Skip to main content
Top
Published in: BMC Cancer 1/2011

Open Access 01-12-2011 | Research article

Adenoviral infectivity of exfoliated viable cells in urine: Implications for the detection of bladder cancer

Authors: Anuradha Murali, Laura Kasman, Christina Voelkel-Johnson

Published in: BMC Cancer | Issue 1/2011

Login to get access

Abstract

Background

Bladder cancer, the 5th most common malignancy in the USA, is often detected as a result of incidental findings or by presenting hematuria. Once diagnosed the disease is one of the costliest cancers to treat due to frequent, invasive and often lifelong follow-up procedures. Because cells are shed into urine, there has been an emerging effort to develop non-invasive tests for the detection of bladder cancer. Expression of survivin, a member of the inhibitor of apoptosis protein family, has been associated with bladder cancer. Therefore, the goal of this study was to determine the feasibility of transducing viable exfoliated cells obtained from urine with an adenoviral vector in which a reporter gene is under the control of the survivin promoter.

Methods

Exfoliated cells from urine were obtained from 36 human subjects (> 40 years old). An adenovirus in which GFP expression is under control of the survivin promoter (Ad.Surv.GFP) was generated. An adenovirus in which GFP is expressed from the CMV promoter served as a control. GFP expression was analyzed by fluorescent microscopy and quantified by flow cytometry.

Results

Short-term cultures from exfoliated cells in urine could be established in 16 of 31 samples. These cultures were successfully transduced with Ad.CMV.GFP. Analysis of GFP expression following transduction with Ad.Surv.GFP, indicated that the survivin promoter was preferentially active in UM-UC-3 bladder cancer cells compared to non-malignant UROtsa cells. Interestingly, baseline levels of GFP expression in cultures from exfoliated cells in urine exhibited higher baseline levels than UROtsa following transduction with Ad.Surv.GFP.

Conclusions

We demonstrated the feasibility of establishing and analysing short-term cultures isolated from exfoliated cells in voided urine by means of adenoviral transduction, thereby forming the foundation for future studies to determine the specificity and sensitivity of a non-invasive test based on survivin promoter activity.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jemal A, Siegel R, Xu J, Ward E: Cancer statistics, 2010. CA Cancer J Clin. 2010, 60 (5): 277-300. 10.3322/caac.20073.CrossRefPubMed Jemal A, Siegel R, Xu J, Ward E: Cancer statistics, 2010. CA Cancer J Clin. 2010, 60 (5): 277-300. 10.3322/caac.20073.CrossRefPubMed
2.
go back to reference Jacobs BL, Lee CT, Montie JE: Bladder cancer in 2010: how far have we come?. CA Cancer J Clin. 2010, 60 (4): 244-272. 10.3322/caac.20077.CrossRefPubMed Jacobs BL, Lee CT, Montie JE: Bladder cancer in 2010: how far have we come?. CA Cancer J Clin. 2010, 60 (4): 244-272. 10.3322/caac.20077.CrossRefPubMed
3.
go back to reference Elias K, Svatek RS, Gupta S, Ho R, Lotan Y: High-risk patients with hematuria are not evaluated according to guideline recommendations. Cancer. 116 (12): 2954-2959. Elias K, Svatek RS, Gupta S, Ho R, Lotan Y: High-risk patients with hematuria are not evaluated according to guideline recommendations. Cancer. 116 (12): 2954-2959.
4.
go back to reference Youssef RF, Schlomer BJ, Ho R, Sagalowsky AI, Ashfaq R, Lotan Y: Role of fluorescence in situ hybridization in bladder cancer surveillance of patients with negative cytology. Urol Oncol. Youssef RF, Schlomer BJ, Ho R, Sagalowsky AI, Ashfaq R, Lotan Y: Role of fluorescence in situ hybridization in bladder cancer surveillance of patients with negative cytology. Urol Oncol.
5.
go back to reference Lotan Y, Roehrborn CG: Cost-effectiveness of a modified care protocol substituting bladder tumor markers for cystoscopy for the followup of patients with transitional cell carcinoma of the bladder: a decision analytical approach. J Urol. 2002, 167 (1): 75-79. 10.1016/S0022-5347(05)65386-4.CrossRefPubMed Lotan Y, Roehrborn CG: Cost-effectiveness of a modified care protocol substituting bladder tumor markers for cystoscopy for the followup of patients with transitional cell carcinoma of the bladder: a decision analytical approach. J Urol. 2002, 167 (1): 75-79. 10.1016/S0022-5347(05)65386-4.CrossRefPubMed
6.
go back to reference Vrooman OP, Witjes JA: Molecular markers for detection, surveillance and prognostication of bladder cancer. Int J Urol. 2009, 16 (3): 234-243. 10.1111/j.1442-2042.2008.02225.x.CrossRefPubMed Vrooman OP, Witjes JA: Molecular markers for detection, surveillance and prognostication of bladder cancer. Int J Urol. 2009, 16 (3): 234-243. 10.1111/j.1442-2042.2008.02225.x.CrossRefPubMed
7.
go back to reference Horstmann M, Bontrup H, Hennenlotter J, Taeger D, Weber A, Pesch B, Feil G, Patschan O, Johnen G, Stenzl A, et al: Clinical experience with survivin as a biomarker for urothelial bladder cancer. World J Urol. 28 (3): 399-404. Horstmann M, Bontrup H, Hennenlotter J, Taeger D, Weber A, Pesch B, Feil G, Patschan O, Johnen G, Stenzl A, et al: Clinical experience with survivin as a biomarker for urothelial bladder cancer. World J Urol. 28 (3): 399-404.
8.
go back to reference Smith SD, Wheeler MA, Plescia J, Colberg JW, Weiss RM, Altieri DC: Urine detection of survivin and diagnosis of bladder cancer. JAMA. 2001, 285 (3): 324-328. 10.1001/jama.285.3.324.CrossRefPubMed Smith SD, Wheeler MA, Plescia J, Colberg JW, Weiss RM, Altieri DC: Urine detection of survivin and diagnosis of bladder cancer. JAMA. 2001, 285 (3): 324-328. 10.1001/jama.285.3.324.CrossRefPubMed
9.
go back to reference Zhu ZB, Makhija SK, Lu B, Wang M, Kaliberova L, Liu B, Rivera AA, Nettelbeck DM, Mahasreshti PJ, Leath CA, et al: Transcriptional targeting of tumors with a novel tumor-specific survivin promoter. Cancer Gene Ther. 2004, 11 (4): 256-262. 10.1038/sj.cgt.7700679.CrossRefPubMed Zhu ZB, Makhija SK, Lu B, Wang M, Kaliberova L, Liu B, Rivera AA, Nettelbeck DM, Mahasreshti PJ, Leath CA, et al: Transcriptional targeting of tumors with a novel tumor-specific survivin promoter. Cancer Gene Ther. 2004, 11 (4): 256-262. 10.1038/sj.cgt.7700679.CrossRefPubMed
10.
go back to reference Rossi MR, Masters JR, Park S, Todd JH, Garrett SH, Sens MA, Somji S, Nath J, Sens DA: The immortalized UROtsa cell line as a potential cell culture model of human urothelium. Environ Health Perspect. 2001, 109 (8): 801-808. 10.1289/ehp.01109801.CrossRefPubMedPubMedCentral Rossi MR, Masters JR, Park S, Todd JH, Garrett SH, Sens MA, Somji S, Nath J, Sens DA: The immortalized UROtsa cell line as a potential cell culture model of human urothelium. Environ Health Perspect. 2001, 109 (8): 801-808. 10.1289/ehp.01109801.CrossRefPubMedPubMedCentral
11.
go back to reference Hoffman WH, Biade S, Zilfou JT, Chen J, Murphy M: Transcriptional repression of the anti-apoptotic survivin gene by wild type p53. J Biol Chem. 2002, 277 (5): 3247-3257. 10.1074/jbc.M106643200.CrossRefPubMed Hoffman WH, Biade S, Zilfou JT, Chen J, Murphy M: Transcriptional repression of the anti-apoptotic survivin gene by wild type p53. J Biol Chem. 2002, 277 (5): 3247-3257. 10.1074/jbc.M106643200.CrossRefPubMed
12.
go back to reference Luo J, Deng ZL, Luo X, Tang N, Song WX, Chen J, Sharff KA, Luu HH, Haydon RC, Kinzler KW, et al: A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. Nat Protoc. 2007, 2 (5): 1236-1247. 10.1038/nprot.2007.135.CrossRefPubMed Luo J, Deng ZL, Luo X, Tang N, Song WX, Chen J, Sharff KA, Luu HH, Haydon RC, Kinzler KW, et al: A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. Nat Protoc. 2007, 2 (5): 1236-1247. 10.1038/nprot.2007.135.CrossRefPubMed
13.
go back to reference Kulkarni GS, Alibhai SM, Finelli A, Fleshner NE, Jewett MA, Lopushinsky SR, Bayoumi AM: Cost-effectiveness analysis of immediate radical cystectomy versus intravesical Bacillus Calmette-Guerin therapy for high-risk, high-grade (T1G3) bladder cancer. Cancer. 2009, 115 (23): 5450-5459. 10.1002/cncr.24634.CrossRefPubMed Kulkarni GS, Alibhai SM, Finelli A, Fleshner NE, Jewett MA, Lopushinsky SR, Bayoumi AM: Cost-effectiveness analysis of immediate radical cystectomy versus intravesical Bacillus Calmette-Guerin therapy for high-risk, high-grade (T1G3) bladder cancer. Cancer. 2009, 115 (23): 5450-5459. 10.1002/cncr.24634.CrossRefPubMed
14.
go back to reference Mitra AP: Urine cytologic analysis: special techniques for bladder cancer detection. Connection. Edited by: Kumar GL, Kiernan JA. 2010, 14: 169-177. Mitra AP: Urine cytologic analysis: special techniques for bladder cancer detection. Connection. Edited by: Kumar GL, Kiernan JA. 2010, 14: 169-177.
15.
go back to reference Zuiverloon TC, van der Aa MN, van der Kwast TH, Steyerberg EW, Lingsma HF, Bangma CH, Zwarthoff EC: Fibroblast growth factor receptor 3 mutation analysis on voided urine for surveillance of patients with low-grade non-muscle-invasive bladder cancer. Clin Cancer Res. 16 (11): 3011-3018. Zuiverloon TC, van der Aa MN, van der Kwast TH, Steyerberg EW, Lingsma HF, Bangma CH, Zwarthoff EC: Fibroblast growth factor receptor 3 mutation analysis on voided urine for surveillance of patients with low-grade non-muscle-invasive bladder cancer. Clin Cancer Res. 16 (11): 3011-3018.
16.
go back to reference Jacobs BL, Lee CT, Montie JE: Bladder Cancer in 2010: How Far have We Come?. CA Cancer J Clin. Jacobs BL, Lee CT, Montie JE: Bladder Cancer in 2010: How Far have We Come?. CA Cancer J Clin.
17.
go back to reference Belik R, Follmann W, Degen GH, Roos PH, Blaszkewicz M, Knopf HJ, Golka K: Improvements in culturing exfoliated urothelial cells in vitro from human urine. J Toxicol Environ Health A. 2008, 71 (13-14): 923-929.CrossRefPubMed Belik R, Follmann W, Degen GH, Roos PH, Blaszkewicz M, Knopf HJ, Golka K: Improvements in culturing exfoliated urothelial cells in vitro from human urine. J Toxicol Environ Health A. 2008, 71 (13-14): 923-929.CrossRefPubMed
18.
go back to reference Okuno H, Kakehi Y, Ozdemir E, Terachi T, Okada Y, Yoshida O: Association of in vitro growth potential of urinary exfoliated cells with tumor localization and intraluminal recurrence rates of urothelial cancers. J Urol. 1997, 158 (5): 1996-1999. 10.1016/S0022-5347(01)64200-9.CrossRefPubMed Okuno H, Kakehi Y, Ozdemir E, Terachi T, Okada Y, Yoshida O: Association of in vitro growth potential of urinary exfoliated cells with tumor localization and intraluminal recurrence rates of urothelial cancers. J Urol. 1997, 158 (5): 1996-1999. 10.1016/S0022-5347(01)64200-9.CrossRefPubMed
19.
go back to reference Van Houdt WJ, Haviv YS, Lu B, Wang M, Rivera AA, Ulasov IV, Lamfers ML, Rein D, Lesniak MS, Siegal GP, et al: The human survivin promoter: a novel transcriptional targeting strategy for treatment of glioma. J Neurosurg. 2006, 104 (4): 583-592. 10.3171/jns.2006.104.4.583.CrossRefPubMed Van Houdt WJ, Haviv YS, Lu B, Wang M, Rivera AA, Ulasov IV, Lamfers ML, Rein D, Lesniak MS, Siegal GP, et al: The human survivin promoter: a novel transcriptional targeting strategy for treatment of glioma. J Neurosurg. 2006, 104 (4): 583-592. 10.3171/jns.2006.104.4.583.CrossRefPubMed
20.
go back to reference Ulasov IV, Tyler MA, Zhu ZB, Han Y, He TC, Lesniak MS: Oncolytic adenoviral vectors which employ the survivin promoter induce glioma oncolysis via a process of beclin-dependent autophagy. Int J Oncol. 2009, 34 (3): 729-742.PubMedPubMedCentral Ulasov IV, Tyler MA, Zhu ZB, Han Y, He TC, Lesniak MS: Oncolytic adenoviral vectors which employ the survivin promoter induce glioma oncolysis via a process of beclin-dependent autophagy. Int J Oncol. 2009, 34 (3): 729-742.PubMedPubMedCentral
21.
go back to reference Moussa O, Abol-Enein H, Bissada NK, Keane T, Ghoneim MA, Watson DK: Evaluation of survivin reverse transcriptase-polymerase chain reaction for noninvasive detection of bladder cancer. J Urol. 2006, 175 (6): 2312-2316. 10.1016/S0022-5347(06)00254-0.CrossRefPubMed Moussa O, Abol-Enein H, Bissada NK, Keane T, Ghoneim MA, Watson DK: Evaluation of survivin reverse transcriptase-polymerase chain reaction for noninvasive detection of bladder cancer. J Urol. 2006, 175 (6): 2312-2316. 10.1016/S0022-5347(06)00254-0.CrossRefPubMed
22.
go back to reference Altieri DC: Molecular circuits of apoptosis regulation and cell division control: the survivin paradigm. J Cell Biochem. 2004, 92 (4): 656-663. 10.1002/jcb.20140.CrossRefPubMed Altieri DC: Molecular circuits of apoptosis regulation and cell division control: the survivin paradigm. J Cell Biochem. 2004, 92 (4): 656-663. 10.1002/jcb.20140.CrossRefPubMed
23.
go back to reference Ryan B, O'Donovan N, Browne B, O'Shea C, Crown J, Hill AD, McDermott E, O'Higgins N, Duffy MJ: Expression of survivin and its splice variants survivin-2B and survivin-DeltaEx3 in breast cancer. Br J Cancer. 2005, 92 (1): 120-124. 10.1038/sj.bjc.6602314.CrossRefPubMed Ryan B, O'Donovan N, Browne B, O'Shea C, Crown J, Hill AD, McDermott E, O'Higgins N, Duffy MJ: Expression of survivin and its splice variants survivin-2B and survivin-DeltaEx3 in breast cancer. Br J Cancer. 2005, 92 (1): 120-124. 10.1038/sj.bjc.6602314.CrossRefPubMed
24.
go back to reference Weikert S, Schrader M, Krause H, Schulze W, Muller M, Miller K: The inhibitor of apoptosis (IAP) survivin is expressed in human testicular germ cell tumors and normal testes. Cancer Lett. 2005, 223 (2): 331-337. 10.1016/j.canlet.2004.10.038.CrossRefPubMed Weikert S, Schrader M, Krause H, Schulze W, Muller M, Miller K: The inhibitor of apoptosis (IAP) survivin is expressed in human testicular germ cell tumors and normal testes. Cancer Lett. 2005, 223 (2): 331-337. 10.1016/j.canlet.2004.10.038.CrossRefPubMed
Metadata
Title
Adenoviral infectivity of exfoliated viable cells in urine: Implications for the detection of bladder cancer
Authors
Anuradha Murali
Laura Kasman
Christina Voelkel-Johnson
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2011
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-11-168

Other articles of this Issue 1/2011

BMC Cancer 1/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine