Skip to main content
Top
Published in: BMC Cancer 1/2011

Open Access 01-12-2011 | Research article

Notch signaling contributes to the maintenance of both normal neural stem cells and patient-derived glioma stem cells

Authors: Yi-Yang Hu, Min-Hua Zheng, Gang Cheng, Liang Li, Liang Liang, Fang Gao, Ya-Ning Wei, Luo-An Fu, Hua Han

Published in: BMC Cancer | Issue 1/2011

Login to get access

Abstract

Background

Cancer stem cells (CSCs) play an important role in the development and recurrence of malignant tumors including glioma. Notch signaling, an evolutionarily conserved pathway mediating direct cell-cell interaction, has been shown to regulate neural stem cells (NSCs) and glioma stem cells (GSCs) in normal neurogenesis and pathological carcinogenesis, respectively. However, how Notch signaling regulates the proliferation and differentiation of GSCs has not been well elucidated.

Methods

We isolated and cultivate human GSCs from glioma patient specimens. Then on parallel comparison with NSCs, we inhibited Notch signaling using γ-secretase inhibitors (GSI) and assessed the potential functions of Notch signaling in human GSCs.

Results

Similar to the GSI-treated NSCs, the number of the primary and secondary tumor spheres from GSI-treated GSCs decreased significantly, suggesting that the proliferation and self-renewal ability of GSI-treated GSCs were attenuated. GSI-treated GSCs showed increased differentiation into mature neural cell types in differentiation medium, similar to GSI-treated NSCs. Next, we found that GSI-treated tumor spheres were composed of more intermediate progenitors instead of CSCs, compared with the controls. Interestingly, although inhibition of Notch signaling decreased the ratio of proliferating NSCs in long term culture, we found that the ratio of G2+M phase-GSCs were almost undisturbed on GSI treatment within 72 h.

Conclusions

These data indicate that like NSCs, Notch signaling maintains the patient-derived GSCs by promoting their self-renewal and inhibiting their differentiation, and support that Notch signal inhibitor GSI might be a prosperous candidate of the treatment targeting CSCs for gliomas, however, with GSI-resistance at the early stage of GSCs cell cycle.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bonnet D, Dick JE: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997, 3 (7): 730-737. 10.1038/nm0797-730.CrossRefPubMed Bonnet D, Dick JE: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997, 3 (7): 730-737. 10.1038/nm0797-730.CrossRefPubMed
2.
go back to reference Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003, 100 (7): 3983-3988. 10.1073/pnas.0530291100.CrossRefPubMedPubMedCentral Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003, 100 (7): 3983-3988. 10.1073/pnas.0530291100.CrossRefPubMedPubMedCentral
3.
go back to reference Ma S, Chan KW, Hu L, Lee TK, Wo JY, Ng IO, Zheng BJ, Guan XY: Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology. 2007, 132 (7): 2542-2556. 10.1053/j.gastro.2007.04.025.CrossRefPubMed Ma S, Chan KW, Hu L, Lee TK, Wo JY, Ng IO, Zheng BJ, Guan XY: Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology. 2007, 132 (7): 2542-2556. 10.1053/j.gastro.2007.04.025.CrossRefPubMed
4.
go back to reference Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, Kornblum HI: Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA. 2003, 100 (25): 15178-15183. 10.1073/pnas.2036535100.CrossRefPubMedPubMedCentral Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, Kornblum HI: Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA. 2003, 100 (25): 15178-15183. 10.1073/pnas.2036535100.CrossRefPubMedPubMedCentral
5.
go back to reference Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB: Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003, 63 (18): 5821-5828.PubMed Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB: Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003, 63 (18): 5821-5828.PubMed
6.
go back to reference Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A: Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 2004, 64 (19): 7011-7021. 10.1158/0008-5472.CAN-04-1364.CrossRefPubMed Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A: Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 2004, 64 (19): 7011-7021. 10.1158/0008-5472.CAN-04-1364.CrossRefPubMed
7.
go back to reference Yuan X, Curtin J, Xiong Y, Liu G, Waschsmann-Hogiu S, Farkas DL, Black KL, Yu JS: Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene. 2004, 23 (58): 9392-9400. 10.1038/sj.onc.1208311.CrossRefPubMed Yuan X, Curtin J, Xiong Y, Liu G, Waschsmann-Hogiu S, Farkas DL, Black KL, Yu JS: Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene. 2004, 23 (58): 9392-9400. 10.1038/sj.onc.1208311.CrossRefPubMed
8.
go back to reference Wu A, Oh S, Wiesner SM, Ericson K, Chen L, Hall WA, Champoux PE, Low WC, Ohlfest JR: Persistence of CD133+ cells in human and mouse glioma cell lines: detailed characterization of GL261 glioma cells with cancer stem cell-like properties. Stem Cells Dev. 2008, 17 (1): 173-184. 10.1089/scd.2007.0133.CrossRefPubMed Wu A, Oh S, Wiesner SM, Ericson K, Chen L, Hall WA, Champoux PE, Low WC, Ohlfest JR: Persistence of CD133+ cells in human and mouse glioma cell lines: detailed characterization of GL261 glioma cells with cancer stem cell-like properties. Stem Cells Dev. 2008, 17 (1): 173-184. 10.1089/scd.2007.0133.CrossRefPubMed
9.
go back to reference Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB: Identification of human brain tumour initiating cells. Nature. 2004, 432 (7015): 396-401. 10.1038/nature03128.CrossRefPubMed Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB: Identification of human brain tumour initiating cells. Nature. 2004, 432 (7015): 396-401. 10.1038/nature03128.CrossRefPubMed
10.
go back to reference Reya T, Morrison SJ, Clarke MF, Weissman IL: Stem cells, cancer, and cancer stem cells. Nature. 2001, 414 (6859): 105-111. 10.1038/35102167.CrossRefPubMed Reya T, Morrison SJ, Clarke MF, Weissman IL: Stem cells, cancer, and cancer stem cells. Nature. 2001, 414 (6859): 105-111. 10.1038/35102167.CrossRefPubMed
11.
go back to reference Louvi A, Artavanis-Tsakonas S: Notch signalling in vertebrate neural development. Nat Rev Neurosci. 2006, 7 (2): 93-102. 10.1038/nrn1847.CrossRefPubMed Louvi A, Artavanis-Tsakonas S: Notch signalling in vertebrate neural development. Nat Rev Neurosci. 2006, 7 (2): 93-102. 10.1038/nrn1847.CrossRefPubMed
12.
go back to reference Fan X, Matsui W, Khaki L, Stearns D, Chun J, Li YM, Eberhart CG: Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res. 2006, 66 (15): 7445-7452. 10.1158/0008-5472.CAN-06-0858.CrossRefPubMed Fan X, Matsui W, Khaki L, Stearns D, Chun J, Li YM, Eberhart CG: Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res. 2006, 66 (15): 7445-7452. 10.1158/0008-5472.CAN-06-0858.CrossRefPubMed
13.
go back to reference Struhl G, Adachi A: Nuclear access and action of notch in vivo. Cell. 1998, 93 (4): 649-660. 10.1016/S0092-8674(00)81193-9.CrossRefPubMed Struhl G, Adachi A: Nuclear access and action of notch in vivo. Cell. 1998, 93 (4): 649-660. 10.1016/S0092-8674(00)81193-9.CrossRefPubMed
14.
go back to reference Schroeter EH, Kisslinger JA, Kopan R: Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature. 1998, 393 (6683): 382-386. 10.1038/30756.CrossRefPubMed Schroeter EH, Kisslinger JA, Kopan R: Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature. 1998, 393 (6683): 382-386. 10.1038/30756.CrossRefPubMed
15.
go back to reference Jarriault S, Brou C, Logeat F, Schroeter EH, Kopan R, Israel A: Signalling downstream of activated mammalian Notch. Nature. 1995, 377 (6547): 355-358. 10.1038/377355a0.CrossRefPubMed Jarriault S, Brou C, Logeat F, Schroeter EH, Kopan R, Israel A: Signalling downstream of activated mammalian Notch. Nature. 1995, 377 (6547): 355-358. 10.1038/377355a0.CrossRefPubMed
16.
go back to reference Nye JS, Kopan R, Axel R: An activated Notch suppresses neurogenesis and myogenesis but not gliogenesis in mammalian cells. Development. 1994, 120 (9): 2421-2430.PubMed Nye JS, Kopan R, Axel R: An activated Notch suppresses neurogenesis and myogenesis but not gliogenesis in mammalian cells. Development. 1994, 120 (9): 2421-2430.PubMed
17.
go back to reference Campos LS, Decker L, Taylor V, Skarnes W: Notch, epidermal growth factor receptor, and beta1-integrin pathways are coordinated in neural stem cells. J Biol Chem. 2006, 281 (8): 5300-5309. 10.1074/jbc.M511886200.CrossRefPubMed Campos LS, Decker L, Taylor V, Skarnes W: Notch, epidermal growth factor receptor, and beta1-integrin pathways are coordinated in neural stem cells. J Biol Chem. 2006, 281 (8): 5300-5309. 10.1074/jbc.M511886200.CrossRefPubMed
18.
go back to reference Hoeck JD, Jandke A, Blake SM, Nye E, Spencer-Dene B, Brandner S, Behrens A: Fbw7 controls neural stem cell differentiation and progenitor apoptosis via Notch and c-Jun. Nat Neurosci. 2010, 13 (11): 1365-1372. 10.1038/nn.2644.CrossRefPubMed Hoeck JD, Jandke A, Blake SM, Nye E, Spencer-Dene B, Brandner S, Behrens A: Fbw7 controls neural stem cell differentiation and progenitor apoptosis via Notch and c-Jun. Nat Neurosci. 2010, 13 (11): 1365-1372. 10.1038/nn.2644.CrossRefPubMed
19.
go back to reference Alexson TO, Hitoshi S, Coles BL, Bernstein A, van der Kooy D: Notch signaling is required to maintain all neural stem cell populations--irrespective of spatial or temporal niche. Dev Neurosci. 2006, 28 (1-2): 34-48. 10.1159/000090751.CrossRefPubMed Alexson TO, Hitoshi S, Coles BL, Bernstein A, van der Kooy D: Notch signaling is required to maintain all neural stem cell populations--irrespective of spatial or temporal niche. Dev Neurosci. 2006, 28 (1-2): 34-48. 10.1159/000090751.CrossRefPubMed
20.
go back to reference Mizutani K, Yoon K, Dang L, Tokunaga A, Gaiano N: Differential Notch signalling distinguishes neural stem cells from intermediate progenitors. Nature. 2007, 449 (7160): 351-355. 10.1038/nature06090.CrossRefPubMed Mizutani K, Yoon K, Dang L, Tokunaga A, Gaiano N: Differential Notch signalling distinguishes neural stem cells from intermediate progenitors. Nature. 2007, 449 (7160): 351-355. 10.1038/nature06090.CrossRefPubMed
21.
go back to reference Gao F, Zhang Q, Zheng MH, Liu HL, Hu YY, Zhang P, Zhang ZP, Qin HY, Feng L, Wang L, et al: Transcription factor RBP-J-mediated signaling represses the differentiation of neural stem cells into intermediate neural progenitors. Mol Cell Neurosci. 2009, 40 (4): 442-450. 10.1016/j.mcn.2008.12.008.CrossRefPubMed Gao F, Zhang Q, Zheng MH, Liu HL, Hu YY, Zhang P, Zhang ZP, Qin HY, Feng L, Wang L, et al: Transcription factor RBP-J-mediated signaling represses the differentiation of neural stem cells into intermediate neural progenitors. Mol Cell Neurosci. 2009, 40 (4): 442-450. 10.1016/j.mcn.2008.12.008.CrossRefPubMed
22.
go back to reference Tanigaki K, Nogaki F, Takahashi J, Tashiro K, Kurooka H, Honjo T: Notch1 and Notch3 instructively restrict bFGF-responsive multipotent neural progenitor cells to an astroglial fate. Neuron. 2001, 29 (1): 45-55. 10.1016/S0896-6273(01)00179-9.CrossRefPubMed Tanigaki K, Nogaki F, Takahashi J, Tashiro K, Kurooka H, Honjo T: Notch1 and Notch3 instructively restrict bFGF-responsive multipotent neural progenitor cells to an astroglial fate. Neuron. 2001, 29 (1): 45-55. 10.1016/S0896-6273(01)00179-9.CrossRefPubMed
23.
go back to reference Aguirre A, Rubio ME, Gallo V: Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal. Nature. 2010, 467 (7313): 323-327. 10.1038/nature09347.CrossRefPubMedPubMedCentral Aguirre A, Rubio ME, Gallo V: Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal. Nature. 2010, 467 (7313): 323-327. 10.1038/nature09347.CrossRefPubMedPubMedCentral
24.
go back to reference Jang MS, Zlobin A, Kast WM, Miele L: Notch signaling as a target in multimodality cancer therapy. Curr Opin Mol Ther. 2000, 2 (1): 55-65.PubMed Jang MS, Zlobin A, Kast WM, Miele L: Notch signaling as a target in multimodality cancer therapy. Curr Opin Mol Ther. 2000, 2 (1): 55-65.PubMed
25.
go back to reference Fan X, Mikolaenko I, Elhassan I, Ni X, Wang Y, Ball D, Brat DJ, Perry A, Eberhart CG: Notch1 and notch2 have opposite effects on embryonal brain tumor growth. Cancer Res. 2004, 64 (21): 7787-7793. 10.1158/0008-5472.CAN-04-1446.CrossRefPubMed Fan X, Mikolaenko I, Elhassan I, Ni X, Wang Y, Ball D, Brat DJ, Perry A, Eberhart CG: Notch1 and notch2 have opposite effects on embryonal brain tumor growth. Cancer Res. 2004, 64 (21): 7787-7793. 10.1158/0008-5472.CAN-04-1446.CrossRefPubMed
26.
go back to reference Purow BW, Haque RM, Noel MW, Su Q, Burdick MJ, Lee J, Sundaresan T, Pastorino S, Park JK, Mikolaenko I, et al: Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. Cancer Res. 2005, 65 (6): 2353-2363. 10.1158/0008-5472.CAN-04-1890.CrossRefPubMed Purow BW, Haque RM, Noel MW, Su Q, Burdick MJ, Lee J, Sundaresan T, Pastorino S, Park JK, Mikolaenko I, et al: Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. Cancer Res. 2005, 65 (6): 2353-2363. 10.1158/0008-5472.CAN-04-1890.CrossRefPubMed
27.
go back to reference Hulleman E, Quarto M, Vernell R, Masserdotti G, Colli E, Kros JM, Levi D, Gaetani P, Tunici P, Finocchiaro G, et al: A role for the transcription factor HEY1 in glioblastoma. J Cell Mol Med. 2009, 13 (1): 136-146. 10.1111/j.1582-4934.2008.00307.x.CrossRefPubMed Hulleman E, Quarto M, Vernell R, Masserdotti G, Colli E, Kros JM, Levi D, Gaetani P, Tunici P, Finocchiaro G, et al: A role for the transcription factor HEY1 in glioblastoma. J Cell Mol Med. 2009, 13 (1): 136-146. 10.1111/j.1582-4934.2008.00307.x.CrossRefPubMed
28.
go back to reference Zhang XP, Zheng G, Zou L, Liu HL, Hou LH, Zhou P, Yin DD, Zheng QJ, Liang L, Zhang SZ, et al: Notch activation promotes cell proliferation and the formation of neural stem cell-like colonies in human glioma cells. Mol Cell Biochem. 2008, 307 (1-2): 101-108. 10.1007/s11010-007-9589-0.CrossRefPubMed Zhang XP, Zheng G, Zou L, Liu HL, Hou LH, Zhou P, Yin DD, Zheng QJ, Liang L, Zhang SZ, et al: Notch activation promotes cell proliferation and the formation of neural stem cell-like colonies in human glioma cells. Mol Cell Biochem. 2008, 307 (1-2): 101-108. 10.1007/s11010-007-9589-0.CrossRefPubMed
29.
go back to reference Hovinga KE, Shimizu F, Wang R, Panagiotakos G, Van Der Heijden M, Moayedpardazi H, Correia AS, Soulet D, Major T, Menon J, et al: Inhibition of Notch Signaling in Glioblastoma Targets Cancer Stem Cells via an Endothelial Cell Intermediate. Stem Cells. 2010, 28 (6): 1019-1029. 10.1002/stem.429.CrossRefPubMed Hovinga KE, Shimizu F, Wang R, Panagiotakos G, Van Der Heijden M, Moayedpardazi H, Correia AS, Soulet D, Major T, Menon J, et al: Inhibition of Notch Signaling in Glioblastoma Targets Cancer Stem Cells via an Endothelial Cell Intermediate. Stem Cells. 2010, 28 (6): 1019-1029. 10.1002/stem.429.CrossRefPubMed
31.
go back to reference Hitoshi S, Alexson T, Tropepe V, Donoviel D, Elia AJ, Nye JS, Conlon RA, Mak TW, Bernstein A, van der Kooy D: Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev. 2002, 16 (7): 846-858. 10.1101/gad.975202.CrossRefPubMedPubMedCentral Hitoshi S, Alexson T, Tropepe V, Donoviel D, Elia AJ, Nye JS, Conlon RA, Mak TW, Bernstein A, van der Kooy D: Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev. 2002, 16 (7): 846-858. 10.1101/gad.975202.CrossRefPubMedPubMedCentral
32.
go back to reference Chen R, Nishimura MC, Bumbaca SM, Kharbanda S, Forrest WF, Kasman IM, Greve JM, Soriano RH, Gilmour LL, Rivers CS, et al: A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. Cancer Cell. 2010, 17 (4): 362-375. 10.1016/j.ccr.2009.12.049.CrossRefPubMed Chen R, Nishimura MC, Bumbaca SM, Kharbanda S, Forrest WF, Kasman IM, Greve JM, Soriano RH, Gilmour LL, Rivers CS, et al: A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. Cancer Cell. 2010, 17 (4): 362-375. 10.1016/j.ccr.2009.12.049.CrossRefPubMed
33.
go back to reference Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA: Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia. 2002, 39 (3): 193-206. 10.1002/glia.10094.CrossRefPubMed Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA: Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia. 2002, 39 (3): 193-206. 10.1002/glia.10094.CrossRefPubMed
34.
go back to reference Svendsen CN, ter BM, Armstrong RJ, Rosser AE, Chandran S, Ostenfeld T, Caldwell MA: A new method for the rapid and long term growth of human neural precursor cells. J Neurosci Methods. 1998, 85 (2): 141-152. 10.1016/S0165-0270(98)00126-5.CrossRefPubMed Svendsen CN, ter BM, Armstrong RJ, Rosser AE, Chandran S, Ostenfeld T, Caldwell MA: A new method for the rapid and long term growth of human neural precursor cells. J Neurosci Methods. 1998, 85 (2): 141-152. 10.1016/S0165-0270(98)00126-5.CrossRefPubMed
35.
go back to reference Hallahan AR, Pritchard JI, Hansen S, Benson M, Stoeck J, Hatton BA, Russell TL, Ellenbogen RG, Bernstein ID, Beachy PA, et al: The SmoA1 mouse model reveals that notch signaling is critical for the growth and survival of sonic hedgehog-induced medulloblastomas. Cancer Res. 2004, 64: 7794-7800. 10.1158/0008-5472.CAN-04-1813.CrossRefPubMed Hallahan AR, Pritchard JI, Hansen S, Benson M, Stoeck J, Hatton BA, Russell TL, Ellenbogen RG, Bernstein ID, Beachy PA, et al: The SmoA1 mouse model reveals that notch signaling is critical for the growth and survival of sonic hedgehog-induced medulloblastomas. Cancer Res. 2004, 64: 7794-7800. 10.1158/0008-5472.CAN-04-1813.CrossRefPubMed
36.
go back to reference Go MJ, Eastman DS, Artavanis-Tsakonas S: Cell proliferation control by Notch signaling in Drosophila development. Development. 1998, 125 (11): 2031-2040.PubMed Go MJ, Eastman DS, Artavanis-Tsakonas S: Cell proliferation control by Notch signaling in Drosophila development. Development. 1998, 125 (11): 2031-2040.PubMed
37.
go back to reference Dotto GP: Crosstalk of Notch with p53 and p63 in cancer growth control. Nat Rev Cancer. 2009, 9 (8): 587-595. 10.1038/nrc2675.CrossRefPubMed Dotto GP: Crosstalk of Notch with p53 and p63 in cancer growth control. Nat Rev Cancer. 2009, 9 (8): 587-595. 10.1038/nrc2675.CrossRefPubMed
38.
go back to reference Palomero T, Sulis ML, Cortina M, Real PJ, Barnes K, Ciofani M, Caparros E, Buteau J, Brown K, Perkins SL, et al: Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med. 2007, 13 (10): 1203-1210. 10.1038/nm1636.CrossRefPubMedPubMedCentral Palomero T, Sulis ML, Cortina M, Real PJ, Barnes K, Ciofani M, Caparros E, Buteau J, Brown K, Perkins SL, et al: Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med. 2007, 13 (10): 1203-1210. 10.1038/nm1636.CrossRefPubMedPubMedCentral
39.
go back to reference Weijzen S, Rizzo P, Braid M, Vaishnav R, Jonkheer SM, Zlobin A, Osborne BA, Gottipati S, Aster JC, Hahn WC, et al: Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nat Med. 2002, 8 (9): 979-986. 10.1038/nm754.CrossRefPubMed Weijzen S, Rizzo P, Braid M, Vaishnav R, Jonkheer SM, Zlobin A, Osborne BA, Gottipati S, Aster JC, Hahn WC, et al: Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nat Med. 2002, 8 (9): 979-986. 10.1038/nm754.CrossRefPubMed
Metadata
Title
Notch signaling contributes to the maintenance of both normal neural stem cells and patient-derived glioma stem cells
Authors
Yi-Yang Hu
Min-Hua Zheng
Gang Cheng
Liang Li
Liang Liang
Fang Gao
Ya-Ning Wei
Luo-An Fu
Hua Han
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2011
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-11-82

Other articles of this Issue 1/2011

BMC Cancer 1/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine