Skip to main content
Top
Published in: BMC Nephrology 1/2004

Open Access 01-12-2004 | Research article

Lipoprotein lipase in hemodialysis patients: indications that low molecular weight heparin depletes functional stores, despite low plasma levels of the enzyme

Authors: Birgit Näsström, Bernd Stegmayr, Gunilla Olivecrona, Thomas Olivecrona

Published in: BMC Nephrology | Issue 1/2004

Login to get access

Abstract

Background

Lipoprotein lipase (LPL) has a central role in the catabolism of triglyceride-rich lipoproteins. The enzyme is anchored to the vascular endothelium through interaction with heparan sulphate proteoglycans and is displaced from this interaction by heparin. When heparin is infused, there is a peak of LPL activity accompanied by a reduction in triglycerides (TG) during the first hour, followed by a decrease in LPL activity to a stable plateau during the remaining session while TG increase towards and beyond baseline. This suggests that tissue stores of LPL become depleted. It has been argued that low molecular weight (LMW) heparins cause less disturbance of the LPL system than conventional heparin does.

Methods

We have followed LPL activity and TG during a dialysis-session with a LMW heparin (dalteparin) using the same patients and regime as in a previous study with conventional heparin, i.e. a primed infusion.

Results

The shape of the curve for LPL activity resembled that during the earlier dialyses with conventional heparin, but the values were lower during dialysis with dalteparin. The area under the curve for LPL activity during the peak period (0–180 minutes) was only 27% and for the plateau period (180–240 minutes) it was only 36% of that observed with conventional heparin (p < 0.01). These remarkably low plasma LPL activities prompted us to re-analyze LPL activity and to measure LPL mass in frozen samples from our earlier studies. There was excellent correlation between the new and old values which rules out the possibility of assay variations as a confounding factor. TG increased from 2.14 mmol/L before, to 2.59 mmol/L after the dialysis (p < 0.01). From 30 minutes on, the TG values were significantly higher after dalteparin compared to conventional heparin (p < 0.05).

Conclusion

These results indicate that LMW heparins disturb the LPL system as much or more than conventional heparin does.
Appendix
Available only for authorised users
Literature
1.
go back to reference Goldberg IJ, Merkel M: Lipoprotein lipase: physiology, biochemistry, and molecular biology. Front Biosci. 2001, 6: D388-D405.PubMed Goldberg IJ, Merkel M: Lipoprotein lipase: physiology, biochemistry, and molecular biology. Front Biosci. 2001, 6: D388-D405.PubMed
2.
go back to reference Olivecrona T, Olivecrona G: Lipoprotein and hepatic lipases in lipoprotein metabolism. Lipoproteins in health and disease. Edited by: Betteridge DJ, Illingworth DR and Shepherd J. 1999, London, Arnold, 223-246. Olivecrona T, Olivecrona G: Lipoprotein and hepatic lipases in lipoprotein metabolism. Lipoproteins in health and disease. Edited by: Betteridge DJ, Illingworth DR and Shepherd J. 1999, London, Arnold, 223-246.
3.
go back to reference Brunzell JD: Familial lipoprotein lipase deficiency and other causes of the chylomicronemia syndrome. Metabolic basis of inherited disease. Edited by: Scriver CR, Beaudet AL, Sly WS and Valle D. 1995, New York, McGraw-Hill Book Co, 1913-1932. 7 Brunzell JD: Familial lipoprotein lipase deficiency and other causes of the chylomicronemia syndrome. Metabolic basis of inherited disease. Edited by: Scriver CR, Beaudet AL, Sly WS and Valle D. 1995, New York, McGraw-Hill Book Co, 1913-1932. 7
4.
go back to reference Preiss-Landl K, Zimmermann R, Hammerle G, Zechner R: Lipoprotein lipase: the regulation of tissue specific expression and its role in lipid and energy metabolism. Curr Opin Lipidol. 2002, 13: 471-481. 10.1097/00041433-200210000-00002.CrossRefPubMed Preiss-Landl K, Zimmermann R, Hammerle G, Zechner R: Lipoprotein lipase: the regulation of tissue specific expression and its role in lipid and energy metabolism. Curr Opin Lipidol. 2002, 13: 471-481. 10.1097/00041433-200210000-00002.CrossRefPubMed
5.
go back to reference Bagdade JD: Uremic lipemia. An unrecognized abnormality in triglyceride production and removal. Arch Intern Med. 1970, 126: 875-881. 10.1001/archinte.126.5.875.CrossRefPubMed Bagdade JD: Uremic lipemia. An unrecognized abnormality in triglyceride production and removal. Arch Intern Med. 1970, 126: 875-881. 10.1001/archinte.126.5.875.CrossRefPubMed
6.
go back to reference Chan MK, Persaud J, Varghese Z, Moorhead JF: Pathogenic roles of post-heparin lipases in lipid abnormalities in hemodialysis patients. Kidney Int. 1984, 25: 812-818.CrossRefPubMed Chan MK, Persaud J, Varghese Z, Moorhead JF: Pathogenic roles of post-heparin lipases in lipid abnormalities in hemodialysis patients. Kidney Int. 1984, 25: 812-818.CrossRefPubMed
7.
go back to reference Arnadottir M, Nilsson-Ehle P: Parathyroid hormone is not an inhibitor of lipoprotein lipase activity. Nephrol Dial Transplant. 1994, 9: 1586-1589.PubMed Arnadottir M, Nilsson-Ehle P: Parathyroid hormone is not an inhibitor of lipoprotein lipase activity. Nephrol Dial Transplant. 1994, 9: 1586-1589.PubMed
8.
go back to reference Bagdade JD, Porte DJ, Bierman EL: Hypertriglyceridemia. A metabolic consequence of chronic renal failure. N Engl J Med. 1968, 279: 181-185.CrossRefPubMed Bagdade JD, Porte DJ, Bierman EL: Hypertriglyceridemia. A metabolic consequence of chronic renal failure. N Engl J Med. 1968, 279: 181-185.CrossRefPubMed
9.
go back to reference Nestel PJ: The depletion and restoration of post-heparin lipolytic activity in the human forearm. Proc Soc Exp Biol Med. 1970, 134: 896-899.CrossRefPubMed Nestel PJ: The depletion and restoration of post-heparin lipolytic activity in the human forearm. Proc Soc Exp Biol Med. 1970, 134: 896-899.CrossRefPubMed
10.
go back to reference Schrader J, Andersson LO, Armstrong VW, Kundt M, Stibbe W, Scheler F: Lipolytic effects of heparin and low molecular weight heparin and their importance in hemodialysis. Semin Thromb Hemost. 1990, 16 Suppl: 41-45.PubMed Schrader J, Andersson LO, Armstrong VW, Kundt M, Stibbe W, Scheler F: Lipolytic effects of heparin and low molecular weight heparin and their importance in hemodialysis. Semin Thromb Hemost. 1990, 16 Suppl: 41-45.PubMed
11.
go back to reference Weintraub M, Rassin T, Eisenberg S, Ringel Y, Grosskopf I, Iaina A, Charach G, Liron M, Rubinstein A: Continuous intravenous heparin administration in humans causes a decrease in serum lipolytic activity and accumulation of chylomicrons in circulation. J Lipid Res. 1994, 35: 229-238.PubMed Weintraub M, Rassin T, Eisenberg S, Ringel Y, Grosskopf I, Iaina A, Charach G, Liron M, Rubinstein A: Continuous intravenous heparin administration in humans causes a decrease in serum lipolytic activity and accumulation of chylomicrons in circulation. J Lipid Res. 1994, 35: 229-238.PubMed
12.
go back to reference Näsström B, Olivecrona G, Olivecrona T, Stegmayr BG: Lipoprotein lipase during heparin infusion: lower activity in hemodialysis patients. Scand J Clin Lab Invest. 2003, 63: 45-53.CrossRefPubMed Näsström B, Olivecrona G, Olivecrona T, Stegmayr BG: Lipoprotein lipase during heparin infusion: lower activity in hemodialysis patients. Scand J Clin Lab Invest. 2003, 63: 45-53.CrossRefPubMed
13.
go back to reference Harenberg J, Roebruck P, Heene DL: Subcutaneous low-molecular-weight heparin versus standard heparin and the prevention of thromboembolism in medical inpatients. The Heparin Study in Internal Medicine Group. Haemostasis. 1996, 26: 127-139.PubMed Harenberg J, Roebruck P, Heene DL: Subcutaneous low-molecular-weight heparin versus standard heparin and the prevention of thromboembolism in medical inpatients. The Heparin Study in Internal Medicine Group. Haemostasis. 1996, 26: 127-139.PubMed
14.
go back to reference Sagedal S, Hartmann A, Sundstrom K, Bjornsen S, Fauchald P, Brosstad F: A single dose of dalteparin effectively prevents clotting during haemodialysis. Nephrol Dial Transplant. 1999, 14: 1943-1947. 10.1093/ndt/14.8.1943.CrossRefPubMed Sagedal S, Hartmann A, Sundstrom K, Bjornsen S, Fauchald P, Brosstad F: A single dose of dalteparin effectively prevents clotting during haemodialysis. Nephrol Dial Transplant. 1999, 14: 1943-1947. 10.1093/ndt/14.8.1943.CrossRefPubMed
15.
go back to reference Persson E: Lipoprotein lipase, hepatic lipase and plasma lipolytic activity. Effects of heparin and a low molecular weight heparin fragment (Fragmin). Acta Med Scand Suppl. 1988, 724: 1-56.CrossRefPubMed Persson E: Lipoprotein lipase, hepatic lipase and plasma lipolytic activity. Effects of heparin and a low molecular weight heparin fragment (Fragmin). Acta Med Scand Suppl. 1988, 724: 1-56.CrossRefPubMed
16.
go back to reference Kronenberg F, König P, Lhotta K, Steinmetz A, Dieplinger H: Low molecular weight heparin does not necessarily reduce lipids and lipoproteins in hemodialysis patients. Clin Nephrol. 1995, 43: 399-404.PubMed Kronenberg F, König P, Lhotta K, Steinmetz A, Dieplinger H: Low molecular weight heparin does not necessarily reduce lipids and lipoproteins in hemodialysis patients. Clin Nephrol. 1995, 43: 399-404.PubMed
17.
go back to reference Lookene A, Chevreuil O, Ostergaard P, Olivecrona G: Interaction of lipoprotein lipase with heparin fragments and with heparan sulfate: stoichiometry, stabilization and kinetics. Biochemistry. 1996, 35: 12155-12163. 10.1021/bi960008e.CrossRefPubMed Lookene A, Chevreuil O, Ostergaard P, Olivecrona G: Interaction of lipoprotein lipase with heparin fragments and with heparan sulfate: stoichiometry, stabilization and kinetics. Biochemistry. 1996, 35: 12155-12163. 10.1021/bi960008e.CrossRefPubMed
18.
go back to reference van Tilbeurgh H, Roussel A, Lalouel JM, Cambillau C: Lipoprotein lipase. Molecular model based on the pancreatic lipase X-ray structure: consequences for heparin binding and catalysis. J Biol Chem. 1994, 269: 4626-4633.PubMed van Tilbeurgh H, Roussel A, Lalouel JM, Cambillau C: Lipoprotein lipase. Molecular model based on the pancreatic lipase X-ray structure: consequences for heparin binding and catalysis. J Biol Chem. 1994, 269: 4626-4633.PubMed
19.
go back to reference Holmer E: Low-molecular weight heparin. Heparin. Edited by: Lane D and Lindahl U. 1989, Edward Arnold Publishers Ltd, London: England, 575-595. Holmer E: Low-molecular weight heparin. Heparin. Edited by: Lane D and Lindahl U. 1989, Edward Arnold Publishers Ltd, London: England, 575-595.
20.
21.
go back to reference Liu G, Bengtsson-Olivecrona G, Østergaard PB, Olivecrona T: Low-Mr heparin is as potent as conventional heparin in releasing lipoprotein lipase, but is less effective in preventing hepatic clearance of the enzyme. Biochem J. 1991, 273: 747-752.CrossRefPubMedPubMedCentral Liu G, Bengtsson-Olivecrona G, Østergaard PB, Olivecrona T: Low-Mr heparin is as potent as conventional heparin in releasing lipoprotein lipase, but is less effective in preventing hepatic clearance of the enzyme. Biochem J. 1991, 273: 747-752.CrossRefPubMedPubMedCentral
22.
go back to reference Näsström B, Stegmayr BG, Olivecrona G, Olivecrona T: Lower plasma levels of lipoprotein lipase after infusion of low molecular weight heparin than after administration of conventional heparin indicate more rapid catabolism of the enzyme. J Lab Clin Med. 2003, 142: 90-99. 10.1016/S0022-2143(03)00059-3.CrossRefPubMed Näsström B, Stegmayr BG, Olivecrona G, Olivecrona T: Lower plasma levels of lipoprotein lipase after infusion of low molecular weight heparin than after administration of conventional heparin indicate more rapid catabolism of the enzyme. J Lab Clin Med. 2003, 142: 90-99. 10.1016/S0022-2143(03)00059-3.CrossRefPubMed
23.
go back to reference Näsström B, Olivecrona G, Olivecrona T, Stegmayr BG: Lipoprotein lipase during continuous heparin infusion: Tissue stores become partially depleted. J Lab Clin Med. 2001, 138: 206-213. 10.1067/mlc.2001.117666.CrossRefPubMed Näsström B, Olivecrona G, Olivecrona T, Stegmayr BG: Lipoprotein lipase during continuous heparin infusion: Tissue stores become partially depleted. J Lab Clin Med. 2001, 138: 206-213. 10.1067/mlc.2001.117666.CrossRefPubMed
24.
go back to reference Tornvall P, Olivecrona G, Karpe F, Hamsten A, Olivecrona T: Lipoprotein lipase mass and activity in plasma and their increase after heparin are separate parameters with different relations to plasma lipoproteins. Arterioscler Thromb Vasc Biol. 1995, 15: 1086-1093.CrossRefPubMed Tornvall P, Olivecrona G, Karpe F, Hamsten A, Olivecrona T: Lipoprotein lipase mass and activity in plasma and their increase after heparin are separate parameters with different relations to plasma lipoproteins. Arterioscler Thromb Vasc Biol. 1995, 15: 1086-1093.CrossRefPubMed
25.
go back to reference Friedewald WT, Levy RI, Fredrickson DS: Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972, 18: 499-502.PubMed Friedewald WT, Levy RI, Fredrickson DS: Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972, 18: 499-502.PubMed
26.
go back to reference Olivecrona G, Hultin M, Savonen R, Skottova N, Lookene A, Tugrul Y, Olivecrona T: Transport of lipoprotein lipase in plasma and lipoprotein metabolism. Atherosclerosis X. Edited by: Woodford FP, Davignon J and Sniderman AD. 1995, Elsevier, 250-253. Olivecrona G, Hultin M, Savonen R, Skottova N, Lookene A, Tugrul Y, Olivecrona T: Transport of lipoprotein lipase in plasma and lipoprotein metabolism. Atherosclerosis X. Edited by: Woodford FP, Davignon J and Sniderman AD. 1995, Elsevier, 250-253.
27.
go back to reference Persson E, Nordenström J, Nilsson-Ehle P, Hagenfeldt L: Lipolytic and anticoagulant activities of a low molecular weight fragment of heparin. Eur J Clin Invest. 1985, 15: 215-220.CrossRefPubMed Persson E, Nordenström J, Nilsson-Ehle P, Hagenfeldt L: Lipolytic and anticoagulant activities of a low molecular weight fragment of heparin. Eur J Clin Invest. 1985, 15: 215-220.CrossRefPubMed
28.
go back to reference Persson E, Nordenström J, Nilsson-Ehle P: Plasma kinetics of lipoprotein lipase and hepatic lipase activities induced by heparin and a low molecular weight heparin fragment. Scand J Clin Lab Invest. 1987, 47: 151-155.CrossRefPubMed Persson E, Nordenström J, Nilsson-Ehle P: Plasma kinetics of lipoprotein lipase and hepatic lipase activities induced by heparin and a low molecular weight heparin fragment. Scand J Clin Lab Invest. 1987, 47: 151-155.CrossRefPubMed
29.
go back to reference Persson E, Nordenström J, Nilsson-Ehle P, Hagenfeldt L, Wahren J: Plasma lipolytic activity and substrate oxidation after intravenous administration of heparin and a low molecular weight heparin fragment. Clin Physiol. 1990, 10: 573-583.CrossRefPubMed Persson E, Nordenström J, Nilsson-Ehle P, Hagenfeldt L, Wahren J: Plasma lipolytic activity and substrate oxidation after intravenous administration of heparin and a low molecular weight heparin fragment. Clin Physiol. 1990, 10: 573-583.CrossRefPubMed
30.
go back to reference Arnadottir M, Kurkus J, Nilsson-Ehle P: Different types of heparin in haemodialysis: Long-term effects on post-heparin lipases. Scand J Clin Lab Invest. 1994, 54: 515-521.CrossRefPubMed Arnadottir M, Kurkus J, Nilsson-Ehle P: Different types of heparin in haemodialysis: Long-term effects on post-heparin lipases. Scand J Clin Lab Invest. 1994, 54: 515-521.CrossRefPubMed
31.
go back to reference Chevreuil O, Hultin M, Østergaard PB, Olivecrona T: Depletion of lipoprotein lipase after heparin administration. Arterioscler Thromb. 1993, 13: 1391-1396.CrossRefPubMed Chevreuil O, Hultin M, Østergaard PB, Olivecrona T: Depletion of lipoprotein lipase after heparin administration. Arterioscler Thromb. 1993, 13: 1391-1396.CrossRefPubMed
32.
go back to reference Chevreuil O, Hultin M, Østergaard PB, Olivecrona T: Biphasic effects of low-molecular-weight and conventional heparins on chylomicron clearance in rats. Arterioscler Thromb. 1993, 13: 1397-1403.CrossRefPubMed Chevreuil O, Hultin M, Østergaard PB, Olivecrona T: Biphasic effects of low-molecular-weight and conventional heparins on chylomicron clearance in rats. Arterioscler Thromb. 1993, 13: 1397-1403.CrossRefPubMed
33.
go back to reference Vaziri ND, Liang KH: Down-regulation of tissue lipoprotein lipase expression in experimental chronic renal failure. Kidney Int. 1996, 50: 1928-1935.CrossRefPubMed Vaziri ND, Liang KH: Down-regulation of tissue lipoprotein lipase expression in experimental chronic renal failure. Kidney Int. 1996, 50: 1928-1935.CrossRefPubMed
34.
go back to reference Ruge T, Neuger L, Sukonina V, Wu G, Barath S, Gupta J, Frankel B, Christophersen B, Nordstoga K, Olivecrona T, Olivecrona G: Lipoprotein lipase in kidney; activity varies widely between animal species. Am J Physiol Renal Physiol. 2004 Ruge T, Neuger L, Sukonina V, Wu G, Barath S, Gupta J, Frankel B, Christophersen B, Nordstoga K, Olivecrona T, Olivecrona G: Lipoprotein lipase in kidney; activity varies widely between animal species. Am J Physiol Renal Physiol. 2004
35.
go back to reference Savonen R, Nordstoga K, Christophersen B, Lindberg A, Shen Y, Hultin M, Olivecrona T, Olivecrona G: Chylomicron metabolism in an animal model for hyperlipoproteinemia type I. J Lipid Res. 1999, 40: 1336-1346.PubMed Savonen R, Nordstoga K, Christophersen B, Lindberg A, Shen Y, Hultin M, Olivecrona T, Olivecrona G: Chylomicron metabolism in an animal model for hyperlipoproteinemia type I. J Lipid Res. 1999, 40: 1336-1346.PubMed
36.
go back to reference Cheung AK, Parker CJ, Ren K, Iverius PH: Increased lipase inhibition in uremia: identification of pre-beta-HDL as a major inhibitor in normal and uremic plasma. Kidney Int. 1996, 49: 1360-1371.CrossRefPubMed Cheung AK, Parker CJ, Ren K, Iverius PH: Increased lipase inhibition in uremia: identification of pre-beta-HDL as a major inhibitor in normal and uremic plasma. Kidney Int. 1996, 49: 1360-1371.CrossRefPubMed
Metadata
Title
Lipoprotein lipase in hemodialysis patients: indications that low molecular weight heparin depletes functional stores, despite low plasma levels of the enzyme
Authors
Birgit Näsström
Bernd Stegmayr
Gunilla Olivecrona
Thomas Olivecrona
Publication date
01-12-2004
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2004
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/1471-2369-5-17

Other articles of this Issue 1/2004

BMC Nephrology 1/2004 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.