Skip to main content
Top
Published in: BMC Cancer 1/2013

Open Access 01-12-2013 | Research article

Metallothionein 1G functions as a tumor suppressor in thyroid cancer through modulating the PI3K/Akt signaling pathway

Authors: Jiao Fu, Hongjun Lv, Haixia Guan, Xiaoying Ma, Meiju Ji, Nongyue He, Bingyin Shi, Peng Hou

Published in: BMC Cancer | Issue 1/2013

Login to get access

Abstract

Background

MT1G inactivation mediated by promoter methylation has been reported in thyroid cancer. However, the role of MT1G in thyroid carcinogenesis remains unclear. The aim of this study is to examine the biological functions and related molecular mechanisms of MT1G in thyroid cancer.

Methods

Methylation-specific PCR (MSP) was performed to analyze promoter methylation of MT1G and its relationship with clinicopathological characteristics of papillary thyroid cancer (PTC) patients. Conventional and real-time quantitative RT-PCR assays were used to evaluate mRNA expression. The functions of ectopic MT1G expression were determined by cell proliferation and colony formation, cell cycle and apoptosis, as well as cell migration and invasion assays.

Results

MT1G expression was frequently silenced or down-regulated in thyroid cancer cell lines, and was also significantly decreased in primary thyroid cancer tissues compared with non-malignant thyroid tissues. Promoter methylation, along with histone modification, contributes to MT1G inactivation in thyroid tumorigenesis. Moreover, our data showed that MT1G hypermethylation was significantly positively associated with lymph node metastasis in PTC patients. Importantly, restoring MT1G expression in thyroid cancer cells dramatically suppressed cell growth and invasiveness, and induced cell cycle arrest and apoptosis through inhibiting phosphorylation of Akt and Rb.

Conclusions

We have for the first time revealed that MT1G appears to be functional tumor suppressor involved in thyroid carcinogenesis mainly through modulating the phosphatidylinositol-3-kinase (PI3K)/Akt pathway and partially through regulating the activity of Rb/E2F pathway in this study.
Appendix
Available only for authorised users
Literature
1.
go back to reference Davies L, Welch HG: Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA. 2006, 295: 2164-2167. 10.1001/jama.295.18.2164.CrossRefPubMed Davies L, Welch HG: Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA. 2006, 295: 2164-2167. 10.1001/jama.295.18.2164.CrossRefPubMed
2.
go back to reference Jemal A, Siegel R, Xu J, Ward E: Cancer statistics, 2010. CA Cancer J Clin. 2010, 60: 277-300. 10.3322/caac.20073.CrossRefPubMed Jemal A, Siegel R, Xu J, Ward E: Cancer statistics, 2010. CA Cancer J Clin. 2010, 60: 277-300. 10.3322/caac.20073.CrossRefPubMed
4.
go back to reference Cornett WR, Sharma AK, Day TA, Richardson MS, Hoda RS, van Heerden JA, Fernandes JK: Anaplastic thyroid carcinoma: an overview. Curr Oncol Rep. 2007, 9: 152-158. 10.1007/s11912-007-0014-3.CrossRefPubMed Cornett WR, Sharma AK, Day TA, Richardson MS, Hoda RS, van Heerden JA, Fernandes JK: Anaplastic thyroid carcinoma: an overview. Curr Oncol Rep. 2007, 9: 152-158. 10.1007/s11912-007-0014-3.CrossRefPubMed
5.
go back to reference Nikiforov YE, Nikiforova MN: Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol. 2011, 7: 569-580. 10.1038/nrendo.2011.142.CrossRefPubMed Nikiforov YE, Nikiforova MN: Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol. 2011, 7: 569-580. 10.1038/nrendo.2011.142.CrossRefPubMed
6.
go back to reference Russo D, Damante G, Puxeddu E, Durante C, Filetti S: Epigenetics of thyroid cancer and novel therapeutic targets. J Mol Endocrinol. 2011, 46: R73-R81. 10.1530/JME-10-0150.CrossRefPubMed Russo D, Damante G, Puxeddu E, Durante C, Filetti S: Epigenetics of thyroid cancer and novel therapeutic targets. J Mol Endocrinol. 2011, 46: R73-R81. 10.1530/JME-10-0150.CrossRefPubMed
7.
go back to reference Hou P, Liu D, Shan Y, Hu S, Studeman K, Condouris S, Wang Y, Trink A, El-Naggar AK, Tallini G, Vasko V, Xing M: Genetic alterations and their relationship in the phosphatidylinositol 3-kinase/Akt pathway in thyroid cancer. Clin Cancer Res. 2007, 13: 1161-1170. 10.1158/1078-0432.CCR-06-1125.CrossRefPubMed Hou P, Liu D, Shan Y, Hu S, Studeman K, Condouris S, Wang Y, Trink A, El-Naggar AK, Tallini G, Vasko V, Xing M: Genetic alterations and their relationship in the phosphatidylinositol 3-kinase/Akt pathway in thyroid cancer. Clin Cancer Res. 2007, 13: 1161-1170. 10.1158/1078-0432.CCR-06-1125.CrossRefPubMed
8.
go back to reference Shinohara M, Chung YJ, Saji M, Ringel MD: AKT in thyroid tumorigenesis and progression. Endocrinology. 2007, 148: 942-947.CrossRefPubMed Shinohara M, Chung YJ, Saji M, Ringel MD: AKT in thyroid tumorigenesis and progression. Endocrinology. 2007, 148: 942-947.CrossRefPubMed
9.
go back to reference Jones PA, Baylin SB: The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002, 3: 415-428.CrossRefPubMed Jones PA, Baylin SB: The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002, 3: 415-428.CrossRefPubMed
11.
go back to reference Baylin SB, Jones PA: A decade of exploring the cancer epigenome - biological and translational implications. Nat Rev Cancer. 2011, 11: 726-734. 10.1038/nrc3130.CrossRefPubMedPubMedCentral Baylin SB, Jones PA: A decade of exploring the cancer epigenome - biological and translational implications. Nat Rev Cancer. 2011, 11: 726-734. 10.1038/nrc3130.CrossRefPubMedPubMedCentral
12.
go back to reference Issa JP: DNA methylation as a clinical marker in oncology. J Clin Oncol. 2012, 30: 2566-2568. 10.1200/JCO.2012.42.1016.CrossRefPubMed Issa JP: DNA methylation as a clinical marker in oncology. J Clin Oncol. 2012, 30: 2566-2568. 10.1200/JCO.2012.42.1016.CrossRefPubMed
13.
go back to reference Heyn H, Esteller M: DNA methylation profiling in the clinic: applications and challenges. Nat Rev Genet. 2012, 13: 679-692. 10.1038/nrg3270.CrossRefPubMed Heyn H, Esteller M: DNA methylation profiling in the clinic: applications and challenges. Nat Rev Genet. 2012, 13: 679-692. 10.1038/nrg3270.CrossRefPubMed
14.
go back to reference West AK, Stallings R, Hildebrand CE, Chiu R, Karin M, Richards RI: Human metallothionein genes: structure of the functional locus at 16q13. Genomics. 1990, 8: 513-518. 10.1016/0888-7543(90)90038-V.CrossRefPubMed West AK, Stallings R, Hildebrand CE, Chiu R, Karin M, Richards RI: Human metallothionein genes: structure of the functional locus at 16q13. Genomics. 1990, 8: 513-518. 10.1016/0888-7543(90)90038-V.CrossRefPubMed
15.
go back to reference Romero-Isart N, Vasak M: Advances in the structure and chemistry of metallothioneins. J Inorg Biochem. 2002, 88: 388-396. 10.1016/S0162-0134(01)00347-6.CrossRefPubMed Romero-Isart N, Vasak M: Advances in the structure and chemistry of metallothioneins. J Inorg Biochem. 2002, 88: 388-396. 10.1016/S0162-0134(01)00347-6.CrossRefPubMed
16.
go back to reference Coyle P, Philcox JC, Carey LC, Rofe AM: Metallothionein: the multipurpose protein. Cell Mol Life Sci. 2002, 59: 627-647. 10.1007/s00018-002-8454-2.CrossRefPubMed Coyle P, Philcox JC, Carey LC, Rofe AM: Metallothionein: the multipurpose protein. Cell Mol Life Sci. 2002, 59: 627-647. 10.1007/s00018-002-8454-2.CrossRefPubMed
17.
go back to reference Vasák M: Advances in metallothionein structure and functions. J Trace Elem Med Biol. 2005, 19: 13-17. 10.1016/j.jtemb.2005.03.003.CrossRefPubMed Vasák M: Advances in metallothionein structure and functions. J Trace Elem Med Biol. 2005, 19: 13-17. 10.1016/j.jtemb.2005.03.003.CrossRefPubMed
18.
go back to reference Nielsen AE, Bohr A, Penkowa M: The Balance between Life and Death of Cells: Roles of Metallothioneins. Biomark Insights. 2007, 1: 99-111.PubMedPubMedCentral Nielsen AE, Bohr A, Penkowa M: The Balance between Life and Death of Cells: Roles of Metallothioneins. Biomark Insights. 2007, 1: 99-111.PubMedPubMedCentral
19.
go back to reference Kanda M, Nomoto S, Okamura Y, Nishikawa Y, Sugimoto H, Kanazumi N, Takeda S, Nakao A: Detection of metallothionein 1G as a methylated tumor suppressor gene in human hepatocellularcarcinoma using a novel method of double combination array analysis. Int J Oncol. 2009, 35: 477-483.CrossRefPubMed Kanda M, Nomoto S, Okamura Y, Nishikawa Y, Sugimoto H, Kanazumi N, Takeda S, Nakao A: Detection of metallothionein 1G as a methylated tumor suppressor gene in human hepatocellularcarcinoma using a novel method of double combination array analysis. Int J Oncol. 2009, 35: 477-483.CrossRefPubMed
20.
go back to reference Arriaga JM, Levy EM, Bravo AI, Bayo SM, Amat M, Aris M, Hannois A, Bruno L, Roberti MP, Loria FS, Pairola A, Huertas E, Mordoh J, Bianchini M: Metallothionein expression in colorectal cancer: relevance of different isoforms for tumorprogression and patient survival. Hum Pathol. 2012, 43: 197-208. 10.1016/j.humpath.2011.04.015.CrossRefPubMed Arriaga JM, Levy EM, Bravo AI, Bayo SM, Amat M, Aris M, Hannois A, Bruno L, Roberti MP, Loria FS, Pairola A, Huertas E, Mordoh J, Bianchini M: Metallothionein expression in colorectal cancer: relevance of different isoforms for tumorprogression and patient survival. Hum Pathol. 2012, 43: 197-208. 10.1016/j.humpath.2011.04.015.CrossRefPubMed
21.
go back to reference Henrique R, Jerónimo C, Hoque MO, Nomoto S, Carvalho AL, Costa VL, Oliveira J, Teixeira MR, Lopes C, Sidransky D: MT1G hypermethylation is associated with higher tumor stage in prostate cancer. Cancer Epidemiol Biomarkers Prev. 2005, 14: 1274-1278. 10.1158/1055-9965.EPI-04-0659.CrossRefPubMed Henrique R, Jerónimo C, Hoque MO, Nomoto S, Carvalho AL, Costa VL, Oliveira J, Teixeira MR, Lopes C, Sidransky D: MT1G hypermethylation is associated with higher tumor stage in prostate cancer. Cancer Epidemiol Biomarkers Prev. 2005, 14: 1274-1278. 10.1158/1055-9965.EPI-04-0659.CrossRefPubMed
22.
go back to reference Huang Y, de la Chapelle A, Pellegata NS: Hypermethylation, but not LOH, is associated with the low expression of MT1G and CRABP1 in papillary thyroid carcinoma. Int J Cancer. 2003, 104: 735-744. 10.1002/ijc.11006.CrossRefPubMed Huang Y, de la Chapelle A, Pellegata NS: Hypermethylation, but not LOH, is associated with the low expression of MT1G and CRABP1 in papillary thyroid carcinoma. Int J Cancer. 2003, 104: 735-744. 10.1002/ijc.11006.CrossRefPubMed
23.
go back to reference Ferrario C, Lavagni P, Gariboldi M, Miranda C, Losa M, Cleris L, Formelli F, Pilotti S, Pierotti MA, Greco A: Metallothionein 1G acts as an oncosupressor in papillary thyroid carcinoma. Lab Invest. 2008, 88: 474-481. 10.1038/labinvest.2008.17.CrossRefPubMed Ferrario C, Lavagni P, Gariboldi M, Miranda C, Losa M, Cleris L, Formelli F, Pilotti S, Pierotti MA, Greco A: Metallothionein 1G acts as an oncosupressor in papillary thyroid carcinoma. Lab Invest. 2008, 88: 474-481. 10.1038/labinvest.2008.17.CrossRefPubMed
24.
go back to reference Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262.CrossRefPubMed Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262.CrossRefPubMed
25.
go back to reference Hou P, Ji M, Xing M: Association of PTEN gene methylation with genetic alterations in the phosphatidylinositol 3-kinase/AKT signaling pathway in thyroid tumors. Cancer. 2008, 113: 2440-2447. 10.1002/cncr.23869.CrossRefPubMed Hou P, Ji M, Xing M: Association of PTEN gene methylation with genetic alterations in the phosphatidylinositol 3-kinase/AKT signaling pathway in thyroid tumors. Cancer. 2008, 113: 2440-2447. 10.1002/cncr.23869.CrossRefPubMed
26.
go back to reference Liu D, Hou P, Liu Z, Wu G, Xing M: Genetic alterations in the phosphoinositide 3-kinase/Akt signaling pathway confer sensitivity of thyroid cancer cells to therapeutic targeting of Akt and mammalian target of rapamycin. Cancer Res. 2009, 69: 7311-7319. 10.1158/0008-5472.CAN-09-1077.CrossRefPubMedPubMedCentral Liu D, Hou P, Liu Z, Wu G, Xing M: Genetic alterations in the phosphoinositide 3-kinase/Akt signaling pathway confer sensitivity of thyroid cancer cells to therapeutic targeting of Akt and mammalian target of rapamycin. Cancer Res. 2009, 69: 7311-7319. 10.1158/0008-5472.CAN-09-1077.CrossRefPubMedPubMedCentral
27.
go back to reference Saraste A: Morphologic criteria and detection of apoptosis. Herz. 1999, 24: 189-195. 10.1007/BF03044961.CrossRefPubMed Saraste A: Morphologic criteria and detection of apoptosis. Herz. 1999, 24: 189-195. 10.1007/BF03044961.CrossRefPubMed
28.
go back to reference Mayo LD, Donner DB: A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci U S A. 2001, 98: 11598-11603. 10.1073/pnas.181181198.CrossRefPubMedPubMedCentral Mayo LD, Donner DB: A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci U S A. 2001, 98: 11598-11603. 10.1073/pnas.181181198.CrossRefPubMedPubMedCentral
29.
go back to reference Zhou BP, Liao Y, Xia W, Zou Y, Spohn B, Hung MC: HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol. 2001, 3: 973-982. 10.1038/ncb1101-973.CrossRefPubMed Zhou BP, Liao Y, Xia W, Zou Y, Spohn B, Hung MC: HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol. 2001, 3: 973-982. 10.1038/ncb1101-973.CrossRefPubMed
30.
go back to reference Ogawara Y, Kishishita S, Obata T, Isazawa Y, Suzuki T, Tanaka K, Masuyama N, Gotoh Y: Akt enhances Mdm2-mediated ubiquitination and degradation of p53. J Biol Chem. 2002, 277: 21843-21850. 10.1074/jbc.M109745200.CrossRefPubMed Ogawara Y, Kishishita S, Obata T, Isazawa Y, Suzuki T, Tanaka K, Masuyama N, Gotoh Y: Akt enhances Mdm2-mediated ubiquitination and degradation of p53. J Biol Chem. 2002, 277: 21843-21850. 10.1074/jbc.M109745200.CrossRefPubMed
31.
go back to reference Vivanco I, Sawyers CL: The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer. 2002, 2: 489-501. 10.1038/nrc839.CrossRefPubMed Vivanco I, Sawyers CL: The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer. 2002, 2: 489-501. 10.1038/nrc839.CrossRefPubMed
32.
go back to reference Larue L, Bellacosa A: Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene. 2005, 24: 7443-7454. 10.1038/sj.onc.1209091.CrossRefPubMed Larue L, Bellacosa A: Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene. 2005, 24: 7443-7454. 10.1038/sj.onc.1209091.CrossRefPubMed
33.
34.
go back to reference Polager S, Ginsberg D: p53 and E2f: partners in life and death. Nat Rev Cancer. 2009, 9: 738-748. 10.1038/nrc2718.CrossRefPubMed Polager S, Ginsberg D: p53 and E2f: partners in life and death. Nat Rev Cancer. 2009, 9: 738-748. 10.1038/nrc2718.CrossRefPubMed
35.
go back to reference Brzezianska E, Pastuszak-Lewandoska D: A minireview: the role of MAPK/ERK and PI3K/Akt pathways in thyroid follicular cell-derived neoplasm. Front Biosci. 2011, 16: 422-439. 10.2741/3696.CrossRef Brzezianska E, Pastuszak-Lewandoska D: A minireview: the role of MAPK/ERK and PI3K/Akt pathways in thyroid follicular cell-derived neoplasm. Front Biosci. 2011, 16: 422-439. 10.2741/3696.CrossRef
36.
go back to reference De Luca A, Maiello MR, D’Alessio A, Pergameno M, Normanno N: The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin Ther Targets. 2012, 16 (Suppl 2): S17-S27.CrossRefPubMed De Luca A, Maiello MR, D’Alessio A, Pergameno M, Normanno N: The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin Ther Targets. 2012, 16 (Suppl 2): S17-S27.CrossRefPubMed
37.
go back to reference Waldman T, Kinzler KW, Vogelstein B: p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res. 1995, 55: 5187-5190.PubMed Waldman T, Kinzler KW, Vogelstein B: p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res. 1995, 55: 5187-5190.PubMed
38.
go back to reference Leu JI, Dumont P, Hafey M, Murphy ME, George DL: Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat Cell Biol. 2004, 6: 443-450. 10.1038/ncb1123.CrossRefPubMed Leu JI, Dumont P, Hafey M, Murphy ME, George DL: Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat Cell Biol. 2004, 6: 443-450. 10.1038/ncb1123.CrossRefPubMed
39.
go back to reference Schuler M, Green DR: Mechanisms of p53-dependent apoptosis. Biochem Soc Trans. 2001, 29: 688-10.1042/BST0290688.CrossRef Schuler M, Green DR: Mechanisms of p53-dependent apoptosis. Biochem Soc Trans. 2001, 29: 688-10.1042/BST0290688.CrossRef
40.
go back to reference Levav-Cohen Y, Haupt S, Haupt Y: Mdm2 in growth signaling and cancer. Growth Factors. 2005, 23: 183-192. 10.1080/08977190500196218.CrossRefPubMed Levav-Cohen Y, Haupt S, Haupt Y: Mdm2 in growth signaling and cancer. Growth Factors. 2005, 23: 183-192. 10.1080/08977190500196218.CrossRefPubMed
41.
go back to reference Moll UM, Petrenko O: The MDM2-p53 interaction. Mol Cancer Res. 2003, 1: 1001-1008.PubMed Moll UM, Petrenko O: The MDM2-p53 interaction. Mol Cancer Res. 2003, 1: 1001-1008.PubMed
42.
go back to reference Cano A, Pérez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA: The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000, 2: 76-83. 10.1038/35000025.CrossRefPubMed Cano A, Pérez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA: The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000, 2: 76-83. 10.1038/35000025.CrossRefPubMed
43.
go back to reference Alves CC, Carneiro F, Hoefler H, Becker KF: Role of the epithelial-mesenchymal transition regulator Slug in primary human cancers. Front Biosci. 2009, 14: 3035-3050.CrossRef Alves CC, Carneiro F, Hoefler H, Becker KF: Role of the epithelial-mesenchymal transition regulator Slug in primary human cancers. Front Biosci. 2009, 14: 3035-3050.CrossRef
44.
45.
go back to reference Yang JY, Zong CS, Xia W, Wei Y, Ali-Seyed M, Li Z, Broglio K, Berry DA, Hung MC: MDM2 promotes cell motility and invasiveness by regulating E-cadherin degradation. Mol Cell Biol. 2006, 26: 7269-7282. 10.1128/MCB.00172-06.CrossRefPubMedPubMedCentral Yang JY, Zong CS, Xia W, Wei Y, Ali-Seyed M, Li Z, Broglio K, Berry DA, Hung MC: MDM2 promotes cell motility and invasiveness by regulating E-cadherin degradation. Mol Cell Biol. 2006, 26: 7269-7282. 10.1128/MCB.00172-06.CrossRefPubMedPubMedCentral
46.
go back to reference Kim TR, Lee HM, Lee SY, Kim EJ, Kim KC, Paik SG, Cho EW, Kim IG: SM22α-induced activation of p16INK4a/retinoblastoma pathway promotes cellular senescence caused by a subclinical dose of γ-radiation and doxorubicin in HepG2 cells. Biochem Biophys Res Commun. 2010, 400: 100-105. 10.1016/j.bbrc.2010.08.018.CrossRefPubMed Kim TR, Lee HM, Lee SY, Kim EJ, Kim KC, Paik SG, Cho EW, Kim IG: SM22α-induced activation of p16INK4a/retinoblastoma pathway promotes cellular senescence caused by a subclinical dose of γ-radiation and doxorubicin in HepG2 cells. Biochem Biophys Res Commun. 2010, 400: 100-105. 10.1016/j.bbrc.2010.08.018.CrossRefPubMed
Metadata
Title
Metallothionein 1G functions as a tumor suppressor in thyroid cancer through modulating the PI3K/Akt signaling pathway
Authors
Jiao Fu
Hongjun Lv
Haixia Guan
Xiaoying Ma
Meiju Ji
Nongyue He
Bingyin Shi
Peng Hou
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2013
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-13-462

Other articles of this Issue 1/2013

BMC Cancer 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine