Skip to main content
Top
Published in: BMC Cancer 1/2011

Open Access 01-12-2011 | Research article

Variations in Mre11/Rad50/Nbs1 status and DNA damage-induced S-phase arrest in the cell lines of the NCI60 panel

Authors: Kristen M Garner, Alan Eastman

Published in: BMC Cancer | Issue 1/2011

Login to get access

Abstract

Background

The Mre11/Rad50/Nbs1 (MRN) complex is a regulator of cell cycle checkpoints and DNA repair. Defects in MRN can lead to defective S-phase arrest when cells are damaged. Such defects may elicit sensitivity to selected drugs providing a chemical synthetic lethal interaction that could be used to target therapy to tumors with these defects. The goal of this study was to identify these defects in the NCI60 panel of cell lines and identify compounds that might elicit selective cytotoxicity.

Methods

We screened the NCI60 panel in search of cell lines that express low levels of MRN proteins, or that fail to arrest in S-phase in response to the topisomerase I inhibitor SN38. The NCI COMPARE program was used to discover compounds that preferentially target cells with these phenotypes.

Results

HCT116 cells were initially identified as defective in MRN and S phase arrest. Transfection with Mre11 also elevated Rad50 and Nbs1, and rescued the defective S-phase arrest. Cells of the NCI60 panel exhibited a large range of protein expression but a strong correlation existed between Mre11, Rad50 and Nbs1 consistent with complex formation determining protein stability. Mre11 mRNA correlated best with protein level suggesting it was the primary determinant of the overall level of the complex. Three other cell lines failed to arrest in response to SN38, two of which also had low MRN. However, other cell lines with low MRN still arrested suggesting low MRN does not predict an inability to arrest. Many compounds, including a family of benzothiazoles, correlated with the failure to arrest in S phase. The activity of benzothiazoles has been attributed to metabolic activation and DNA alkylation, but we note several cell lines in which sensitivity does not correlate with metabolism. We propose that the checkpoint defect imposes an additional mechanism of sensitivity on cells.

Conclusions

We have identified cells with possible defects in the MRN complex and S phase arrest, and a series of compounds that may preferentially target S phase-defective cells. We discuss limitations of the COMPARE program when attempting to identify compounds that selectively inhibit only a few cell lines.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hartwell LH, Weinert TA: Checkpoints: controls that ensure the order of cell cycle events. Science. 1989, 246: 629-634. 10.1126/science.2683079.CrossRefPubMed Hartwell LH, Weinert TA: Checkpoints: controls that ensure the order of cell cycle events. Science. 1989, 246: 629-634. 10.1126/science.2683079.CrossRefPubMed
2.
go back to reference Luo J, Solimini NL, Elledge SJ: Principles of cancer therapy: oncogene and non-oncogene addiction. Cell. 2009, 136: 823-837. 10.1016/j.cell.2009.02.024.CrossRefPubMedPubMedCentral Luo J, Solimini NL, Elledge SJ: Principles of cancer therapy: oncogene and non-oncogene addiction. Cell. 2009, 136: 823-837. 10.1016/j.cell.2009.02.024.CrossRefPubMedPubMedCentral
3.
go back to reference Pommier Y: Topoisomerase I inhibitors: camptothecins and beyond. Nature Rev Cancer. 2006, 6: 789-802. 10.1038/nrc1977.CrossRef Pommier Y: Topoisomerase I inhibitors: camptothecins and beyond. Nature Rev Cancer. 2006, 6: 789-802. 10.1038/nrc1977.CrossRef
4.
go back to reference Lee JH, Paull TT: ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science. 2005, 308: 551-554. 10.1126/science.1108297.CrossRefPubMed Lee JH, Paull TT: ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science. 2005, 308: 551-554. 10.1126/science.1108297.CrossRefPubMed
5.
go back to reference Jazayeri A, Falck J, Lukas C, Bartek J, Smith GC, Lukas J, Jackson SP: ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nature Cell Biol. 2006, 8: 37-45. 10.1038/ncb1337.CrossRefPubMed Jazayeri A, Falck J, Lukas C, Bartek J, Smith GC, Lukas J, Jackson SP: ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nature Cell Biol. 2006, 8: 37-45. 10.1038/ncb1337.CrossRefPubMed
6.
go back to reference Mailand N, Falck J, Lukas C, Syljuasen RG, Welcher M, Bartek J, Lukas J: Rapid destruction of human Cdc25A in response to DNA damage. Science. 2000, 288: 1425-1429. 10.1126/science.288.5470.1425.CrossRefPubMed Mailand N, Falck J, Lukas C, Syljuasen RG, Welcher M, Bartek J, Lukas J: Rapid destruction of human Cdc25A in response to DNA damage. Science. 2000, 288: 1425-1429. 10.1126/science.288.5470.1425.CrossRefPubMed
7.
go back to reference Falck J, Mailand N, Syljuasen RG, Bartek J, Lukas J: The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature. 2001, 410: 842-847. 10.1038/35071124.CrossRefPubMed Falck J, Mailand N, Syljuasen RG, Bartek J, Lukas J: The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature. 2001, 410: 842-847. 10.1038/35071124.CrossRefPubMed
8.
go back to reference Fukuda T, Sumiyoshi T, Takahashi M, Kataoka T, Asahara T, Inui H, Watatani M, Yasutomi M, Kamada N, Miyagawa K: Alterations of the double-strand break repair gene MRE11 in cancer. Cancer Res. 2001, 61: 23-26.PubMed Fukuda T, Sumiyoshi T, Takahashi M, Kataoka T, Asahara T, Inui H, Watatani M, Yasutomi M, Kamada N, Miyagawa K: Alterations of the double-strand break repair gene MRE11 in cancer. Cancer Res. 2001, 61: 23-26.PubMed
9.
go back to reference Giannini G, Ristori E, Cerignoli F, Rinaldi C, Zani M, Viel AOttini L, Crescenzi M, Martinotti S, Bignami M, Frati L, Screpanti I, Gulino A: Human MRE11 is inactivated in mismatch repair-deficient cancers. EMBO reports. 2002, 3: 248-254. 10.1093/embo-reports/kvf044.CrossRefPubMedPubMedCentral Giannini G, Ristori E, Cerignoli F, Rinaldi C, Zani M, Viel AOttini L, Crescenzi M, Martinotti S, Bignami M, Frati L, Screpanti I, Gulino A: Human MRE11 is inactivated in mismatch repair-deficient cancers. EMBO reports. 2002, 3: 248-254. 10.1093/embo-reports/kvf044.CrossRefPubMedPubMedCentral
10.
go back to reference Young BR, Painter RB: Radioresistant DNA synthesis and human genetic diseases. Hum Genet. 1989, 82: 113-117. 10.1007/BF00284040.CrossRefPubMed Young BR, Painter RB: Radioresistant DNA synthesis and human genetic diseases. Hum Genet. 1989, 82: 113-117. 10.1007/BF00284040.CrossRefPubMed
11.
go back to reference Stewart GS, Maser RS, Stankovic T, Bressan DA, Kaplan MI, Jaspers NG, Raams A, Byrd PJ, Petrini JH, Taylor AM: The DNA double-strand repair gene hMre11 is mutated in individuals with an ataxia-telanciectasia-like disorder. Cell. 1999, 99: 577-587. 10.1016/S0092-8674(00)81547-0.CrossRefPubMed Stewart GS, Maser RS, Stankovic T, Bressan DA, Kaplan MI, Jaspers NG, Raams A, Byrd PJ, Petrini JH, Taylor AM: The DNA double-strand repair gene hMre11 is mutated in individuals with an ataxia-telanciectasia-like disorder. Cell. 1999, 99: 577-587. 10.1016/S0092-8674(00)81547-0.CrossRefPubMed
12.
go back to reference Luo G, Yao MS, Bender CF, Mills M, Bladl AR, Bradley A, Petrini JH: Disruption of mRad50 causes embryonic stem cell lethality, abnormal embryonic development, and sensitivity to ionizing radiation. Proc Natl Acad Sci USA. 1999, 96: 7376-7381. 10.1073/pnas.96.13.7376.CrossRefPubMedPubMedCentral Luo G, Yao MS, Bender CF, Mills M, Bladl AR, Bradley A, Petrini JH: Disruption of mRad50 causes embryonic stem cell lethality, abnormal embryonic development, and sensitivity to ionizing radiation. Proc Natl Acad Sci USA. 1999, 96: 7376-7381. 10.1073/pnas.96.13.7376.CrossRefPubMedPubMedCentral
13.
go back to reference Rodriguez R, Hansen LT, Phear G, Scorah J, Spang-Thomsen M, Cox A, Helleday T, Meuth M: Thymidine selectively enhances growth suppressive effects of camptothecin/irinotecan in MSI+ cells and tumors containing a mutation in Mre11. Clin Cancer Res. 2008, 14: 5476-5483. 10.1158/1078-0432.CCR-08-0274.CrossRefPubMed Rodriguez R, Hansen LT, Phear G, Scorah J, Spang-Thomsen M, Cox A, Helleday T, Meuth M: Thymidine selectively enhances growth suppressive effects of camptothecin/irinotecan in MSI+ cells and tumors containing a mutation in Mre11. Clin Cancer Res. 2008, 14: 5476-5483. 10.1158/1078-0432.CCR-08-0274.CrossRefPubMed
14.
go back to reference Tran HM, Shi G, Li G, Carney JP, O'Malley B, Li D: Mutant Nbs1 enhances cisplatin-induced DNA damage and cytotoxicity in head and neck cancer. Otolaryngol Head Neck Surg. 2004, 131: 477-484. 10.1016/j.otohns.2004.04.019.CrossRefPubMed Tran HM, Shi G, Li G, Carney JP, O'Malley B, Li D: Mutant Nbs1 enhances cisplatin-induced DNA damage and cytotoxicity in head and neck cancer. Otolaryngol Head Neck Surg. 2004, 131: 477-484. 10.1016/j.otohns.2004.04.019.CrossRefPubMed
15.
go back to reference Weinstein JN, Myers TG, O'Connor PM, Friend SH, Fornace AJ, Kohn KW, Fojo T, Bates SE, Rubinstein LV, Anderson NL, Buolamwini JK, van Osdol WW, Monks AP, Scudiero DA, Sausville EA, Zaharevitz DW, Bunow B, Viswanadhan VN, Johnson GS, Wittes RE, Paull KD: An information-intensive approach to the molecular pharmacology of cancer. Science. 1997, 275: 343-349. 10.1126/science.275.5298.343.CrossRefPubMed Weinstein JN, Myers TG, O'Connor PM, Friend SH, Fornace AJ, Kohn KW, Fojo T, Bates SE, Rubinstein LV, Anderson NL, Buolamwini JK, van Osdol WW, Monks AP, Scudiero DA, Sausville EA, Zaharevitz DW, Bunow B, Viswanadhan VN, Johnson GS, Wittes RE, Paull KD: An information-intensive approach to the molecular pharmacology of cancer. Science. 1997, 275: 343-349. 10.1126/science.275.5298.343.CrossRefPubMed
16.
go back to reference Monga M, Sausville EA: Developmental therapeutics program at the NCI: molecular target and drug discovery process. Leukemia. 2002, 16: 520-526. 10.1038/sj.leu.2402464.CrossRefPubMed Monga M, Sausville EA: Developmental therapeutics program at the NCI: molecular target and drug discovery process. Leukemia. 2002, 16: 520-526. 10.1038/sj.leu.2402464.CrossRefPubMed
17.
go back to reference Zaharevitz DW, Holbeck SL, Bowerman C, Svetlik PA: COMPARE: a web accessible tool for investigating mechanisms of cell growth inhibition. J Mol Graph Model. 2002, 20: 297-303. 10.1016/S1093-3263(01)00126-7.CrossRefPubMed Zaharevitz DW, Holbeck SL, Bowerman C, Svetlik PA: COMPARE: a web accessible tool for investigating mechanisms of cell growth inhibition. J Mol Graph Model. 2002, 20: 297-303. 10.1016/S1093-3263(01)00126-7.CrossRefPubMed
18.
go back to reference Becker DM, Fikes JD, Guarente L: A cDNA encoding a human CCAAT-binding protein cloned by functional complementation in yeast. Proc Natl Acad Sci USA. 1991, 88: 1968-1972. 10.1073/pnas.88.5.1968.CrossRefPubMedPubMedCentral Becker DM, Fikes JD, Guarente L: A cDNA encoding a human CCAAT-binding protein cloned by functional complementation in yeast. Proc Natl Acad Sci USA. 1991, 88: 1968-1972. 10.1073/pnas.88.5.1968.CrossRefPubMedPubMedCentral
19.
go back to reference Rao J, Otto WR: Fluorometric DNA assay for cell growth estimation. Anal Biochem. 1992, 207: 186-192. 10.1016/0003-2697(92)90521-8.CrossRefPubMed Rao J, Otto WR: Fluorometric DNA assay for cell growth estimation. Anal Biochem. 1992, 207: 186-192. 10.1016/0003-2697(92)90521-8.CrossRefPubMed
20.
go back to reference Levesque AA, Fanous AA, Poh A, Eastman A: Defective p53 signaling in p53 wildtype tumors attenuates p21waf1 induction and cyclin B repression rendering them sensitive to Chk1 inhibitors that abrogate S and G2 arrest. Mol Cancer Therap. 2008, 7: 252-262. 10.1158/1535-7163.MCT-07-2066.CrossRef Levesque AA, Fanous AA, Poh A, Eastman A: Defective p53 signaling in p53 wildtype tumors attenuates p21waf1 induction and cyclin B repression rendering them sensitive to Chk1 inhibitors that abrogate S and G2 arrest. Mol Cancer Therap. 2008, 7: 252-262. 10.1158/1535-7163.MCT-07-2066.CrossRef
21.
go back to reference Takemura H, Rao VA, Sordet O, Furuta T, Miao ZH, Meng L, Zhang H, Pommier Y: Defective Mre11-dependent activation of Chk2 by Ataxia telangiectasia mutated in colorectal carcinoma cells in response to replication-dependent DNA double strand breaks. J Biol Chem. 2006, 281: 30814-30823. 10.1074/jbc.M603747200.CrossRefPubMed Takemura H, Rao VA, Sordet O, Furuta T, Miao ZH, Meng L, Zhang H, Pommier Y: Defective Mre11-dependent activation of Chk2 by Ataxia telangiectasia mutated in colorectal carcinoma cells in response to replication-dependent DNA double strand breaks. J Biol Chem. 2006, 281: 30814-30823. 10.1074/jbc.M603747200.CrossRefPubMed
22.
go back to reference Kashiyama E, Hutchinson I, Chua MA, Stinson SF, Phillips LR, Kaur G, Sausville EA, Bradshaw TD, Westewll AD, Stevens MFG: Antitumor benzothiazoles. 8. Synthesis, metabolic formation, and biological properties of the C- and N-oxidation products of antitumor 2-(4-aminophenyl)-benzothiazoles. J Med Chem. 1999, 42: 4172-4184. 10.1021/jm990104o.CrossRefPubMed Kashiyama E, Hutchinson I, Chua MA, Stinson SF, Phillips LR, Kaur G, Sausville EA, Bradshaw TD, Westewll AD, Stevens MFG: Antitumor benzothiazoles. 8. Synthesis, metabolic formation, and biological properties of the C- and N-oxidation products of antitumor 2-(4-aminophenyl)-benzothiazoles. J Med Chem. 1999, 42: 4172-4184. 10.1021/jm990104o.CrossRefPubMed
23.
go back to reference Leong CO, Gaskell M, Martin EA, Heydon RT, Farmer PB, Bibby MC, Cooper PA, Double JA, Bradshaw TD, Stevens MF: Antitumour 2-(4-aminophenyl)benzothiazoles generate DNA adducts in sensitive tumor cells in vitro and in vivo. Br J Cancer. 2003, 88: 470-477. 10.1038/sj.bjc.6600719.CrossRefPubMedPubMedCentral Leong CO, Gaskell M, Martin EA, Heydon RT, Farmer PB, Bibby MC, Cooper PA, Double JA, Bradshaw TD, Stevens MF: Antitumour 2-(4-aminophenyl)benzothiazoles generate DNA adducts in sensitive tumor cells in vitro and in vivo. Br J Cancer. 2003, 88: 470-477. 10.1038/sj.bjc.6600719.CrossRefPubMedPubMedCentral
24.
go back to reference Wen Q, Scorah J, Phear G, Rodgers G, Rodgers S, Meuth M: A mutant allele of Mre11 found in mismatch repair-deficient tumor cells suppresses the cellular response to DNA replication fork stress in a dominant negative manner. Mol Biol Cell. 2008, 19: 1693-1705. 10.1091/mbc.E07-09-0975.CrossRefPubMedPubMedCentral Wen Q, Scorah J, Phear G, Rodgers G, Rodgers S, Meuth M: A mutant allele of Mre11 found in mismatch repair-deficient tumor cells suppresses the cellular response to DNA replication fork stress in a dominant negative manner. Mol Biol Cell. 2008, 19: 1693-1705. 10.1091/mbc.E07-09-0975.CrossRefPubMedPubMedCentral
25.
go back to reference Taverna P, Liu L, Hanson AJ, Monks A, Gerson SL: Characterization of MLH1 and MSH2 DNA mismatch repair proteins in cell lines of the NCI anticancer drug screen. Cancer Chemother Pharmacol. 2000, 46: 507-516. 10.1007/s002800000186.CrossRefPubMed Taverna P, Liu L, Hanson AJ, Monks A, Gerson SL: Characterization of MLH1 and MSH2 DNA mismatch repair proteins in cell lines of the NCI anticancer drug screen. Cancer Chemother Pharmacol. 2000, 46: 507-516. 10.1007/s002800000186.CrossRefPubMed
27.
go back to reference Zhang WH, Poh A, Fanous AA, Eastman A: DNA damage-induced S phase arrest in human breast cancer depends on CHK1, but G2 arrest can occur independently of Chk1, Chk2 or MAPKAPK2. Cell Cycle. 2008, 7: 1668-1677. 10.4161/cc.7.11.5982.CrossRefPubMed Zhang WH, Poh A, Fanous AA, Eastman A: DNA damage-induced S phase arrest in human breast cancer depends on CHK1, but G2 arrest can occur independently of Chk1, Chk2 or MAPKAPK2. Cell Cycle. 2008, 7: 1668-1677. 10.4161/cc.7.11.5982.CrossRefPubMed
28.
go back to reference Aiello S, Wells G, Stone EL, Kadri H, Bazzi R, Bell DR, Stevens MF, Matthews CS, Bradshaw TD, Westwell AD: Synthesis and biological properties of benzothiazole, benzoxazole, and chromen-4-one analogues of the potent antitumor agents 2-(3,4-dimethoxyphenyl)-5-fluorobenzothiazole (PMX 610, NSC 721648. J Med Chem. 2008, 51: 5135-5139. 10.1021/jm800418z.CrossRefPubMed Aiello S, Wells G, Stone EL, Kadri H, Bazzi R, Bell DR, Stevens MF, Matthews CS, Bradshaw TD, Westwell AD: Synthesis and biological properties of benzothiazole, benzoxazole, and chromen-4-one analogues of the potent antitumor agents 2-(3,4-dimethoxyphenyl)-5-fluorobenzothiazole (PMX 610, NSC 721648. J Med Chem. 2008, 51: 5135-5139. 10.1021/jm800418z.CrossRefPubMed
Metadata
Title
Variations in Mre11/Rad50/Nbs1 status and DNA damage-induced S-phase arrest in the cell lines of the NCI60 panel
Authors
Kristen M Garner
Alan Eastman
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2011
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-11-206

Other articles of this Issue 1/2011

BMC Cancer 1/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine