011.CrossRefPubMed
39.
go back to reference Simian M, Hirai Y, Navre M, Werb Z, Lochter A, Bissell MJ: The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells. Development. 2001, 128 (16): 3117-3131.PubMedPubMedCentral Simian M, Hirai Y, Navre M, Werb Z, Lochter A, Bissell MJ: The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells. Development. 2001, 128 (16): 3117-3131.PubMedPubMedCentral
40.
41.
go back to reference Brosh R, Rotter V: When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer. 2009, 9 (10): 701-713.PubMed Brosh R, Rotter V: When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer. 2009, 9 (10): 701-713.PubMed
42.
go back to reference Bartek J, Iggo R, Gannon J, Lane DP: Genetic and immunochemical analysis of mutant p53 in human breast cancer cell lines. Oncogene. 1990, 5 (6): 893-899.PubMed Bartek J, Iggo R, Gannon J, Lane DP: Genetic and immunochemical analysis of mutant p53 in human breast cancer cell lines. Oncogene. 1990, 5 (6): 893-899.PubMed
43.
go back to reference Maslon MM, Hupp TR: Drug discovery and mutant p53. Trends Cell Biol. 2010, 20 (9): 542-555. 10.1016/j.tcb.2010.06.005.CrossRefPubMed Maslon MM, Hupp TR: Drug discovery and mutant p53. Trends Cell Biol. 2010, 20 (9): 542-555. 10.1016/j.tcb.2010.06.005.CrossRefPubMed
44.
go back to reference Wang SP, Wang WL, Chang YL, Wu CT, Chao YC, Kao SH, Yuan A, Lin CW, Yang SC, Chan WK, Li KC, Hong TM, Yang PC: p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nat Cell Biol. 2009, 11 (6): 694-704. 10.1038/ncb1875.CrossRefPubMed Wang SP, Wang WL, Chang YL, Wu CT, Chao YC, Kao SH, Yuan A, Lin CW, Yang SC, Chan WK, Li KC, Hong TM, Yang PC: p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nat Cell Biol. 2009, 11 (6): 694-704. 10.1038/ncb1875.CrossRefPubMed
45.
go back to reference Kogan-Sakin I, Tabach Y, Buganim Y, Molchadsky A, Solomon H, Madar S, Kamer I, Stambolsky P, Shelly A, Goldfinger N, Valsesia-Wittmann S, Puisieux A, Zundelevich A, Gal-Yam EN, Avivi C, Barshack I, Brait M, Sidransky D, Domany E, Rotter V: Mutant p53(R175H) upregulates Twist1 expression and promotes epithelial-mesenchymal transition in immortalized prostate cells. Cell Death Differ. 2011, 18 (2): 271-281. 10.1038/cdd.2010.94.CrossRefPubMed Kogan-Sakin I, Tabach Y, Buganim Y, Molchadsky A, Solomon H, Madar S, Kamer I, Stambolsky P, Shelly A, Goldfinger N, Valsesia-Wittmann S, Puisieux A, Zundelevich A, Gal-Yam EN, Avivi C, Barshack I, Brait M, Sidransky D, Domany E, Rotter V: Mutant p53(R175H) upregulates Twist1 expression and promotes epithelial-mesenchymal transition in immortalized prostate cells. Cell Death Differ. 2011, 18 (2): 271-281. 10.1038/cdd.2010.94.CrossRefPubMed
Metadata
Title
RNA-binding protein RNPC1: acting as a tumor suppressor in breast cancer
Authors
Jin-Qiu Xue
Tian-Song Xia
Xiu-Qing Liang
Wenbin Zhou
Lin Cheng
Liang Shi
Ying Wang
Qiang Ding
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2014
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-14-322

Other articles of this Issue 1/2014

BMC Cancer 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine