Skip to main content
Top
Published in: BMC Cancer 1/2013

Open Access 01-12-2013 | Research article

Sensitization of human cancer cells to gemcitabine by the Chk1 inhibitor MK-8776: cell cycle perturbation and impact of administration schedule in vitro and in vivo

Authors: Ryan Montano, Ruth Thompson, Injae Chung, Huagang Hou, Nadeem Khan, Alan Eastman

Published in: BMC Cancer | Issue 1/2013

Login to get access

Abstract

Background

Chk1 inhibitors have emerged as promising anticancer therapeutic agents particularly when combined with antimetabolites such as gemcitabine, cytarabine or hydroxyurea. Here, we address the importance of appropriate drug scheduling when gemcitabine is combined with the Chk1 inhibitor MK-8776, and the mechanisms involved in the schedule dependence.

Methods

Growth inhibition induced by gemcitabine plus MK-8776 was assessed across multiple cancer cell lines. Experiments used clinically relevant “bolus” administration of both drugs rather than continuous drug exposures. We assessed the effect of different treatment schedules on cell cycle perturbation and tumor cell growth in vitro and in xenograft tumor models.

Results

MK-8776 induced an average 7-fold sensitization to gemcitabine in 16 cancer cell lines. The time of MK-8776 administration significantly affected the response of tumor cells to gemcitabine. Although gemcitabine induced rapid cell cycle arrest, the stalled replication forks were not initially dependent on Chk1 for stability. By 18 h, RAD51 was loaded onto DNA indicative of homologous recombination. Inhibition of Chk1 at 18 h rapidly dissociated RAD51 leading to the collapse of replication forks and cell death. Addition of MK-8776 from 18–24 h after a 6-h incubation with gemcitabine induced much greater sensitization than if the two drugs were incubated concurrently for 6 h. The ability of this short incubation with MK-8776 to sensitize cells is critical because of the short half-life of MK-8776 in patients’ plasma. Cell cycle perturbation was also assessed in human pancreas tumor xenografts in mice. There was a dramatic accumulation of cells in S/G2 phase 18 h after gemcitabine administration, but cells had started to recover by 42 h. Administration of MK-8776 18 h after gemcitabine caused significantly delayed tumor growth compared to either drug alone, or when the two drugs were administered with only a 30 min interval.

Conclusions

There are two reasons why delayed addition of MK-8776 enhances sensitivity to gemcitabine: first, there is an increased number of cells arrested in S phase; and second, the arrested cells have adequate time to initiate recombination and thereby become Chk1 dependent. These results have important implications for the design of clinical trials using this drug combination.
Appendix
Available only for authorised users
Literature
1.
go back to reference Carrassa L, Damia G: Unleashing Chk1 in cancer therapy. Cell Cycle. 2011, 10: 2121-2128. 10.4161/cc.10.13.16398.CrossRefPubMed Carrassa L, Damia G: Unleashing Chk1 in cancer therapy. Cell Cycle. 2011, 10: 2121-2128. 10.4161/cc.10.13.16398.CrossRefPubMed
2.
go back to reference Chen T, Stephens PA, Middleton FK, Curtin NJ: Targeting the S and G2 checkpoint to treat cancer. Drug Discov Today. 2012, 17: 194-202. 10.1016/j.drudis.2011.12.009.CrossRefPubMed Chen T, Stephens PA, Middleton FK, Curtin NJ: Targeting the S and G2 checkpoint to treat cancer. Drug Discov Today. 2012, 17: 194-202. 10.1016/j.drudis.2011.12.009.CrossRefPubMed
3.
go back to reference Thompson R, Eastman A: The cancer chemotherapeutic potential of Chk1 inhibitors: how mechanistic studies impact clinical trial design. Br J Clin Pharmacol. 2013, 76: 358-369. 10.1111/bcp.12139.CrossRefPubMedPubMedCentral Thompson R, Eastman A: The cancer chemotherapeutic potential of Chk1 inhibitors: how mechanistic studies impact clinical trial design. Br J Clin Pharmacol. 2013, 76: 358-369. 10.1111/bcp.12139.CrossRefPubMedPubMedCentral
4.
go back to reference Kohn EA, Ruth ND, Brown MK, Livingstone M, Eastman A: Abrogation of the S phase DNA damage checkpoint results in S phase progression or premature mitosis depending on the concentration of UCN-01 and the kinetics of Cdc25C activation. J Biol Chem. 2002, 277: 26553-26564. 10.1074/jbc.M202040200.CrossRefPubMed Kohn EA, Ruth ND, Brown MK, Livingstone M, Eastman A: Abrogation of the S phase DNA damage checkpoint results in S phase progression or premature mitosis depending on the concentration of UCN-01 and the kinetics of Cdc25C activation. J Biol Chem. 2002, 277: 26553-26564. 10.1074/jbc.M202040200.CrossRefPubMed
5.
go back to reference Zegerman P, Diffley JFX: DNA replication as a target of the DNA damage checkpoint. DNA Repair. 2009, 8: 1077-1088. 10.1016/j.dnarep.2009.04.023.CrossRefPubMed Zegerman P, Diffley JFX: DNA replication as a target of the DNA damage checkpoint. DNA Repair. 2009, 8: 1077-1088. 10.1016/j.dnarep.2009.04.023.CrossRefPubMed
6.
go back to reference Montano R, Chung I, Garner KM, Parry D, Eastman A: Preclinical development of the novel Chk1 inhibitor SCH900776 in combination with DNA damaging agents and antimetabolites. Mol Cancer Ther. 2012, 11: 427-438. 10.1158/1535-7163.MCT-11-0406.CrossRefPubMed Montano R, Chung I, Garner KM, Parry D, Eastman A: Preclinical development of the novel Chk1 inhibitor SCH900776 in combination with DNA damaging agents and antimetabolites. Mol Cancer Ther. 2012, 11: 427-438. 10.1158/1535-7163.MCT-11-0406.CrossRefPubMed
7.
go back to reference Guzi T, Paruch K, Dwyer MP, Labroli M, Shanahan F, Davis N, Taricani L, Wiswell D, Seghezzi W, Penaflor E, Bhagwat B, Wang W, Gu D, Hsieh Y, Lee S, Liu M, Parry D: Targeting the replication checkpoint using SCH 900776, a potent and selective CHK1 inhibitor identified via high content functional screening. Mol Cancer Ther. 2011, 10: 591-602. 10.1158/1535-7163.MCT-10-0928.CrossRefPubMed Guzi T, Paruch K, Dwyer MP, Labroli M, Shanahan F, Davis N, Taricani L, Wiswell D, Seghezzi W, Penaflor E, Bhagwat B, Wang W, Gu D, Hsieh Y, Lee S, Liu M, Parry D: Targeting the replication checkpoint using SCH 900776, a potent and selective CHK1 inhibitor identified via high content functional screening. Mol Cancer Ther. 2011, 10: 591-602. 10.1158/1535-7163.MCT-10-0928.CrossRefPubMed
8.
go back to reference Karp JE, Thomas BM, Greer JM, Sorge C, Gore SD, Pratz KW, Smith BD, Flatten KS, Peterson K, Schneider P, Mackey K, Freshwater T, Levis MJ, McDevitt MA, Carraway HE, Gladstone DE, Showel MM, Loechner S, Parry DA, Horowitz JA, Isaacs R, Kaufmann SH: Phase I and pharmacologic trial of cytosine arabinoside with the selective checkpoint I inhibitor SCH 900776 in refractory acute leukemias. Clin Cancer Res. 2012, 18: 6723-6731. 10.1158/1078-0432.CCR-12-2442.CrossRefPubMedPubMedCentral Karp JE, Thomas BM, Greer JM, Sorge C, Gore SD, Pratz KW, Smith BD, Flatten KS, Peterson K, Schneider P, Mackey K, Freshwater T, Levis MJ, McDevitt MA, Carraway HE, Gladstone DE, Showel MM, Loechner S, Parry DA, Horowitz JA, Isaacs R, Kaufmann SH: Phase I and pharmacologic trial of cytosine arabinoside with the selective checkpoint I inhibitor SCH 900776 in refractory acute leukemias. Clin Cancer Res. 2012, 18: 6723-6731. 10.1158/1078-0432.CCR-12-2442.CrossRefPubMedPubMedCentral
9.
go back to reference Garner KM, Eastman A: Variations in Mre11/Rad50/Nbs1 status and DNA damage-induced S-phase arrest in cell lines of the NCI60 panel. BMC Cancer. 2011, 11: 206-10.1186/1471-2407-11-206.CrossRefPubMedPubMedCentral Garner KM, Eastman A: Variations in Mre11/Rad50/Nbs1 status and DNA damage-induced S-phase arrest in cell lines of the NCI60 panel. BMC Cancer. 2011, 11: 206-10.1186/1471-2407-11-206.CrossRefPubMedPubMedCentral
10.
go back to reference Demarcq C, Bunch RT, Creswell D, Eastman A: The role of cell cycle progression in cisplatin-induced apoptosis in Chinese hamster ovary cells. Cell Growth Differ. 1994, 5: 983-993.PubMed Demarcq C, Bunch RT, Creswell D, Eastman A: The role of cell cycle progression in cisplatin-induced apoptosis in Chinese hamster ovary cells. Cell Growth Differ. 1994, 5: 983-993.PubMed
11.
go back to reference Rao J, Otto WR: Fluorometric DNA assay for cell growth estimation. Anal Biochem. 1992, 207: 186-192. 10.1016/0003-2697(92)90521-8.CrossRefPubMed Rao J, Otto WR: Fluorometric DNA assay for cell growth estimation. Anal Biochem. 1992, 207: 186-192. 10.1016/0003-2697(92)90521-8.CrossRefPubMed
12.
go back to reference Levesque AA, Kohn EA, Bresnick E, Eastman A: Distinct roles for p53 transactivation and repression in preventing UCN-01-mediated abrogation of DNA damage-induced S and G2 cell cycle checkpoints. Oncogene. 2005, 24: 3786-3796. 10.1038/sj.onc.1208451.CrossRefPubMed Levesque AA, Kohn EA, Bresnick E, Eastman A: Distinct roles for p53 transactivation and repression in preventing UCN-01-mediated abrogation of DNA damage-induced S and G2 cell cycle checkpoints. Oncogene. 2005, 24: 3786-3796. 10.1038/sj.onc.1208451.CrossRefPubMed
13.
go back to reference Zhang W-H, Poh A, Fanous AA, Eastman A: DNA damage-induced S phase arrest in human breast cancer depends on CHK1, but G2 arrest can occur independently of Chk1, Chk2 or MAPKAPK2. Cell Cycle. 2008, 7: 1668-1677. 10.4161/cc.7.11.5982.CrossRefPubMed Zhang W-H, Poh A, Fanous AA, Eastman A: DNA damage-induced S phase arrest in human breast cancer depends on CHK1, but G2 arrest can occur independently of Chk1, Chk2 or MAPKAPK2. Cell Cycle. 2008, 7: 1668-1677. 10.4161/cc.7.11.5982.CrossRefPubMed
14.
go back to reference Thompson R, Montano R, Eastman A: The Mre11 nuclease is critical for sensitivity of cells to Chk1 inhibition. PLoS One. 2012, 7: e44021-10.1371/journal.pone.0044021.CrossRefPubMedPubMedCentral Thompson R, Montano R, Eastman A: The Mre11 nuclease is critical for sensitivity of cells to Chk1 inhibition. PLoS One. 2012, 7: e44021-10.1371/journal.pone.0044021.CrossRefPubMedPubMedCentral
15.
go back to reference Leung-Pineda V, Ryan CE, Piwnica-Worms H: Phosphorylation of Chk1 by ATR is antagonized by a Chk1-regulated protein phosphatase 2A circuit. Mol Cell Biol. 2006, 26: 7529-7538. 10.1128/MCB.00447-06.CrossRefPubMedPubMedCentral Leung-Pineda V, Ryan CE, Piwnica-Worms H: Phosphorylation of Chk1 by ATR is antagonized by a Chk1-regulated protein phosphatase 2A circuit. Mol Cell Biol. 2006, 26: 7529-7538. 10.1128/MCB.00447-06.CrossRefPubMedPubMedCentral
16.
go back to reference Parsels LA, Morgan MA, Tanska DM, Parsels JD, Palmer BD, Booth RJ, Denny WA, Canman CE, Kraker AJ, Lawrence TS, Maybaum J: Gemcitabine sensitization by checkpoint kinase 1 inhibition correlates with inhibition of a Rad51 DNA damage resposne in pancreatic cancer cells. Mol Cancer Ther. 2009, 8: 45-54. 10.1158/1535-7163.MCT-08-0662.CrossRefPubMedPubMedCentral Parsels LA, Morgan MA, Tanska DM, Parsels JD, Palmer BD, Booth RJ, Denny WA, Canman CE, Kraker AJ, Lawrence TS, Maybaum J: Gemcitabine sensitization by checkpoint kinase 1 inhibition correlates with inhibition of a Rad51 DNA damage resposne in pancreatic cancer cells. Mol Cancer Ther. 2009, 8: 45-54. 10.1158/1535-7163.MCT-08-0662.CrossRefPubMedPubMedCentral
17.
go back to reference Sorensen CS, Hansen LT, Dziegielewski J, Syljuasen RG, Lundin C, Bartek J, Helleday T: The cell cycle checkpoint kinase Chk1 is required for mammalian homologous recombination. Nat Cell Biol. 2005, 7: 195-201. 10.1038/ncb1212.CrossRefPubMed Sorensen CS, Hansen LT, Dziegielewski J, Syljuasen RG, Lundin C, Bartek J, Helleday T: The cell cycle checkpoint kinase Chk1 is required for mammalian homologous recombination. Nat Cell Biol. 2005, 7: 195-201. 10.1038/ncb1212.CrossRefPubMed
18.
go back to reference Grunewald R, Kantarjian H, Du M, Faucher K, Tarassoff P, Plunkett W: Gemcitabine in leukemia: a phase I clinical, plasma, and cellular pharmacology study. J Clin Oncol. 1992, 10: 406-413.PubMed Grunewald R, Kantarjian H, Du M, Faucher K, Tarassoff P, Plunkett W: Gemcitabine in leukemia: a phase I clinical, plasma, and cellular pharmacology study. J Clin Oncol. 1992, 10: 406-413.PubMed
19.
go back to reference Tachibana KK, Gonzalez MA, Coleman N: Cell-cycle-dependent regulation of DNA replication and its relevance to cancer pathology. J Pathol. 2005, 205: 123-129. 10.1002/path.1708.CrossRefPubMed Tachibana KK, Gonzalez MA, Coleman N: Cell-cycle-dependent regulation of DNA replication and its relevance to cancer pathology. J Pathol. 2005, 205: 123-129. 10.1002/path.1708.CrossRefPubMed
20.
go back to reference Forment JV, Blasius M, Guerini I, Jackson SP: Structure-specific DNA endonuclease Mus81/Eme1 generates DNA damage caused by Chk1 inactivation. PLoS One. 2011, 6: e23517-10.1371/journal.pone.0023517.CrossRefPubMedPubMedCentral Forment JV, Blasius M, Guerini I, Jackson SP: Structure-specific DNA endonuclease Mus81/Eme1 generates DNA damage caused by Chk1 inactivation. PLoS One. 2011, 6: e23517-10.1371/journal.pone.0023517.CrossRefPubMedPubMedCentral
21.
go back to reference Bahassi EM, Ovesen JL, Risenberg AL, Bernstein WZ, Hasty PE, Stambrook PJ: The checkpoint kinases Chk1 and Chk2 regulate the functional associations between hBRCA2 and Rad51 in response to DNA damage. Oncogene. 2008, 27: 3977-3985. 10.1038/onc.2008.17.CrossRefPubMed Bahassi EM, Ovesen JL, Risenberg AL, Bernstein WZ, Hasty PE, Stambrook PJ: The checkpoint kinases Chk1 and Chk2 regulate the functional associations between hBRCA2 and Rad51 in response to DNA damage. Oncogene. 2008, 27: 3977-3985. 10.1038/onc.2008.17.CrossRefPubMed
22.
go back to reference Taricani L, Shanahan F, Parry D: Replication stress activates DNA polymerase alpha-associated Chk1. Cell Cycle. 2009, 8: 482-489. 10.4161/cc.8.3.7661.CrossRefPubMed Taricani L, Shanahan F, Parry D: Replication stress activates DNA polymerase alpha-associated Chk1. Cell Cycle. 2009, 8: 482-489. 10.4161/cc.8.3.7661.CrossRefPubMed
23.
go back to reference Ikegami Y, Goto H, Kiyono T, Enomoto M, Kasahara K, Tomono Y, Tozawa K, Morita A, Kohri K, Inagaki M: Chk1 phosphorylation at ser286 and ser301 occurs with both stalled DNA replication and damage checkpoint stimulation. Biochem Biophys Res Commun. 2008, 377: 1227-1231. 10.1016/j.bbrc.2008.10.119.CrossRefPubMed Ikegami Y, Goto H, Kiyono T, Enomoto M, Kasahara K, Tomono Y, Tozawa K, Morita A, Kohri K, Inagaki M: Chk1 phosphorylation at ser286 and ser301 occurs with both stalled DNA replication and damage checkpoint stimulation. Biochem Biophys Res Commun. 2008, 377: 1227-1231. 10.1016/j.bbrc.2008.10.119.CrossRefPubMed
24.
go back to reference Beckerman R, Donner AJ, Mattia M, Peart MJ, Manley JL, Espinosa JM, Prives C: A role for Chk1 in blocking transcriptional elongation pf p21 mRNA during S-phase checkpoint. Genes Dev. 2009, 23: 1364-1377. 10.1101/gad.1795709.CrossRefPubMedPubMedCentral Beckerman R, Donner AJ, Mattia M, Peart MJ, Manley JL, Espinosa JM, Prives C: A role for Chk1 in blocking transcriptional elongation pf p21 mRNA during S-phase checkpoint. Genes Dev. 2009, 23: 1364-1377. 10.1101/gad.1795709.CrossRefPubMedPubMedCentral
25.
go back to reference Morgan MA, Parsels LA, Parsels JD, Mesiwala AK, Maybaum J, Lawrence TS: Role of checkpoint kinase 1 in preventing premature mitosis in response to gemcitabine. Cancer Res. 2005, 65: 6835-6842. 10.1158/0008-5472.CAN-04-2246.CrossRefPubMed Morgan MA, Parsels LA, Parsels JD, Mesiwala AK, Maybaum J, Lawrence TS: Role of checkpoint kinase 1 in preventing premature mitosis in response to gemcitabine. Cancer Res. 2005, 65: 6835-6842. 10.1158/0008-5472.CAN-04-2246.CrossRefPubMed
26.
go back to reference Parsels L, Qian Y, Tanska DM, Gross M, Zhao L, Hassan MC, Arumugarajah S, Parsels JD, Hylander-Gans L, Simeone DM, Morosini D, Brown JL, Zabludoff SD, Maybaum J, Lawrence TS, Morgan MA: Assessment of Chk1 phosphorylation as a pharmacodynamic biomarker of Chk1 inhibition. Clin Cancer Res. 2011, 17: 3706-3715. 10.1158/1078-0432.CCR-10-3082.CrossRefPubMedPubMedCentral Parsels L, Qian Y, Tanska DM, Gross M, Zhao L, Hassan MC, Arumugarajah S, Parsels JD, Hylander-Gans L, Simeone DM, Morosini D, Brown JL, Zabludoff SD, Maybaum J, Lawrence TS, Morgan MA: Assessment of Chk1 phosphorylation as a pharmacodynamic biomarker of Chk1 inhibition. Clin Cancer Res. 2011, 17: 3706-3715. 10.1158/1078-0432.CCR-10-3082.CrossRefPubMedPubMedCentral
27.
go back to reference Petermann E, Orta ML, Issaeva N, Schultz N, Helleday T: Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Mol Cell. 2010, 37: 492-502. 10.1016/j.molcel.2010.01.021.CrossRefPubMedPubMedCentral Petermann E, Orta ML, Issaeva N, Schultz N, Helleday T: Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Mol Cell. 2010, 37: 492-502. 10.1016/j.molcel.2010.01.021.CrossRefPubMedPubMedCentral
28.
go back to reference Stults DM, Killen MW, Shelton BJ, Pierce AJ: Recombination phenotypes of the NCI-60 collection of human cancer cells. BMC Mol Biol. 2011, 12: 23-10.1186/1471-2199-12-23.CrossRefPubMedPubMedCentral Stults DM, Killen MW, Shelton BJ, Pierce AJ: Recombination phenotypes of the NCI-60 collection of human cancer cells. BMC Mol Biol. 2011, 12: 23-10.1186/1471-2199-12-23.CrossRefPubMedPubMedCentral
29.
go back to reference Bunch RT, Eastman A: Enhancement of cisplatin-induced cytotoxicity by 7-hydroxystaurosporine (UCN-01), a new G2-checkpoint inhibitor. Clin Cancer Res. 1996, 2: 791-797.PubMed Bunch RT, Eastman A: Enhancement of cisplatin-induced cytotoxicity by 7-hydroxystaurosporine (UCN-01), a new G2-checkpoint inhibitor. Clin Cancer Res. 1996, 2: 791-797.PubMed
30.
go back to reference Fuse E, Tanii H, Kurata N, Kobayashi H, Shimada Y, Tamura T, Sasaki Y, Tanigawara Y, Lush RD, Headlee D, Figg WD, Arbuck SG, Senderowicz AM, Sausville EA, Akinaga S, Kuwabara T, Kobayashi S: Unpredicted clinical pharmacology of UCN-01 caused by specific binding to human a1-acid glycoprotein. Cancer Res. 1998, 58: 3248-3253.PubMed Fuse E, Tanii H, Kurata N, Kobayashi H, Shimada Y, Tamura T, Sasaki Y, Tanigawara Y, Lush RD, Headlee D, Figg WD, Arbuck SG, Senderowicz AM, Sausville EA, Akinaga S, Kuwabara T, Kobayashi S: Unpredicted clinical pharmacology of UCN-01 caused by specific binding to human a1-acid glycoprotein. Cancer Res. 1998, 58: 3248-3253.PubMed
31.
go back to reference Weiss GJ, Donehower RC, Iyengar T, Ramanathan RK, Lewandowski K, Westin E, Hurt K, Hynes SM, Anthony SP, McKane S: Phase I dose-escalation study to examine the safety and tolerability of LY2603618, a checkpoint I inhibitor, administered 1 day after pemetrexed 500 mg/m2 every 21 days in patients with cancer. Invest New Drugs. 2013, 31: 136-144. 10.1007/s10637-012-9815-9.CrossRefPubMed Weiss GJ, Donehower RC, Iyengar T, Ramanathan RK, Lewandowski K, Westin E, Hurt K, Hynes SM, Anthony SP, McKane S: Phase I dose-escalation study to examine the safety and tolerability of LY2603618, a checkpoint I inhibitor, administered 1 day after pemetrexed 500 mg/m2 every 21 days in patients with cancer. Invest New Drugs. 2013, 31: 136-144. 10.1007/s10637-012-9815-9.CrossRefPubMed
Metadata
Title
Sensitization of human cancer cells to gemcitabine by the Chk1 inhibitor MK-8776: cell cycle perturbation and impact of administration schedule in vitro and in vivo
Authors
Ryan Montano
Ruth Thompson
Injae Chung
Huagang Hou
Nadeem Khan
Alan Eastman
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2013
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-13-604

Other articles of this Issue 1/2013

BMC Cancer 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine