Skip to main content
Top
Published in: BMC Cancer 1/2013

Open Access 01-12-2013 | Research article

Expression and significance of HMGB1, TLR4 and NF-κB p65 in human epidermal tumors

Authors: Hui Weng, Yunhua Deng, Yuyan Xie, Hongbo Liu, Feili Gong

Published in: BMC Cancer | Issue 1/2013

Login to get access

Abstract

Background

High mobility group protein box 1 (HMGB1) is a DNA binding protein located in nucleus. It is released into extracellular fluid where it acts as a novel proinflammatory cytokine which interacts with Toll like receptor 4 (TLR4) to activate nuclear factor-κB (NF-κB). This sequence of events is involved in tumor growth and progression. However, the effects of HMGB1, TLR4 and NF-κB on epidermal tumors remain unclear.

Methods

Human epidermal tumor specimens were obtained from 96 patients. Immunohistochemistry was used to detect expression of HMGB1, TLR4 and NF-κB p65 in human epidermal tumor and normal skin specimens. Western blot analysis was used to detect the expression of NF-κB p65 in epithelial cell nuclei in human epidermal tumor and normal tissues.

Results

Immunohistochemistry and western blot analysis indicated a progressive but statistically significant increase in p65 expression in epithelial nuclei in benign seborrheic keratosis (SK), precancerous lesions (PCL), low malignancy basal cell carcinoma (BCC) and high malignancy squamous cell carcinoma (SCC) (P <0.01). The level of extracellular HMGB1 in SK was significantly higher than in normal skin (NS) (P <0.01), and was higher than in SCC but without statistical significance. The level of TLR4 on epithelial membranes of SCC cells was significantly higher than in SK, PCL, BCC and NS (P <0.01). There was a significant positive correlation between p65 expression in the epithelial nuclei and TLR4 expression on the epithelial cell membranes (r = 0.3212, P <0.01).

Conclusions

These findings indicate that inflammation is intensified in parallel with increasing malignancy. They also indicate that the TLR4 signaling pathway, rather than HMGB1, may be the principal mediator of inflammation in high-grade malignant epidermal tumors. Combined detection of p65 in the epithelial nuclei and TLR4 on the epithelial membranes may assist the accurate diagnosis of malignant epidermal tumors.
Appendix
Available only for authorised users
Literature
1.
go back to reference Barta P, Van Pelt C, Men T, Dickey BF, Lotan R, Moghaddam SJ: Enhancement of lung tumorigenesis in a Gprc5a knockout mouse by chronic extrinsic airway inflammation. Mol Cancer. 2012, 11: 4-10.1186/1476-4598-11-4.CrossRefPubMedPubMedCentral Barta P, Van Pelt C, Men T, Dickey BF, Lotan R, Moghaddam SJ: Enhancement of lung tumorigenesis in a Gprc5a knockout mouse by chronic extrinsic airway inflammation. Mol Cancer. 2012, 11: 4-10.1186/1476-4598-11-4.CrossRefPubMedPubMedCentral
2.
go back to reference Kyewski B, Romero P: Chronic inflammation is regarded as a strong promoter of tumorigenesis. Int J Cancer. 2010, 127 (4): 747-PubMed Kyewski B, Romero P: Chronic inflammation is regarded as a strong promoter of tumorigenesis. Int J Cancer. 2010, 127 (4): 747-PubMed
3.
go back to reference Carothers AM, Davids JS, Damas BC, Bertagnolli MM: Persistent cyclooxygenase-2 inhibition downregulates NF-{kappa}B, resulting in chronic intestinal inflammation in the min/+ mouse model of colon tumorigenesis. Cancer Res. 2010, 70 (11): 4433-4442. 10.1158/0008-5472.CAN-09-4289.CrossRefPubMedPubMedCentral Carothers AM, Davids JS, Damas BC, Bertagnolli MM: Persistent cyclooxygenase-2 inhibition downregulates NF-{kappa}B, resulting in chronic intestinal inflammation in the min/+ mouse model of colon tumorigenesis. Cancer Res. 2010, 70 (11): 4433-4442. 10.1158/0008-5472.CAN-09-4289.CrossRefPubMedPubMedCentral
4.
go back to reference Jube S, Rivera Z, Bianchi ME, Powers A, Wang E, Pagano IS, Pass HI, Gaudino G, Carbone M, Yang H: Cancer cell secretion of the DAMP protein HMGB1 supports progression in malignant mesothelioma. Cancer Res. 2012, 72 (13): 3290-3301. 10.1158/0008-5472.CAN-11-3481.CrossRefPubMedPubMedCentral Jube S, Rivera Z, Bianchi ME, Powers A, Wang E, Pagano IS, Pass HI, Gaudino G, Carbone M, Yang H: Cancer cell secretion of the DAMP protein HMGB1 supports progression in malignant mesothelioma. Cancer Res. 2012, 72 (13): 3290-3301. 10.1158/0008-5472.CAN-11-3481.CrossRefPubMedPubMedCentral
5.
go back to reference Bianchi ME: DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol. 2007, 81 (1): 1-5.CrossRefPubMed Bianchi ME: DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol. 2007, 81 (1): 1-5.CrossRefPubMed
6.
go back to reference Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ: HMGB1 And RAGE in inflammation and cancer. Annu Rev Immunol. 2010, 28: 367-388. 10.1146/annurev.immunol.021908.132603.CrossRefPubMed Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ: HMGB1 And RAGE in inflammation and cancer. Annu Rev Immunol. 2010, 28: 367-388. 10.1146/annurev.immunol.021908.132603.CrossRefPubMed
7.
go back to reference Rovere-Querini P, Capobianco A, Scaffidi P, Valentinis B, Catalanotti F, Giazzon M, Dumitriu IE, Muller S, Iannacone M, Traversari C, et al: HMGB1 Is an endogenous immune adjuvant released by necrotic cells. EMBO Rep. 2004, 5 (8): 825-830. 10.1038/sj.embor.7400205.CrossRefPubMedPubMedCentral Rovere-Querini P, Capobianco A, Scaffidi P, Valentinis B, Catalanotti F, Giazzon M, Dumitriu IE, Muller S, Iannacone M, Traversari C, et al: HMGB1 Is an endogenous immune adjuvant released by necrotic cells. EMBO Rep. 2004, 5 (8): 825-830. 10.1038/sj.embor.7400205.CrossRefPubMedPubMedCentral
8.
go back to reference Dai S, Sodhi C, Cetin S, Richardson W, Branca M, Neal MD, Prindle T, Ma C, Shapiro RA, Li B, et al: Extracellular high mobility group box-1 (HMGB1) inhibits enterocyte migration via activation of toll-like receptor-4 and increased cell-matrix adhesiveness. J Biol Chem. 2010, 285 (7): 4995-5002. 10.1074/jbc.M109.067454.CrossRefPubMed Dai S, Sodhi C, Cetin S, Richardson W, Branca M, Neal MD, Prindle T, Ma C, Shapiro RA, Li B, et al: Extracellular high mobility group box-1 (HMGB1) inhibits enterocyte migration via activation of toll-like receptor-4 and increased cell-matrix adhesiveness. J Biol Chem. 2010, 285 (7): 4995-5002. 10.1074/jbc.M109.067454.CrossRefPubMed
9.
go back to reference Akaike H, Kono K, Sugai H, Takahashi A, Mimura K, Kawaguchi Y, Fujii H: Expression of high mobility group box chromosomal protein-1 (HMGB-1) in gastric cancer. Anticancer Res. 2007, 27 (1A): 449-457.PubMed Akaike H, Kono K, Sugai H, Takahashi A, Mimura K, Kawaguchi Y, Fujii H: Expression of high mobility group box chromosomal protein-1 (HMGB-1) in gastric cancer. Anticancer Res. 2007, 27 (1A): 449-457.PubMed
10.
go back to reference Ellerman JE, Brown CK, De Vera M, Zeh HJ, Billiar T, Rubartelli A, Lotze MT: Masquerader: high mobility group box-1 and cancer. Clin Cancer Res. 2007, 13 (10): 2836-2848. 10.1158/1078-0432.CCR-06-1953.CrossRefPubMed Ellerman JE, Brown CK, De Vera M, Zeh HJ, Billiar T, Rubartelli A, Lotze MT: Masquerader: high mobility group box-1 and cancer. Clin Cancer Res. 2007, 13 (10): 2836-2848. 10.1158/1078-0432.CCR-06-1953.CrossRefPubMed
11.
go back to reference Tadie JM, Bae HB, Deshane JS, Bell CP, Lazarowski ER, Chaplin DD, Thannickal VJ, Abraham E, Zmijewski JW: TLR4 Engagement inhibits AMPK activation through a HMGB1 dependent mechanism. Mol Med. 2012, 9 (18): 659-668. Tadie JM, Bae HB, Deshane JS, Bell CP, Lazarowski ER, Chaplin DD, Thannickal VJ, Abraham E, Zmijewski JW: TLR4 Engagement inhibits AMPK activation through a HMGB1 dependent mechanism. Mol Med. 2012, 9 (18): 659-668.
12.
14.
go back to reference Liu PL, Tsai JR, Hwang JJ, Chou SH, Cheng YJ, Lin FY, Chen YL, Hung CY, Chen WC, Chen YH, et al: High-mobility group box 1-mediated matrix metalloproteinase-9 expression in non-small cell lung cancer contributes to tumor cell invasiveness. Am J Respir Cell Mol Biol. 2010, 43 (5): 530-538. 10.1165/rcmb.2009-0269OC.CrossRefPubMed Liu PL, Tsai JR, Hwang JJ, Chou SH, Cheng YJ, Lin FY, Chen YL, Hung CY, Chen WC, Chen YH, et al: High-mobility group box 1-mediated matrix metalloproteinase-9 expression in non-small cell lung cancer contributes to tumor cell invasiveness. Am J Respir Cell Mol Biol. 2010, 43 (5): 530-538. 10.1165/rcmb.2009-0269OC.CrossRefPubMed
15.
go back to reference Pacifico F, Leonardi A: NF-kappaB in solid tumors. Biochem Pharmacol. 2006, 72 (9): 1142-1152. 10.1016/j.bcp.2006.07.032.CrossRefPubMed Pacifico F, Leonardi A: NF-kappaB in solid tumors. Biochem Pharmacol. 2006, 72 (9): 1142-1152. 10.1016/j.bcp.2006.07.032.CrossRefPubMed
16.
go back to reference Peek RM, Fiske C, Wilson KT: Role of innate immunity in helicobacter pylori-induced gastric malignancy. Physiol Rev. 2010, 90 (3): 831-858. 10.1152/physrev.00039.2009.CrossRefPubMedPubMedCentral Peek RM, Fiske C, Wilson KT: Role of innate immunity in helicobacter pylori-induced gastric malignancy. Physiol Rev. 2010, 90 (3): 831-858. 10.1152/physrev.00039.2009.CrossRefPubMedPubMedCentral
17.
go back to reference Ito Y, Bhawal UK, Sasahira T, Toyama T, Sato T, Matsuda D, Nishikiori H, Kobayashi M, Sugiyama M, Hamada N, et al: Involvement of HMGB1 and RAGE in IL-1beta-induced gingival inflammation. Arch Oral Biol. 2012, 57 (1): 73-80. 10.1016/j.archoralbio.2011.08.001.CrossRefPubMed Ito Y, Bhawal UK, Sasahira T, Toyama T, Sato T, Matsuda D, Nishikiori H, Kobayashi M, Sugiyama M, Hamada N, et al: Involvement of HMGB1 and RAGE in IL-1beta-induced gingival inflammation. Arch Oral Biol. 2012, 57 (1): 73-80. 10.1016/j.archoralbio.2011.08.001.CrossRefPubMed
18.
go back to reference Agresti A, Lupo R, Bianchi ME, Muller S: HMGB1 Interacts differentially with members of the Rel family of transcription factors. Biochem Biophys Res Commun. 2003, 302 (2): 421-426. 10.1016/S0006-291X(03)00184-0.CrossRefPubMed Agresti A, Lupo R, Bianchi ME, Muller S: HMGB1 Interacts differentially with members of the Rel family of transcription factors. Biochem Biophys Res Commun. 2003, 302 (2): 421-426. 10.1016/S0006-291X(03)00184-0.CrossRefPubMed
19.
go back to reference Kim SW, Lim CM, Kim JB, Shin JH, Lee S, Lee M, Lee JK: Extracellular HMGB1 released by NMDA treatment confers neuronal apoptosis via RAGE-p38 MAPK/ERK signaling pathway. Neurotox Res. 2011, 20 (2): 159-169. 10.1007/s12640-010-9231-x.CrossRefPubMed Kim SW, Lim CM, Kim JB, Shin JH, Lee S, Lee M, Lee JK: Extracellular HMGB1 released by NMDA treatment confers neuronal apoptosis via RAGE-p38 MAPK/ERK signaling pathway. Neurotox Res. 2011, 20 (2): 159-169. 10.1007/s12640-010-9231-x.CrossRefPubMed
20.
go back to reference Nogueira-Machado JA, Volpe CM, Veloso CA, Chaves MM: HMGB1, TLR and RAGE: a functional tripod that leads to diabetic inflammation. Expert Opin Ther Targets. 2011, 15 (8): 1023-1035. 10.1517/14728222.2011.575360.CrossRefPubMed Nogueira-Machado JA, Volpe CM, Veloso CA, Chaves MM: HMGB1, TLR and RAGE: a functional tripod that leads to diabetic inflammation. Expert Opin Ther Targets. 2011, 15 (8): 1023-1035. 10.1517/14728222.2011.575360.CrossRefPubMed
21.
go back to reference Andersson U, Rauvala H: Introduction: HMGB1 in inflammation and innate immunity. J Intern Med. 2011, 270 (4): 296-300. 10.1111/j.1365-2796.2011.02430.x.CrossRefPubMed Andersson U, Rauvala H: Introduction: HMGB1 in inflammation and innate immunity. J Intern Med. 2011, 270 (4): 296-300. 10.1111/j.1365-2796.2011.02430.x.CrossRefPubMed
22.
go back to reference Vitali R, Stronati L, Negroni A, Di Nardo G, Pierdomenico M, Del Giudice E, Rossi P, Cucchiara S: Fecal HMGB1 is a novel marker of intestinal mucosal inflammation in pediatric inflammatory bowel disease. Am J Gastroenterol. 2011, 106 (11): 2029-2040. 10.1038/ajg.2011.231.CrossRefPubMed Vitali R, Stronati L, Negroni A, Di Nardo G, Pierdomenico M, Del Giudice E, Rossi P, Cucchiara S: Fecal HMGB1 is a novel marker of intestinal mucosal inflammation in pediatric inflammatory bowel disease. Am J Gastroenterol. 2011, 106 (11): 2029-2040. 10.1038/ajg.2011.231.CrossRefPubMed
23.
go back to reference Hashimoto C, Hudson KL, Anderson KV: The toll gene of drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell. 1988, 52 (2): 269-279. 10.1016/0092-8674(88)90516-8.CrossRefPubMed Hashimoto C, Hudson KL, Anderson KV: The toll gene of drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell. 1988, 52 (2): 269-279. 10.1016/0092-8674(88)90516-8.CrossRefPubMed
24.
go back to reference Wu B, Huan T, Gong J, Zhou P, Bai Z: Domain combination of the vertebrate-like TLR gene family: implications for their origin and evolution. J Genet. 2011, 90 (3): 401-408. 10.1007/s12041-011-0097-3.CrossRefPubMed Wu B, Huan T, Gong J, Zhou P, Bai Z: Domain combination of the vertebrate-like TLR gene family: implications for their origin and evolution. J Genet. 2011, 90 (3): 401-408. 10.1007/s12041-011-0097-3.CrossRefPubMed
25.
go back to reference Cook DN, Pisetsky DS, Schwartz DA: Toll-like receptors in the pathogenesis of human disease. Nat Immunol. 2004, 5 (10): 975-979. 10.1038/ni1116.CrossRefPubMed Cook DN, Pisetsky DS, Schwartz DA: Toll-like receptors in the pathogenesis of human disease. Nat Immunol. 2004, 5 (10): 975-979. 10.1038/ni1116.CrossRefPubMed
26.
27.
go back to reference Bauerfeld CP, Rastogi R, Pirockinaite G, Lee I, Huttemann M, Monks B, Birnbaum MJ, Franchi L, Nunez G, Samavati L: TLR4-Mediated AKT activation is MyD88/TRIF dependent and critical for induction of oxidative phosphorylation and mitochondrial transcription factor a in murine macrophages. J Immunol. 2012, 188 (6): 2847-2857. 10.4049/jimmunol.1102157.CrossRefPubMedPubMedCentral Bauerfeld CP, Rastogi R, Pirockinaite G, Lee I, Huttemann M, Monks B, Birnbaum MJ, Franchi L, Nunez G, Samavati L: TLR4-Mediated AKT activation is MyD88/TRIF dependent and critical for induction of oxidative phosphorylation and mitochondrial transcription factor a in murine macrophages. J Immunol. 2012, 188 (6): 2847-2857. 10.4049/jimmunol.1102157.CrossRefPubMedPubMedCentral
28.
go back to reference Hirano H, Yoshioka T, Yunoue S, Fujio S, Yonezawa H, Niiro T, Habu M, Oyoshi T, Sugata S, Kamezawa T, et al: TLR4, IL-6, IL-18, MyD88 and HMGB1 are highly expressed in intracranial inflammatory lesions and the IgG4/IgG ratio correlates with TLR4 and IL-6. Neuropathology. 2012, 32 (6): 628-637. 10.1111/j.1440-1789.2012.01310.x.CrossRefPubMed Hirano H, Yoshioka T, Yunoue S, Fujio S, Yonezawa H, Niiro T, Habu M, Oyoshi T, Sugata S, Kamezawa T, et al: TLR4, IL-6, IL-18, MyD88 and HMGB1 are highly expressed in intracranial inflammatory lesions and the IgG4/IgG ratio correlates with TLR4 and IL-6. Neuropathology. 2012, 32 (6): 628-637. 10.1111/j.1440-1789.2012.01310.x.CrossRefPubMed
29.
go back to reference Ghosh S, Hayden MS: New regulators of NF-kappaB in inflammation. Nat Rev Immunol. 2008, 8 (11): 837-848. 10.1038/nri2423.CrossRefPubMed Ghosh S, Hayden MS: New regulators of NF-kappaB in inflammation. Nat Rev Immunol. 2008, 8 (11): 837-848. 10.1038/nri2423.CrossRefPubMed
30.
go back to reference Karin M, Greten FR: NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol. 2005, 5 (10): 749-759. 10.1038/nri1703.CrossRefPubMed Karin M, Greten FR: NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol. 2005, 5 (10): 749-759. 10.1038/nri1703.CrossRefPubMed
31.
go back to reference Oeckinghaus A, Hayden MS, Ghosh S: Crosstalk in NF-kappaB signaling pathways. Nat Immunol. 2011, 12 (8): 695-708. 10.1038/ni.2065.CrossRefPubMed Oeckinghaus A, Hayden MS, Ghosh S: Crosstalk in NF-kappaB signaling pathways. Nat Immunol. 2011, 12 (8): 695-708. 10.1038/ni.2065.CrossRefPubMed
32.
go back to reference Siggers T, Chang AB, Teixeira A, Wong D, Williams KJ, Ahmed B, Ragoussis J, Udalova IA, Smale ST, Bulyk ML: Principles of dimer-specific gene regulation revealed by a comprehensive characterization of NF-kappaB family DNA binding. Nat Immunol. 2012, 13 (1): 95-102.CrossRef Siggers T, Chang AB, Teixeira A, Wong D, Williams KJ, Ahmed B, Ragoussis J, Udalova IA, Smale ST, Bulyk ML: Principles of dimer-specific gene regulation revealed by a comprehensive characterization of NF-kappaB family DNA binding. Nat Immunol. 2012, 13 (1): 95-102.CrossRef
33.
go back to reference Espinosa L, Bigas A, Mulero MC: Alternative nuclear functions for NF-kappaB family members. Am J Cancer Res. 2011, 1 (4): 446-459.PubMedPubMedCentral Espinosa L, Bigas A, Mulero MC: Alternative nuclear functions for NF-kappaB family members. Am J Cancer Res. 2011, 1 (4): 446-459.PubMedPubMedCentral
34.
go back to reference Yadav VR, Prasad S, Gupta SC, Sung B, Phatak SS, Zhang S, Aggarwal BB: 3-Formylchromone interacts with cysteine 38 in p65 protein and with cysteine 179 in IkappaBalpha kinase, leading to down-regulation of nuclear factor-kappaB (NF-kappaB)-regulated gene products and sensitization of tumor cells. J Biol Chem. 2012, 287 (1): 245-256. 10.1074/jbc.M111.274613.CrossRefPubMed Yadav VR, Prasad S, Gupta SC, Sung B, Phatak SS, Zhang S, Aggarwal BB: 3-Formylchromone interacts with cysteine 38 in p65 protein and with cysteine 179 in IkappaBalpha kinase, leading to down-regulation of nuclear factor-kappaB (NF-kappaB)-regulated gene products and sensitization of tumor cells. J Biol Chem. 2012, 287 (1): 245-256. 10.1074/jbc.M111.274613.CrossRefPubMed
35.
go back to reference Baeuerle PA, Baltimore D: NF-kappa B: ten years after. Cell. 1996, 87 (1): 13-20. 10.1016/S0092-8674(00)81318-5.CrossRefPubMed Baeuerle PA, Baltimore D: NF-kappa B: ten years after. Cell. 1996, 87 (1): 13-20. 10.1016/S0092-8674(00)81318-5.CrossRefPubMed
36.
go back to reference Sen R, Baltimore D: Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell. 1986, 46 (5): 705-716. 10.1016/0092-8674(86)90346-6.CrossRefPubMed Sen R, Baltimore D: Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell. 1986, 46 (5): 705-716. 10.1016/0092-8674(86)90346-6.CrossRefPubMed
37.
go back to reference Ohtsuka K, Hata M: Molecular chaperone function of mammalian Hsp70 and Hsp40–a review. Int J Hyperthermia. 2000, 16 (3): 231-245. 10.1080/026567300285259.CrossRefPubMed Ohtsuka K, Hata M: Molecular chaperone function of mammalian Hsp70 and Hsp40–a review. Int J Hyperthermia. 2000, 16 (3): 231-245. 10.1080/026567300285259.CrossRefPubMed
38.
go back to reference Tsan MF, Gao B: Heat shock proteins and immune system. J Leukoc Biol. 2009, 85 (6): 905-910. 10.1189/jlb.0109005.CrossRefPubMed Tsan MF, Gao B: Heat shock proteins and immune system. J Leukoc Biol. 2009, 85 (6): 905-910. 10.1189/jlb.0109005.CrossRefPubMed
39.
go back to reference Wallin RP, Lundqvist A, More SH, Von Bonin A, Kiessling R, Ljunggren HG: Heat-shock proteins as activators of the innate immune system. Trends Immunol. 2002, 23 (3): 130-135. 10.1016/S1471-4906(01)02168-8.CrossRefPubMed Wallin RP, Lundqvist A, More SH, Von Bonin A, Kiessling R, Ljunggren HG: Heat-shock proteins as activators of the innate immune system. Trends Immunol. 2002, 23 (3): 130-135. 10.1016/S1471-4906(01)02168-8.CrossRefPubMed
40.
go back to reference Krause M, Rodrigues-Krause Jda C: Extracellular heat shock proteins (eHSP70) in exercise: possible targets outside the immune system and their role for neurodegenerative disorders treatment. Med Hypotheses. 2011, 76 (2): 286-290. 10.1016/j.mehy.2010.10.025.CrossRefPubMed Krause M, Rodrigues-Krause Jda C: Extracellular heat shock proteins (eHSP70) in exercise: possible targets outside the immune system and their role for neurodegenerative disorders treatment. Med Hypotheses. 2011, 76 (2): 286-290. 10.1016/j.mehy.2010.10.025.CrossRefPubMed
Metadata
Title
Expression and significance of HMGB1, TLR4 and NF-κB p65 in human epidermal tumors
Authors
Hui Weng
Yunhua Deng
Yuyan Xie
Hongbo Liu
Feili Gong
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2013
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-13-311

Other articles of this Issue 1/2013

BMC Cancer 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine