Skip to main content
Top
Published in: BMC Cancer 1/2013

Open Access 01-12-2013 | Research article

HRG-β1-driven ErbB3 signaling induces epithelial–mesenchymal transition in breast cancer cells

Authors: Jinkyoung Kim, Hoiseon Jeong, Youngseok Lee, Chungyeul Kim, Hankyeom Kim, Aeree Kim

Published in: BMC Cancer | Issue 1/2013

Login to get access

Abstract

Background

Heregulin (HRG; also known as neuregulin) is a ligand for ErbB3. One of its isotypes, HRG-β1, binds to ErbB3 and forms heterodimers with other ErbB family members, thereby enhancing the proliferation and tumorigenesis of breast cancer cells. HRG stimulation may contribute to the progression of epithelial–mesenchymal transition (EMT) and tumor metastasis in breast cancer. Majority of studies regarding EMT has been concentrated on TGF-β signaling. Therefore, we investigated whether the HRG-β1 and ErbB3 activate Smad2 signaling during process of EMT in breast cancer cells.

Methods

The SK-BR-3 and MCF7 breast cancer cell lines were used. The expressions of phospho-Smad2 and EMT markers were observed by western blotting and immunofluorescence assays after treatment with HRG-β1. The cell motility and invasiveness were determined by wound healing and matrigel invasion assays. Smad2 and ErbB3 small interfering RNA (siRNA) transfections were performed to assess the involvement of ErbB3 and Smad2 in HRG-β1-induced EMT.

Results

HRG-β1 induced EMT through activation of Smad2. The expression of E-cadherin was decreased after HRG-β1 treatment, while the expressions of Snail, vimentin, and fibronectin were increased. The HRG-β1-induced expressions of Snail, vimentin, and fibronectin, and nuclear colocalization of phospho-Smad2 and Snail were inhibited by pretreatment with a PI3k inhibitor, LY294002, or two phospho-Smad2 inhibitors, PD169316 or SB203580 and cancer cell migration by HRG-β1 was inhibited. Knockdown of Smad2 by siRNA transfection suppressed the expressions of Snail and fibronectin in response to HRG-β1 stimulation and knockdown of ErbB3 suppressed the expressions of phospho-Smad2, Snail, and fibronectin induced by HRG-β1, whereas E-cadherin was increased compared with control siRNA-transfected cells. Knockdown of ErbB3 and Smad2 also decreased SK-BR-3 and MCF7 cell invasion.

Conclusions

Our data suggest that HRG-β1 and ErbB3 induce EMT, cancer cell migration and invasion through the PI3k/Akt-phospho-Smad2-Snail signaling pathway in SK-BR-3 and MCF7 breast cancer cells.
Appendix
Available only for authorised users
Literature
1.
go back to reference Thiery JP: Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002, 2 (6): 442-454. 10.1038/nrc822.CrossRefPubMed Thiery JP: Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002, 2 (6): 442-454. 10.1038/nrc822.CrossRefPubMed
2.
go back to reference Blick T, Hugo H, Widodo E, Waltham M, Pinto C, Mani SA, Weinberg RA, Neve RM, Lenburg ME, Thompson EW: Epithelial mesenchymal transition traits in human breast cancer cell lines parallel the CD44 hi/CD24 lo/-stem cell phenotype in human breast cancer. J Mammary Gland Biol Neoplasia. 2010, 15 (2): 235-252. 10.1007/s10911-010-9175-z.CrossRefPubMed Blick T, Hugo H, Widodo E, Waltham M, Pinto C, Mani SA, Weinberg RA, Neve RM, Lenburg ME, Thompson EW: Epithelial mesenchymal transition traits in human breast cancer cell lines parallel the CD44 hi/CD24 lo/-stem cell phenotype in human breast cancer. J Mammary Gland Biol Neoplasia. 2010, 15 (2): 235-252. 10.1007/s10911-010-9175-z.CrossRefPubMed
3.
go back to reference Barrallo-Gimeno A, Nieto MA: The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development. 2005, 132 (14): 3151-3161. 10.1242/dev.01907.CrossRefPubMed Barrallo-Gimeno A, Nieto MA: The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development. 2005, 132 (14): 3151-3161. 10.1242/dev.01907.CrossRefPubMed
6.
go back to reference Tsang KJ, Tsang D, Brown TN, Crowe DL: A novel dominant negative Smad2 mutation in a TGFβ resistant human carcinoma cell line. Anticancer Res. 2002, 22 (1A): 13-19.PubMed Tsang KJ, Tsang D, Brown TN, Crowe DL: A novel dominant negative Smad2 mutation in a TGFβ resistant human carcinoma cell line. Anticancer Res. 2002, 22 (1A): 13-19.PubMed
7.
go back to reference Fuxe J, Vincent T, Garcia de Herreros A: Transcriptional crosstalk between TGF-β and stem cell pathways in tumor cell invasion: role of EMT promoting Smad complexes. Cell Cycle. 2010, 9 (12): 2363-2374. 10.4161/cc.9.12.12050.CrossRefPubMed Fuxe J, Vincent T, Garcia de Herreros A: Transcriptional crosstalk between TGF-β and stem cell pathways in tumor cell invasion: role of EMT promoting Smad complexes. Cell Cycle. 2010, 9 (12): 2363-2374. 10.4161/cc.9.12.12050.CrossRefPubMed
8.
go back to reference Dhasarathy A, Phadke D, Mav D, Shah RR, Wade PA: The transcription factors Snail and Slug activate the transforming growth factor-beta signaling pathway in breast cancer. PLoS One. 2011, 6 (10): e26514-10.1371/journal.pone.0026514.CrossRefPubMedPubMedCentral Dhasarathy A, Phadke D, Mav D, Shah RR, Wade PA: The transcription factors Snail and Slug activate the transforming growth factor-beta signaling pathway in breast cancer. PLoS One. 2011, 6 (10): e26514-10.1371/journal.pone.0026514.CrossRefPubMedPubMedCentral
9.
go back to reference Nieto MA: The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol. 2002, 3 (3): 155-166.CrossRefPubMed Nieto MA: The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol. 2002, 3 (3): 155-166.CrossRefPubMed
10.
go back to reference Yang J, Weinberg RA: Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell. 2008, 14 (6): 818-829. 10.1016/j.devcel.2008.05.009.CrossRefPubMed Yang J, Weinberg RA: Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell. 2008, 14 (6): 818-829. 10.1016/j.devcel.2008.05.009.CrossRefPubMed
11.
go back to reference Garratt AN: “To erb-B or not to erb-B…” Neuregulin-1/ErbB signaling in heart development and function. J Mol Cell Cardiol. 2006, 41 (2): 215-10.1016/j.yjmcc.2006.05.020.CrossRefPubMed Garratt AN: “To erb-B or not to erb-B…” Neuregulin-1/ErbB signaling in heart development and function. J Mol Cell Cardiol. 2006, 41 (2): 215-10.1016/j.yjmcc.2006.05.020.CrossRefPubMed
12.
go back to reference Mirschberger C, Schiller CB, Schräml M, Dimoudis N, Friess T, Gerdes CA, Reiff U, Lifke V, Hoelzlwimmer G, Kolm I: RG7116, a therapeutic antibody that binds the inactive HER3 receptor and is optimized for immune effector activation. Cancer Res. 2013, 73 (16): OF1-OF12.CrossRef Mirschberger C, Schiller CB, Schräml M, Dimoudis N, Friess T, Gerdes CA, Reiff U, Lifke V, Hoelzlwimmer G, Kolm I: RG7116, a therapeutic antibody that binds the inactive HER3 receptor and is optimized for immune effector activation. Cancer Res. 2013, 73 (16): OF1-OF12.CrossRef
13.
go back to reference Falls DL: Neuregulins: functions, forms, and signaling strategies. Exp Cell Res. 2003, 284 (1): 14-30. 10.1016/S0014-4827(02)00102-7.CrossRefPubMed Falls DL: Neuregulins: functions, forms, and signaling strategies. Exp Cell Res. 2003, 284 (1): 14-30. 10.1016/S0014-4827(02)00102-7.CrossRefPubMed
14.
go back to reference Esper RM, Pankonin MS, Loeb JA: Neuregulins: versatile growth and differentiation factors in nervous system development and human disease. Brain Res Rev. 2006, 51 (2): 161-175. 10.1016/j.brainresrev.2005.11.006.CrossRefPubMed Esper RM, Pankonin MS, Loeb JA: Neuregulins: versatile growth and differentiation factors in nervous system development and human disease. Brain Res Rev. 2006, 51 (2): 161-175. 10.1016/j.brainresrev.2005.11.006.CrossRefPubMed
15.
go back to reference Harrison PJ, Law AJ: Neuregulin 1 and schizophrenia: genetics, gene expression, and neurobiology. Biol Psychiatry. 2006, 60 (2): 132-140. 10.1016/j.biopsych.2005.11.002.CrossRefPubMed Harrison PJ, Law AJ: Neuregulin 1 and schizophrenia: genetics, gene expression, and neurobiology. Biol Psychiatry. 2006, 60 (2): 132-140. 10.1016/j.biopsych.2005.11.002.CrossRefPubMed
16.
go back to reference Panutsopulos D, Arvanitis DL, Tsatsanis C, Papalambros E, Sigala F, Spandidos DA: Expression of heregulin in human coronary atherosclerotic lesions. J Vasc Res. 2005, 42 (6): 463-474. 10.1159/000088100.CrossRefPubMed Panutsopulos D, Arvanitis DL, Tsatsanis C, Papalambros E, Sigala F, Spandidos DA: Expression of heregulin in human coronary atherosclerotic lesions. J Vasc Res. 2005, 42 (6): 463-474. 10.1159/000088100.CrossRefPubMed
17.
go back to reference Menendez JA, Mehmi I, Lupu R: Trastuzumab in combination with heregulin-activated Her-2 (erbB-2) triggers a receptor-enhanced chemosensitivity effect in the absence of Her-2 overexpression. J Clin Oncol. 2006, 24 (23): 3735-3746. 10.1200/JCO.2005.04.3489.CrossRefPubMed Menendez JA, Mehmi I, Lupu R: Trastuzumab in combination with heregulin-activated Her-2 (erbB-2) triggers a receptor-enhanced chemosensitivity effect in the absence of Her-2 overexpression. J Clin Oncol. 2006, 24 (23): 3735-3746. 10.1200/JCO.2005.04.3489.CrossRefPubMed
18.
go back to reference Dunn M, Sinha P, Campbell R, Blackburn E, Levinson N, Rampaul R, Bates T, Humphreys S, Gullick WJ: Co‒expression of neuregulins 1, 2, 3 and 4 in human breast cancer. J Pathol. 2004, 203 (2): 672-680. 10.1002/path.1561.CrossRefPubMed Dunn M, Sinha P, Campbell R, Blackburn E, Levinson N, Rampaul R, Bates T, Humphreys S, Gullick WJ: Co‒expression of neuregulins 1, 2, 3 and 4 in human breast cancer. J Pathol. 2004, 203 (2): 672-680. 10.1002/path.1561.CrossRefPubMed
19.
go back to reference Cheng LS, Zha Z, Lang B, Liu J, Yao XB: Heregulin-β1 promotes metastasis of breast cancer cell line SKBR3 through upregulation of Snail and induction of epithelial-mesenchymal transition. Cancer Lett. 2009, 280 (1): 50-60. 10.1016/j.canlet.2009.02.007.CrossRefPubMed Cheng LS, Zha Z, Lang B, Liu J, Yao XB: Heregulin-β1 promotes metastasis of breast cancer cell line SKBR3 through upregulation of Snail and induction of epithelial-mesenchymal transition. Cancer Lett. 2009, 280 (1): 50-60. 10.1016/j.canlet.2009.02.007.CrossRefPubMed
20.
go back to reference Qureshi HY, Ricci G, Zafarullah M: Smad signaling pathway is a pivotal component of tissue inhibitor of metalloproteinases-3 regulation by transforming growth factor beta in human chondrocytes. Biochim Biophys Acta. 2008, 1783 (9): 1605-1612. 10.1016/j.bbamcr.2008.04.005.CrossRefPubMed Qureshi HY, Ricci G, Zafarullah M: Smad signaling pathway is a pivotal component of tissue inhibitor of metalloproteinases-3 regulation by transforming growth factor beta in human chondrocytes. Biochim Biophys Acta. 2008, 1783 (9): 1605-1612. 10.1016/j.bbamcr.2008.04.005.CrossRefPubMed
21.
go back to reference Fu Y, O’Connor LM, Shepherd TG, Nachtigal MW: The p38 MAPK inhibitor, PD169316, inhibits transforming growth factor β-induced Smad signaling in human ovarian cancer cells. Biochem Biophys Res Commun. 2003, 310 (2): 391-397. 10.1016/j.bbrc.2003.09.021.CrossRefPubMed Fu Y, O’Connor LM, Shepherd TG, Nachtigal MW: The p38 MAPK inhibitor, PD169316, inhibits transforming growth factor β-induced Smad signaling in human ovarian cancer cells. Biochem Biophys Res Commun. 2003, 310 (2): 391-397. 10.1016/j.bbrc.2003.09.021.CrossRefPubMed
22.
go back to reference Nawshad A, Medici D, Liu CC, Hay ED: TGFβ3 inhibits E-cadherin gene expression in palate medial-edge epithelial cells through a Smad2-Smad4-LEF1 transcription complex. J Cell Sci. 2007, 120 (9): 1646-1653. 10.1242/jcs.003129.CrossRefPubMedPubMedCentral Nawshad A, Medici D, Liu CC, Hay ED: TGFβ3 inhibits E-cadherin gene expression in palate medial-edge epithelial cells through a Smad2-Smad4-LEF1 transcription complex. J Cell Sci. 2007, 120 (9): 1646-1653. 10.1242/jcs.003129.CrossRefPubMedPubMedCentral
23.
go back to reference Jeong H, Ryu Y, An J, Lee Y, Kim A: Epithelial–mesenchymal transition in breast cancer correlates with high histological grade and triple-negative phenotype. Histopathology. 2012, 60: E87-E95. 10.1111/j.1365-2559.2012.04195.x.CrossRefPubMed Jeong H, Ryu Y, An J, Lee Y, Kim A: Epithelial–mesenchymal transition in breast cancer correlates with high histological grade and triple-negative phenotype. Histopathology. 2012, 60: E87-E95. 10.1111/j.1365-2559.2012.04195.x.CrossRefPubMed
24.
go back to reference Marchini C, Montani M, Konstantinidou G, Orrù R, Mannucci S, Ramadori G, Gabrielli F, Baruzzi A, Berton G, Merigo F: Mesenchymal/stromal gene expression signature relates to basal-like breast cancers, identifies bone metastasis and predicts resistance to therapies. PLoS One. 2010, 5 (11): e14131-10.1371/journal.pone.0014131.CrossRefPubMedPubMedCentral Marchini C, Montani M, Konstantinidou G, Orrù R, Mannucci S, Ramadori G, Gabrielli F, Baruzzi A, Berton G, Merigo F: Mesenchymal/stromal gene expression signature relates to basal-like breast cancers, identifies bone metastasis and predicts resistance to therapies. PLoS One. 2010, 5 (11): e14131-10.1371/journal.pone.0014131.CrossRefPubMedPubMedCentral
25.
go back to reference Godde NJ, Galea RC, Elsum IA, Humbert PO: Cell polarity in motion: redefining mammary tissue organization through EMT and cell polarity transitions. J Mammary Gland Biol Neoplasia. 2010, 15 (2): 149-168. 10.1007/s10911-010-9180-2.CrossRefPubMed Godde NJ, Galea RC, Elsum IA, Humbert PO: Cell polarity in motion: redefining mammary tissue organization through EMT and cell polarity transitions. J Mammary Gland Biol Neoplasia. 2010, 15 (2): 149-168. 10.1007/s10911-010-9180-2.CrossRefPubMed
26.
go back to reference Hijazi MM, Thompson EW, Tang C, Coopman P, Torri JA, Yang D, Mueller SC, Lupu R: Heregulin regulates the actin cytoskeleton and promotes invasive properties in breast cancer cell lines. Int J Oncol. 2000, 17 (4): 629-PubMed Hijazi MM, Thompson EW, Tang C, Coopman P, Torri JA, Yang D, Mueller SC, Lupu R: Heregulin regulates the actin cytoskeleton and promotes invasive properties in breast cancer cell lines. Int J Oncol. 2000, 17 (4): 629-PubMed
27.
go back to reference Chang HW, Aoki M, Fruman D, Auger KR, Bellacosa A, Tsichlis PN, Cantley LC, Roberts TM, Vogt PK: Transformation of chicken cells by the gene encoding the catalytic subunit of PI 3-kinase. Science. 1997, 276 (5320): 1848-1850. 10.1126/science.276.5320.1848.CrossRefPubMed Chang HW, Aoki M, Fruman D, Auger KR, Bellacosa A, Tsichlis PN, Cantley LC, Roberts TM, Vogt PK: Transformation of chicken cells by the gene encoding the catalytic subunit of PI 3-kinase. Science. 1997, 276 (5320): 1848-1850. 10.1126/science.276.5320.1848.CrossRefPubMed
28.
go back to reference Hermanto U, Zong CS, Wang LH: ErbB2-overexpressing human mammary carcinoma cells display an increased requirement for the phosphatidylinositol 3-kinase signaling pathway in anchorage-independent growth. Oncogene. 2001, 20 (51): 7551-10.1038/sj.onc.1204964.CrossRefPubMed Hermanto U, Zong CS, Wang LH: ErbB2-overexpressing human mammary carcinoma cells display an increased requirement for the phosphatidylinositol 3-kinase signaling pathway in anchorage-independent growth. Oncogene. 2001, 20 (51): 7551-10.1038/sj.onc.1204964.CrossRefPubMed
29.
go back to reference Holbro T, Beerli RR, Maurer F, Koziczak M, Barbas CF, Hynes NE: The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to drive breast tumor cell proliferation. Proc Natl Acad Sci U S A. 2003, 100 (15): 8933-10.1073/pnas.1537685100.CrossRefPubMedPubMedCentral Holbro T, Beerli RR, Maurer F, Koziczak M, Barbas CF, Hynes NE: The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to drive breast tumor cell proliferation. Proc Natl Acad Sci U S A. 2003, 100 (15): 8933-10.1073/pnas.1537685100.CrossRefPubMedPubMedCentral
30.
go back to reference Kim A, Liu B, Ordonez-Ercan D, Alvarez K, Jones L, McKimmey C, Edgerton S, Yang XH, Thor A: Functional interaction between mouse erbB3 and wild-type rat c-neu in transgenic mouse mammary tumor cells. Breast Cancer Res. 2005, 7 (5): R708-R718. 10.1186/bcr1281.CrossRefPubMedPubMedCentral Kim A, Liu B, Ordonez-Ercan D, Alvarez K, Jones L, McKimmey C, Edgerton S, Yang XH, Thor A: Functional interaction between mouse erbB3 and wild-type rat c-neu in transgenic mouse mammary tumor cells. Breast Cancer Res. 2005, 7 (5): R708-R718. 10.1186/bcr1281.CrossRefPubMedPubMedCentral
31.
go back to reference Pearson G, Robinson F, Gibson TB, Xu B, Karandikar M, Berman K, Cobb MH: Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev. 2001, 22 (2): 153-183. 10.1210/er.22.2.153.PubMed Pearson G, Robinson F, Gibson TB, Xu B, Karandikar M, Berman K, Cobb MH: Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev. 2001, 22 (2): 153-183. 10.1210/er.22.2.153.PubMed
32.
go back to reference Castagnino P, Lorenzi MV, Yeh J, Breckenridge D, Sakata H, Munz B, Werner S, Bottaro DP: Neu differentiation factor/heregulin induction by hepatocyte and keratinocyte growth factors. Oncogene. 2000, 19 (5): 640-10.1038/sj.onc.1203357.CrossRefPubMed Castagnino P, Lorenzi MV, Yeh J, Breckenridge D, Sakata H, Munz B, Werner S, Bottaro DP: Neu differentiation factor/heregulin induction by hepatocyte and keratinocyte growth factors. Oncogene. 2000, 19 (5): 640-10.1038/sj.onc.1203357.CrossRefPubMed
33.
go back to reference Tsai M-S, Shamon-Taylor LA, Mehmi I, Tang CK, Lupu R: Blockage of heregulin expression inhibits tumorigenicity and metastasis of breast cancer. Oncogene. 2003, 22 (5): 761-768. 10.1038/sj.onc.1206130.CrossRefPubMed Tsai M-S, Shamon-Taylor LA, Mehmi I, Tang CK, Lupu R: Blockage of heregulin expression inhibits tumorigenicity and metastasis of breast cancer. Oncogene. 2003, 22 (5): 761-768. 10.1038/sj.onc.1206130.CrossRefPubMed
34.
go back to reference Hutcheson IR, Knowlden JM, Hiscox SE, Barrow D, Gee J, Robertson JF, Ellis IO, Nicholson RI: Heregulin beta1 drives gefitinib-resistant growth and invasion in tamoxifen-resistant MCF-7 breast cancer cells. Breast Cancer Res. 2007, 9 (4): R50-10.1186/bcr1754.CrossRefPubMedPubMedCentral Hutcheson IR, Knowlden JM, Hiscox SE, Barrow D, Gee J, Robertson JF, Ellis IO, Nicholson RI: Heregulin beta1 drives gefitinib-resistant growth and invasion in tamoxifen-resistant MCF-7 breast cancer cells. Breast Cancer Res. 2007, 9 (4): R50-10.1186/bcr1754.CrossRefPubMedPubMedCentral
Metadata
Title
HRG-β1-driven ErbB3 signaling induces epithelial–mesenchymal transition in breast cancer cells
Authors
Jinkyoung Kim
Hoiseon Jeong
Youngseok Lee
Chungyeul Kim
Hankyeom Kim
Aeree Kim
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2013
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-13-383

Other articles of this Issue 1/2013

BMC Cancer 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine