Skip to main content
Top
Published in: BMC Nephrology 1/2012

Open Access 01-12-2012 | Research article

The MDRD equation underestimates the prevalence of CKD among blacks and overestimates the prevalence of CKD among whites compared to the CKD-EPI equation: a retrospective cohort study

Authors: Pradeep Arora, Srini Rajagopalan, Nilang Patel, Neha Nainani, Rocco C Venuto, James W Lohr

Published in: BMC Nephrology | Issue 1/2012

Login to get access

Abstract

Background

Black individuals are far more likely than white individuals to develop end stage renal disease (ESRD). However, earlier stages of chronic kidney disease (CKD) have been reported to be less prevalent among blacks. This disparity remains poorly understood. The objective of this study was to evaluate whether the lower prevalence of CKD among blacks in early stages of CKD might be due in part to an inability of the MDRD equation to accurately determine early stages of CKD in both the black and white population.

Methods

We conducted a retrospective cohort study of 97, 451 patients seen in primary care clinic in Veterans Integrated Service Network 2 (VISN 2) over a 7 year period to determine the prevalence of CKD using both the Modification of Diet in Renal Disease (MDRD) Study equation and the more recently developed CKD Epidemiology Collaboration (CKD-EPI) equation. Demographic data, comorbid conditions, prescription of medications, and laboratory data were recorded. Logistic regression and quantile regression models were used to compare the prevalence of estimated glomerular filtration rate (eGFR) categories between black and white individuals.

Results

The overall prevalence of CKD was lower when the CKD-EPI equation was used. Prevalence of CKD in whites was 53.2% by MDRD and 48.4% by CKD-EPI, versus 34.1% by MDRD and 34.5% by CKD-EPI in blacks. The cumulative logistic regression and quantile regression showed that when eGFR was calculated by the EPI method, blacks were as likely to present with an eGFR value less than 60 mL/min/1.73 m2 as whites. Using the CKD-EPI equation, blacks were more likely than white individuals to have stage 3b, 4 and 5 CKD. Using the MDRD method, the prevalence in blacks was only higher than in whites for stage 4 and 5 CKD. Similar results were obtained when the analysis was confined to patients over 65 years of age.

Conclusions

The MDRD equation overestimates the prevalence of CKD among whites and underestimates the prevalence of CKD in blacks compared to the CKD-EPI equation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Coresh J, Selvin E, Stevens LA, Manzi J, Kusek JW, Eggers P, Van Lente F, Levey AS: Prevalence of chronic kidney disease in the United States. JAMA. 2007, 298 (17): 2038-2047. 10.1001/jama.298.17.2038.CrossRefPubMed Coresh J, Selvin E, Stevens LA, Manzi J, Kusek JW, Eggers P, Van Lente F, Levey AS: Prevalence of chronic kidney disease in the United States. JAMA. 2007, 298 (17): 2038-2047. 10.1001/jama.298.17.2038.CrossRefPubMed
2.
go back to reference United States Renal Data System: USRDS 2009: Annual Report: Atlas of Chronic Kidney Disease and End Stage Renal Disease in the United States, Bethesda, MD. National Institutes of Health. National Institute of Diabetes and Digestive and Kidney Diseases. 2009 United States Renal Data System: USRDS 2009: Annual Report: Atlas of Chronic Kidney Disease and End Stage Renal Disease in the United States, Bethesda, MD. National Institutes of Health. National Institute of Diabetes and Digestive and Kidney Diseases. 2009
3.
go back to reference McClellan W, Warnock DG, McClure L, Campbell RC, Newsome BB, Howard V, Cushman M, Howard G: Racial differences in the prevalence of chronic kidney disease among participants in the Reasons for Geographic and Racial Differences in Stroke (REGARDS) Cohort Study. J Am Soc Nephrol. 2006, 17 (6): 1710-1715. 10.1681/ASN.2005111200.CrossRefPubMed McClellan W, Warnock DG, McClure L, Campbell RC, Newsome BB, Howard V, Cushman M, Howard G: Racial differences in the prevalence of chronic kidney disease among participants in the Reasons for Geographic and Racial Differences in Stroke (REGARDS) Cohort Study. J Am Soc Nephrol. 2006, 17 (6): 1710-1715. 10.1681/ASN.2005111200.CrossRefPubMed
4.
go back to reference Xue JL, Eggers PW, Agodoa LY, Foley RN, Collins AJ: Longitudinal study of racial and ethnic differences in developing end-stage renal disease among aged medicare beneficiaries. J Am Soc Nephrol. 2007, 18 (4): 1299-1306. 10.1681/ASN.2006050524.CrossRefPubMed Xue JL, Eggers PW, Agodoa LY, Foley RN, Collins AJ: Longitudinal study of racial and ethnic differences in developing end-stage renal disease among aged medicare beneficiaries. J Am Soc Nephrol. 2007, 18 (4): 1299-1306. 10.1681/ASN.2006050524.CrossRefPubMed
5.
go back to reference Coresh J, Astor BC, Greene T, Eknoyan G, Levey AS: Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. Am J Kidney Dis. 2003, 41 (1): 1-12.CrossRefPubMed Coresh J, Astor BC, Greene T, Eknoyan G, Levey AS: Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. Am J Kidney Dis. 2003, 41 (1): 1-12.CrossRefPubMed
6.
go back to reference K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002, 39 (2 Suppl 1): S1-266. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002, 39 (2 Suppl 1): S1-266.
7.
go back to reference Rule AD, Larson TS, Bergstralh EJ, Slezak JM, Jacobsen SJ, Cosio FG: Using serum creatinine to estimate glomerular filtration rate: accuracy in good health and in chronic kidney disease. Ann Intern Med. 2004, 141 (12): 929-937.CrossRefPubMed Rule AD, Larson TS, Bergstralh EJ, Slezak JM, Jacobsen SJ, Cosio FG: Using serum creatinine to estimate glomerular filtration rate: accuracy in good health and in chronic kidney disease. Ann Intern Med. 2004, 141 (12): 929-937.CrossRefPubMed
8.
go back to reference Stevens LA, Coresh J, Feldman HI, Greene T, Lash JP, Nelson RG, Rahman M, Deysher AE, Zhang YL, Schmid CH, et al: Evaluation of the modification of diet in renal disease study equation in a large diverse population. J Am Soc Nephrol. 2007, 18 (10): 2749-2757. 10.1681/ASN.2007020199.CrossRefPubMed Stevens LA, Coresh J, Feldman HI, Greene T, Lash JP, Nelson RG, Rahman M, Deysher AE, Zhang YL, Schmid CH, et al: Evaluation of the modification of diet in renal disease study equation in a large diverse population. J Am Soc Nephrol. 2007, 18 (10): 2749-2757. 10.1681/ASN.2007020199.CrossRefPubMed
9.
go back to reference Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, Kusek JW, Van Lente F: Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med. 2006, 145 (4): 247-254.CrossRefPubMed Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, Kusek JW, Van Lente F: Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med. 2006, 145 (4): 247-254.CrossRefPubMed
10.
go back to reference Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, et al: A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009, 150 (9): 604-612.CrossRefPubMedPubMedCentral Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, et al: A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009, 150 (9): 604-612.CrossRefPubMedPubMedCentral
11.
go back to reference Matsushita K, Selvin E, Bash LD, Astor BC, Coresh J: Risk implications of the new CKD Epidemiology Collaboration (CKD-EPI) equation camopared with the MDRD Study equation for estimated GFR: the Atherosclerosis Risk in Communities (ARIC) study. Am J Kidney Dis. 2010, 55: 648-659. 10.1053/j.ajkd.2009.12.016.CrossRefPubMedPubMedCentral Matsushita K, Selvin E, Bash LD, Astor BC, Coresh J: Risk implications of the new CKD Epidemiology Collaboration (CKD-EPI) equation camopared with the MDRD Study equation for estimated GFR: the Atherosclerosis Risk in Communities (ARIC) study. Am J Kidney Dis. 2010, 55: 648-659. 10.1053/j.ajkd.2009.12.016.CrossRefPubMedPubMedCentral
12.
go back to reference National Institute for Health and Clinical Excellence Guideline C673. Chronic kidney Disease. 2008 National Institute for Health and Clinical Excellence Guideline C673. Chronic kidney Disease. 2008
13.
go back to reference Gaskin DJ, Hoffman C: Racial and ethnic differences in preventable hospitalizations across 10 states. Med Care Res Rev. 2000, 57 (Suppl 1): 85-107.CrossRefPubMed Gaskin DJ, Hoffman C: Racial and ethnic differences in preventable hospitalizations across 10 states. Med Care Res Rev. 2000, 57 (Suppl 1): 85-107.CrossRefPubMed
14.
go back to reference Choi AI, Rodriguez RA, Bacchetti P, Bertenthal D, Hernandez GT, O'Hare AM: White/black racial differences in risk of end-stage renal disease and death. Am J Med. 2009, 122 (7): 672-678. 10.1016/j.amjmed.2008.11.021.CrossRefPubMedPubMedCentral Choi AI, Rodriguez RA, Bacchetti P, Bertenthal D, Hernandez GT, O'Hare AM: White/black racial differences in risk of end-stage renal disease and death. Am J Med. 2009, 122 (7): 672-678. 10.1016/j.amjmed.2008.11.021.CrossRefPubMedPubMedCentral
15.
go back to reference Rostand SG, Kirk KA, Rutsky EA, Pate BA: Racial differences in the incidence of treatment for end-stage renal disease. N Engl J Med. 1982, 306 (21): 1276-1279. 10.1056/NEJM198205273062106.CrossRefPubMed Rostand SG, Kirk KA, Rutsky EA, Pate BA: Racial differences in the incidence of treatment for end-stage renal disease. N Engl J Med. 1982, 306 (21): 1276-1279. 10.1056/NEJM198205273062106.CrossRefPubMed
16.
go back to reference Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D: A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999, 130 (6): 461-470.CrossRefPubMed Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D: A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999, 130 (6): 461-470.CrossRefPubMed
17.
go back to reference Clase CM, Garg AX, Kiberd BA: Prevalence of low glomerular filtration rate in nondiabetic Americans: Third National Health and Nutrition Examination Survey (NHANES III). J Am Soc Nephrol. 2002, 13 (5): 1338-1349. 10.1097/01.ASN.0000013291.78621.26.CrossRefPubMed Clase CM, Garg AX, Kiberd BA: Prevalence of low glomerular filtration rate in nondiabetic Americans: Third National Health and Nutrition Examination Survey (NHANES III). J Am Soc Nephrol. 2002, 13 (5): 1338-1349. 10.1097/01.ASN.0000013291.78621.26.CrossRefPubMed
18.
go back to reference Hunsicker LG, Adler S, Caggiula A, England BK, Greene T, Kusek JW, Rogers NL, Teschan PE: Predictors of the progression of renal disease in the Modification of Diet in Renal Disease Study. Kidney Int. 1997, 51 (6): 1908-1919. 10.1038/ki.1997.260.CrossRefPubMed Hunsicker LG, Adler S, Caggiula A, England BK, Greene T, Kusek JW, Rogers NL, Teschan PE: Predictors of the progression of renal disease in the Modification of Diet in Renal Disease Study. Kidney Int. 1997, 51 (6): 1908-1919. 10.1038/ki.1997.260.CrossRefPubMed
19.
go back to reference Hsu CY, Lin F, Vittinghoff E, Shlipak MG: Racial differences in the progression from chronic renal insufficiency to end-stage renal disease in the United States. J Am Soc Nephrol. 2003, 14 (11): 2902-2907. 10.1097/01.ASN.0000091586.46532.B4.CrossRefPubMed Hsu CY, Lin F, Vittinghoff E, Shlipak MG: Racial differences in the progression from chronic renal insufficiency to end-stage renal disease in the United States. J Am Soc Nephrol. 2003, 14 (11): 2902-2907. 10.1097/01.ASN.0000091586.46532.B4.CrossRefPubMed
20.
go back to reference Brancati FL, Whittle JC, Whelton PK, Seidler AJ, Klag MJ: The excess incidence of diabetic end-stage renal disease among blacks. A population-based study of potential explanatory factors. JAMA. 1992, 268 (21): 3079-3084. 10.1001/jama.1992.03490210061036.CrossRefPubMed Brancati FL, Whittle JC, Whelton PK, Seidler AJ, Klag MJ: The excess incidence of diabetic end-stage renal disease among blacks. A population-based study of potential explanatory factors. JAMA. 1992, 268 (21): 3079-3084. 10.1001/jama.1992.03490210061036.CrossRefPubMed
21.
go back to reference Tarver-Carr ME, Powe NR, Eberhardt MS, LaVeist TA, Kington RS, Coresh J, Brancati FL: Excess risk of chronic kidney disease among African-American versus white subjects in the United States: a population-based study of potential explanatory factors. J Am Soc Nephrol. 2002, 13 (9): 2363-2370. 10.1097/01.ASN.0000026493.18542.6A.CrossRefPubMed Tarver-Carr ME, Powe NR, Eberhardt MS, LaVeist TA, Kington RS, Coresh J, Brancati FL: Excess risk of chronic kidney disease among African-American versus white subjects in the United States: a population-based study of potential explanatory factors. J Am Soc Nephrol. 2002, 13 (9): 2363-2370. 10.1097/01.ASN.0000026493.18542.6A.CrossRefPubMed
22.
go back to reference Martins D, Tareen N, Norris KC: The epidemiology of end-stage renal disease among African Americans. Am J Med Sci. 2002, 323 (2): 65-71. 10.1097/00000441-200202000-00002.CrossRefPubMed Martins D, Tareen N, Norris KC: The epidemiology of end-stage renal disease among African Americans. Am J Med Sci. 2002, 323 (2): 65-71. 10.1097/00000441-200202000-00002.CrossRefPubMed
23.
go back to reference Kopp JB, Smith MW, Nelson GW, Johnson RC, Freedman BI, Bowden DW, Oleksyk T, McKenzie LM, Kajiyama H, Ahuja TS, et al: MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. Nat Genet. 2008, 40 (10): 1175-1184. 10.1038/ng.226.CrossRefPubMedPubMedCentral Kopp JB, Smith MW, Nelson GW, Johnson RC, Freedman BI, Bowden DW, Oleksyk T, McKenzie LM, Kajiyama H, Ahuja TS, et al: MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. Nat Genet. 2008, 40 (10): 1175-1184. 10.1038/ng.226.CrossRefPubMedPubMedCentral
24.
go back to reference Suthanthiran M, Li B, Song JO, Ding R, Sharma VK, Schwartz JE, August P: Transforming growth factor-beta 1 hyperexpression in African-American hypertensives: A novel mediator of hypertension and/or target organ damage. Proc Natl Acad Sci USA. 2000, 97 (7): 3479-3484. 10.1073/pnas.050420897.PubMedPubMedCentral Suthanthiran M, Li B, Song JO, Ding R, Sharma VK, Schwartz JE, August P: Transforming growth factor-beta 1 hyperexpression in African-American hypertensives: A novel mediator of hypertension and/or target organ damage. Proc Natl Acad Sci USA. 2000, 97 (7): 3479-3484. 10.1073/pnas.050420897.PubMedPubMedCentral
25.
26.
go back to reference Newsome BB, McClellan WM, Coffey CS, Allison JJ, Kiefe CI, Warnock DG: Survival advantage of black patients with kidney disease after acute myocardial infarction. Clin J Am Soc Nephrol. 2006, 1 (5): 993-999. 10.2215/CJN.01251005.CrossRefPubMed Newsome BB, McClellan WM, Coffey CS, Allison JJ, Kiefe CI, Warnock DG: Survival advantage of black patients with kidney disease after acute myocardial infarction. Clin J Am Soc Nephrol. 2006, 1 (5): 993-999. 10.2215/CJN.01251005.CrossRefPubMed
27.
go back to reference Mehrotra R, Kermah D, Fried L, Adler S, Norris K: Racial differences in mortality among those with CKD. J Am Soc Nephrol. 2008, 19 (7): 1403-1410. 10.1681/ASN.2007070747.CrossRefPubMedPubMedCentral Mehrotra R, Kermah D, Fried L, Adler S, Norris K: Racial differences in mortality among those with CKD. J Am Soc Nephrol. 2008, 19 (7): 1403-1410. 10.1681/ASN.2007070747.CrossRefPubMedPubMedCentral
28.
go back to reference Popescu I, Vaughan-Sarrazin MS, Rosenthal GE: Differences in mortality and use of revascularization in black and white patients with acute MI admitted to hospitals with and without revascularization services. JAMA. 2007, 297 (22): 2489-2495. 10.1001/jama.297.22.2489.CrossRefPubMed Popescu I, Vaughan-Sarrazin MS, Rosenthal GE: Differences in mortality and use of revascularization in black and white patients with acute MI admitted to hospitals with and without revascularization services. JAMA. 2007, 297 (22): 2489-2495. 10.1001/jama.297.22.2489.CrossRefPubMed
29.
go back to reference Gao SW, Oliver DK, Das N, Hurst FP, Lentine KL, Agodoa LY, Sawyers ES, Abbott KC: Assessment of racial disparities in chronic kidney disease stage 3 and 4 care in the department of defense health system. Clin J Am Soc Nephrol. 2008, 3 (2): 442-449. 10.2215/CJN.03940907.CrossRefPubMedPubMedCentral Gao SW, Oliver DK, Das N, Hurst FP, Lentine KL, Agodoa LY, Sawyers ES, Abbott KC: Assessment of racial disparities in chronic kidney disease stage 3 and 4 care in the department of defense health system. Clin J Am Soc Nephrol. 2008, 3 (2): 442-449. 10.2215/CJN.03940907.CrossRefPubMedPubMedCentral
30.
go back to reference Delanaye P, Cavalier E, Mariat C, Maillard N, Krzesinski JM: MDRD or CKD-EPI study equations for estimating prevalence of stage 3 CKD in epidemiological studies: which difference? Is this difference relevant?. BMC Nephrol. 2010, 11: 8-10.1186/1471-2369-11-8.CrossRefPubMedPubMedCentral Delanaye P, Cavalier E, Mariat C, Maillard N, Krzesinski JM: MDRD or CKD-EPI study equations for estimating prevalence of stage 3 CKD in epidemiological studies: which difference? Is this difference relevant?. BMC Nephrol. 2010, 11: 8-10.1186/1471-2369-11-8.CrossRefPubMedPubMedCentral
Metadata
Title
The MDRD equation underestimates the prevalence of CKD among blacks and overestimates the prevalence of CKD among whites compared to the CKD-EPI equation: a retrospective cohort study
Authors
Pradeep Arora
Srini Rajagopalan
Nilang Patel
Neha Nainani
Rocco C Venuto
James W Lohr
Publication date
01-12-2012
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2012
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/1471-2369-13-4

Other articles of this Issue 1/2012

BMC Nephrology 1/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.