Skip to main content
Top
Published in: BMC Cancer 1/2013

Open Access 01-12-2013 | Research article

Co-inhibition of epidermal growth factor receptor and insulin-like growth factor receptor 1 enhances radiosensitivity in human breast cancer cells

Authors: Ping Li, Marlon R Veldwijk, Qing Zhang, Zhao-bin Li, Wen-cai Xu, Shen Fu

Published in: BMC Cancer | Issue 1/2013

Login to get access

Abstract

Background

Over-expression of epidermal growth factor receptor (EGFR) or insulin-like growth factor-1 receptor (IGF-1R) have been shown to closely correlate with radioresistance of breast cancer cells. This study aimed to investigate the impact of co-inhibition of EGFR and IGF-1R on the radiosensitivity of two breast cancer cells with different profiles of EGFR and IGF-1R expression.

Methods

The MCF-7 (EGFR +/−, IGF-1R +++) and MDA-MB-468 (EGFR +++, IGF-1R +++) breast cancer cell lines were used. Radiosensitizing effects were determined by colony formation assay. Apoptosis and cell cycle distribution were measured by flow cytometry. Phospho-Akt and phospho-Erk1/2 were quantified by western blot. In vivo studies were conducted using MDA-MB-468 cells xenografted in nu/nu mice.

Results

In MDA-MB-468 cells, the inhibition of IGF-1R upregulated the p-EGFR expression. Either EGFR (AG1478) or IGF-1R inhibitor (AG1024) radiosensitized MDA-MB-468 cells. In MCF-7 cells, radiosensitivity was enhanced by AG1024, but not by AG1478. Synergistical radiosensitizing effect was observed by co-inhibition of EGFR and IGF-1R only in MDA-MB-468 cells with a DMF10% of 1.90. The co-inhibition plus irradiation significantly induced more apoptosis and arrested the cells at G0/G1 phase in MDA-MB-468 cells. Only co-inhibition of EGFR and IGF-1R synergistically diminished the expression of p-Akt and p-Erk1/2 in MDA-MB-468 cells. In vivo studies further verified the radiosensitizing effects by co-inhibition of both pathways in a MDA-MB-468 xenograft model.

Conclusion

Our data suggested that co-inhibition of EGFR and IGF-1R synergistically radiosensitized breast cancer cells with both EGFR and IGF-1R high expression. The approach may have an important therapeutic implication in the treatment of breast cancer patients with high expression of EGFR and IGF-1R.
Appendix
Available only for authorised users
Literature
1.
go back to reference Voduc KD, Cheang MC, Tyldesley S, Gelmon K, Nielsen TO, Kennecke H: Breast cancer subtypes and the risk of local and regional relapse. J Clin Oncol. 2010, 28: 1684-1691. 10.1200/JCO.2009.24.9284.CrossRefPubMed Voduc KD, Cheang MC, Tyldesley S, Gelmon K, Nielsen TO, Kennecke H: Breast cancer subtypes and the risk of local and regional relapse. J Clin Oncol. 2010, 28: 1684-1691. 10.1200/JCO.2009.24.9284.CrossRefPubMed
2.
go back to reference Wong FY, Chin FK, Lee KA, Soong YL, Chua ET: Hormone receptors and HER-2 status as surrogates for breast cancer molecular subtypes prognosticate for disease control in node negative Asian patients treated with breast conservation therapy. Ann Acad Med Singapore. 2011, 40: 90-97.PubMed Wong FY, Chin FK, Lee KA, Soong YL, Chua ET: Hormone receptors and HER-2 status as surrogates for breast cancer molecular subtypes prognosticate for disease control in node negative Asian patients treated with breast conservation therapy. Ann Acad Med Singapore. 2011, 40: 90-97.PubMed
3.
go back to reference Livasy CA, Karaca G, Nanda R, Tretiakova MS, Olopade OI, Moore DT, Perou CM: Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod Pathol. 2006, 19: 264-271. 10.1038/modpathol.3800528.CrossRefPubMed Livasy CA, Karaca G, Nanda R, Tretiakova MS, Olopade OI, Moore DT, Perou CM: Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod Pathol. 2006, 19: 264-271. 10.1038/modpathol.3800528.CrossRefPubMed
4.
go back to reference Yerushalmi R, Gelmon KA, Leung S, Gao D, Cheang M, Pollak M, Turashvili G, Gilks BC, Kennecke H: Insulin-like growth factor receptor (IGF-1R) in breast cancer subtypes. Breast Cancer Res Treat. 2012, 132: 131-142. 10.1007/s10549-011-1529-8.CrossRefPubMed Yerushalmi R, Gelmon KA, Leung S, Gao D, Cheang M, Pollak M, Turashvili G, Gilks BC, Kennecke H: Insulin-like growth factor receptor (IGF-1R) in breast cancer subtypes. Breast Cancer Res Treat. 2012, 132: 131-142. 10.1007/s10549-011-1529-8.CrossRefPubMed
5.
go back to reference Gee JM, Nicholson RI: Expanding the therapeutic repertoire of epidermal growth factor receptor blockade: radiosensitization. Breast Cancer Res. 2003, 5: 126-129. 10.1186/bcr584.CrossRefPubMedPubMedCentral Gee JM, Nicholson RI: Expanding the therapeutic repertoire of epidermal growth factor receptor blockade: radiosensitization. Breast Cancer Res. 2003, 5: 126-129. 10.1186/bcr584.CrossRefPubMedPubMedCentral
6.
go back to reference Taunk NK, Goyal S, Moran MS, Yang Q, Parikh R, Haffty BG: Prognostic significance of IGF-1R expression in patients treated with breast-conserving surgery and radiation therapy. Radiother Oncol. 2010, 96: 204-208. 10.1016/j.radonc.2010.03.009.CrossRefPubMed Taunk NK, Goyal S, Moran MS, Yang Q, Parikh R, Haffty BG: Prognostic significance of IGF-1R expression in patients treated with breast-conserving surgery and radiation therapy. Radiother Oncol. 2010, 96: 204-208. 10.1016/j.radonc.2010.03.009.CrossRefPubMed
7.
go back to reference van der Veeken J, Oliveira S, Schiffelers RM: Storm G, van Bergen En Henegouwen PM, Roovers RC: Crosstalk between epidermal growth factor receptor- and insulin-like growth factor-1 receptor signaling: implications for cancer therapy. Curr Cancer Drug Targets. 2009, 9: 748-760. 10.2174/156800909789271495.CrossRefPubMed van der Veeken J, Oliveira S, Schiffelers RM: Storm G, van Bergen En Henegouwen PM, Roovers RC: Crosstalk between epidermal growth factor receptor- and insulin-like growth factor-1 receptor signaling: implications for cancer therapy. Curr Cancer Drug Targets. 2009, 9: 748-760. 10.2174/156800909789271495.CrossRefPubMed
8.
go back to reference Camirand A, Zakikhani M, Young F, Pollak M: Inhibition of insulin-like growth factor-1 receptor signaling enhances growth-inhibitory and proapoptotic effects of gefitinib (Iressa) in human breast cancer cells. Breast Cancer Res. 2005, 7: R570-R579.CrossRefPubMedPubMedCentral Camirand A, Zakikhani M, Young F, Pollak M: Inhibition of insulin-like growth factor-1 receptor signaling enhances growth-inhibitory and proapoptotic effects of gefitinib (Iressa) in human breast cancer cells. Breast Cancer Res. 2005, 7: R570-R579.CrossRefPubMedPubMedCentral
9.
go back to reference Sambade MJ, Kimple RJ, Camp JT, Peters E, Livasy CA, Sartor CI, Shields JM: Lapatinib in combination with radiation diminishes tumor regrowth in HER2+ and basal-like/EGFR + breast tumor xenografts. Int J Radiat Oncol Biol Phys. 2010, 77: 575-581. 10.1016/j.ijrobp.2009.12.063.CrossRefPubMedPubMedCentral Sambade MJ, Kimple RJ, Camp JT, Peters E, Livasy CA, Sartor CI, Shields JM: Lapatinib in combination with radiation diminishes tumor regrowth in HER2+ and basal-like/EGFR + breast tumor xenografts. Int J Radiat Oncol Biol Phys. 2010, 77: 575-581. 10.1016/j.ijrobp.2009.12.063.CrossRefPubMedPubMedCentral
10.
go back to reference Voss MJ, Möller MF, Powe DG, Niggemann B, Zänker KS, Entschladen F: Luminal and basal-like breast cancer cells show increased migration induced by hypoxia, mediated by an autocrinemechanism. BMC Cancer. 2011, 11: 158-10.1186/1471-2407-11-158.CrossRefPubMedPubMedCentral Voss MJ, Möller MF, Powe DG, Niggemann B, Zänker KS, Entschladen F: Luminal and basal-like breast cancer cells show increased migration induced by hypoxia, mediated by an autocrinemechanism. BMC Cancer. 2011, 11: 158-10.1186/1471-2407-11-158.CrossRefPubMedPubMedCentral
11.
go back to reference Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, Alimonti A, Egia A, Sasaki AT, Thomas G, Kozma SC, Papa A, Nardella C, Cantley LC, Baselga J, Pandolfi PP: Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest. 2008, 118: 3065-3074.PubMedPubMedCentral Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, Alimonti A, Egia A, Sasaki AT, Thomas G, Kozma SC, Papa A, Nardella C, Cantley LC, Baselga J, Pandolfi PP: Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest. 2008, 118: 3065-3074.PubMedPubMedCentral
12.
go back to reference Shi Y, Felley-Bosco E, Marti TM, Orlowski K, Pruschy M, Stahel RA: Starvation-induced activation of ATM/Chk2/p53 signaling sensitizes cancer cells to cisplatinduced activation of ATM/Chk2/p53 signaling sensitizes cancer cells to cisplatin. BMC Cancer. 2012, 12: 571-10.1186/1471-2407-12-571.CrossRefPubMedPubMedCentral Shi Y, Felley-Bosco E, Marti TM, Orlowski K, Pruschy M, Stahel RA: Starvation-induced activation of ATM/Chk2/p53 signaling sensitizes cancer cells to cisplatinduced activation of ATM/Chk2/p53 signaling sensitizes cancer cells to cisplatin. BMC Cancer. 2012, 12: 571-10.1186/1471-2407-12-571.CrossRefPubMedPubMedCentral
13.
go back to reference Shimizu C, Hasegawa T, Tani Y, Takahashi F, Takeuchi M, Watanabe T, Ando M, Katsumata N, Fujiwara Y: Expression of insulin-like growth factor 1 receptor in primary breast cancer: immunohistochemical analysis. Hum Pathol. 2004, 35: 1537-1542. 10.1016/j.humpath.2004.09.005.CrossRefPubMed Shimizu C, Hasegawa T, Tani Y, Takahashi F, Takeuchi M, Watanabe T, Ando M, Katsumata N, Fujiwara Y: Expression of insulin-like growth factor 1 receptor in primary breast cancer: immunohistochemical analysis. Hum Pathol. 2004, 35: 1537-1542. 10.1016/j.humpath.2004.09.005.CrossRefPubMed
14.
go back to reference Jameel JK, Rao VS, Cawkwell L, Drew PJ: Radioresistance in carcinoma of the breast. Breast. 2004, 13: 452-460. 10.1016/j.breast.2004.08.004.CrossRefPubMed Jameel JK, Rao VS, Cawkwell L, Drew PJ: Radioresistance in carcinoma of the breast. Breast. 2004, 13: 452-460. 10.1016/j.breast.2004.08.004.CrossRefPubMed
15.
go back to reference Buck E, Eyzaguirre A, Rosenfeld-Franklin M, Thomson S, Mulvihill M, Barr S, Brown E, O’Connor M, Yao Y, Pachter J, Miglarese M, Epstein D, Iwata KK, Haley JD, Gibson NW, Ji QS: Feedback mechanisms promote cooperativity for small molecule inhibitors of epidermal and insulin-like growth factor receptors. Cancer Res. 2008, 68: 8322-8332. 10.1158/0008-5472.CAN-07-6720.CrossRefPubMed Buck E, Eyzaguirre A, Rosenfeld-Franklin M, Thomson S, Mulvihill M, Barr S, Brown E, O’Connor M, Yao Y, Pachter J, Miglarese M, Epstein D, Iwata KK, Haley JD, Gibson NW, Ji QS: Feedback mechanisms promote cooperativity for small molecule inhibitors of epidermal and insulin-like growth factor receptors. Cancer Res. 2008, 68: 8322-8332. 10.1158/0008-5472.CAN-07-6720.CrossRefPubMed
16.
go back to reference Luwor RB, Lu Y, Li X, Liang K, Fan Z: Constitutively active Harvey Ras confers resistance to epidermal growth factor receptor-targeted therapy with cetuximab and gefitinib. Cancer Lett. 2011, 306: 85-91. 10.1016/j.canlet.2011.02.035.CrossRefPubMedPubMedCentral Luwor RB, Lu Y, Li X, Liang K, Fan Z: Constitutively active Harvey Ras confers resistance to epidermal growth factor receptor-targeted therapy with cetuximab and gefitinib. Cancer Lett. 2011, 306: 85-91. 10.1016/j.canlet.2011.02.035.CrossRefPubMedPubMedCentral
17.
go back to reference Wei F, Liu Y, Bellail AC, Olson JJ, Sun SY, Lu G, Ding L, Yuan C, Wang G, Hao C: K-Ras mutation-mediated IGF-1-induced feedback ERK activation contributes to the rapalog resistance. Cancer Lett. 2012, 322: 58-69. 10.1016/j.canlet.2012.02.005.CrossRefPubMedPubMedCentral Wei F, Liu Y, Bellail AC, Olson JJ, Sun SY, Lu G, Ding L, Yuan C, Wang G, Hao C: K-Ras mutation-mediated IGF-1-induced feedback ERK activation contributes to the rapalog resistance. Cancer Lett. 2012, 322: 58-69. 10.1016/j.canlet.2012.02.005.CrossRefPubMedPubMedCentral
18.
go back to reference Nicholson RI, Hutcheson IR, Knowlden JM, Jones HE, Harper ME, Jordan N, Hiscox SE, Barrow D, Gee JM: Nonendocrine pathways and endocrine resistance: observations with antiestrogens and signal transduction inhibitors in combination. Clin Cancer Res. 2004, 10: 346S-354S. 10.1158/1078-0432.CCR-031206.CrossRefPubMed Nicholson RI, Hutcheson IR, Knowlden JM, Jones HE, Harper ME, Jordan N, Hiscox SE, Barrow D, Gee JM: Nonendocrine pathways and endocrine resistance: observations with antiestrogens and signal transduction inhibitors in combination. Clin Cancer Res. 2004, 10: 346S-354S. 10.1158/1078-0432.CCR-031206.CrossRefPubMed
19.
go back to reference Sambade MJ, Camp JT, Kimple RJ, Sartor CI, Shields JM: Mechanism of lapatinib-mediated radiosensitization of breast cancer cells is primarily by inhibition of the Raf > MEK > ERK mitogen-activated protein kinase cascade and radiosensitization of lapatinib-resistant cells restored by direct inhibition of MEK. Radiother Oncol. 2009, 93: 639-644. 10.1016/j.radonc.2009.09.006.CrossRefPubMedPubMedCentral Sambade MJ, Camp JT, Kimple RJ, Sartor CI, Shields JM: Mechanism of lapatinib-mediated radiosensitization of breast cancer cells is primarily by inhibition of the Raf > MEK > ERK mitogen-activated protein kinase cascade and radiosensitization of lapatinib-resistant cells restored by direct inhibition of MEK. Radiother Oncol. 2009, 93: 639-644. 10.1016/j.radonc.2009.09.006.CrossRefPubMedPubMedCentral
20.
go back to reference Albert JM, Kim KW, Cao C: LuB: Targeting the Akt/mammalian target of rapamycin pathway for radiosensitization of breast cancer. Mol Cancer Ther. 2006, 5: 1183-1189. 10.1158/1535-7163.MCT-05-0400.CrossRefPubMed Albert JM, Kim KW, Cao C: LuB: Targeting the Akt/mammalian target of rapamycin pathway for radiosensitization of breast cancer. Mol Cancer Ther. 2006, 5: 1183-1189. 10.1158/1535-7163.MCT-05-0400.CrossRefPubMed
21.
go back to reference Deng R, Tang J, Ma JG, Chen SP, Xia LP, Zhou WJ, Li DD, Feng GK, Zeng YX, Zhu XF: PKB/Akt promotes DSB repair in cancer cells through upregulating Mre11 expression following ionizing radiation. Oncogene. 2010, 30: 944-955.CrossRefPubMed Deng R, Tang J, Ma JG, Chen SP, Xia LP, Zhou WJ, Li DD, Feng GK, Zeng YX, Zhu XF: PKB/Akt promotes DSB repair in cancer cells through upregulating Mre11 expression following ionizing radiation. Oncogene. 2010, 30: 944-955.CrossRefPubMed
22.
go back to reference Liang J, Slingerland JM, Slingerland JM: Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle. 2003, 2: 339-345.CrossRefPubMed Liang J, Slingerland JM, Slingerland JM: Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle. 2003, 2: 339-345.CrossRefPubMed
23.
go back to reference Zhang Y, Wang J, Liu F, You Z, Yang R, Zhao Y: EGFR inhibitor C225 increases the radiosensitivity of human lung squamous cancer cells. Cancer Cell Int. 2010, 10: 39-10.1186/1475-2867-10-39.CrossRefPubMedPubMedCentral Zhang Y, Wang J, Liu F, You Z, Yang R, Zhao Y: EGFR inhibitor C225 increases the radiosensitivity of human lung squamous cancer cells. Cancer Cell Int. 2010, 10: 39-10.1186/1475-2867-10-39.CrossRefPubMedPubMedCentral
24.
go back to reference Dent P, Reardon DB, Park JS, Bowers G, Logsdon C, Valerie K, Schmidt-Ullrich R: Radiation-induced release of transforming growth factor alpha activates the epidermal growth factor receptor and mitogen-activated protein kinase pathway in carcinoma cells, leading to increased proliferation and protection from radiation-induced cell death. Mol Biol Cell. 1999, 10: 2493-2506.CrossRefPubMedPubMedCentral Dent P, Reardon DB, Park JS, Bowers G, Logsdon C, Valerie K, Schmidt-Ullrich R: Radiation-induced release of transforming growth factor alpha activates the epidermal growth factor receptor and mitogen-activated protein kinase pathway in carcinoma cells, leading to increased proliferation and protection from radiation-induced cell death. Mol Biol Cell. 1999, 10: 2493-2506.CrossRefPubMedPubMedCentral
Metadata
Title
Co-inhibition of epidermal growth factor receptor and insulin-like growth factor receptor 1 enhances radiosensitivity in human breast cancer cells
Authors
Ping Li
Marlon R Veldwijk
Qing Zhang
Zhao-bin Li
Wen-cai Xu
Shen Fu
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2013
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-13-297

Other articles of this Issue 1/2013

BMC Cancer 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine