Skip to main content
Top
Published in: BMC Medical Imaging 1/2014

Open Access 01-12-2014 | Research article

Specific CT 3D rendering of the treatment zone after Irreversible Electroporation (IRE) in a pig liver model: the “Chebyshev Center Concept” to define the maximum treatable tumor size

Authors: Dominik Vollherbst, Stefan Fritz, Sascha Zelzer, Miguel F Wachter, Maya B Wolf, Ulrike Stampfl, Daniel Gnutzmann, Nadine Bellemann, Anne Schmitz, Jürgen Knapp, Philippe L Pereira, Hans U Kauczor, Jens Werner, Boris A Radeleff, Christof M Sommer

Published in: BMC Medical Imaging | Issue 1/2014

Login to get access

Abstract

Background

Size and shape of the treatment zone after Irreversible electroporation (IRE) can be difficult to depict due to the use of multiple applicators with complex spatial configuration. Exact geometrical definition of the treatment zone, however, is mandatory for acute treatment control since incomplete tumor coverage results in limited oncological outcome. In this study, the “Chebyshev Center Concept” was introduced for CT 3d rendering to assess size and position of the maximum treatable tumor at a specific safety margin.

Methods

In seven pig livers, three different IRE protocols were applied to create treatment zones of different size and shape: Protocol 1 (n = 5 IREs), Protocol 2 (n = 5 IREs), and Protocol 3 (n = 5 IREs). Contrast-enhanced CT was used to assess the treatment zones. Technique A consisted of a semi-automated software prototype for CT 3d rendering with the “Chebyshev Center Concept” implemented (the “Chebyshev Center” is the center of the largest inscribed sphere within the treatment zone) with automated definition of parameters for size, shape and position. Technique B consisted of standard CT 3d analysis with manual definition of the same parameters but position.

Results

For Protocol 1 and 2, short diameter of the treatment zone and diameter of the largest inscribed sphere within the treatment zone were not significantly different between Technique A and B. For Protocol 3, short diameter of the treatment zone and diameter of the largest inscribed sphere within the treatment zone were significantly smaller for Technique A compared with Technique B (41.1 ± 13.1 mm versus 53.8 ± 1.1 mm and 39.0 ± 8.4 mm versus 53.8 ± 1.1 mm; p < 0.05 and p < 0.01). For Protocol 1, 2 and 3, sphericity of the treatment zone was significantly larger for Technique A compared with B.

Conclusions

Regarding size and shape of the treatment zone after IRE, CT 3d rendering with the “Chebyshev Center Concept” implemented provides significantly different results compared with standard CT 3d analysis. Since the latter overestimates the size of the treatment zone, the “Chebyshev Center Concept” could be used for a more objective acute treatment control.
Appendix
Available only for authorised users
Literature
1.
go back to reference Davalos RV, Mir IL, Rubinsky B: Tissue ablation with irreversible electroporation. Ann Biomed Eng. 2005, 33 (2): 223-231. 10.1007/s10439-005-8981-8.CrossRefPubMed Davalos RV, Mir IL, Rubinsky B: Tissue ablation with irreversible electroporation. Ann Biomed Eng. 2005, 33 (2): 223-231. 10.1007/s10439-005-8981-8.CrossRefPubMed
2.
go back to reference Edd JF, Horowitz L, Davalos RV, Mir LM, Rubinsky B: In vivo results of a new focal tissue ablation technique: irreversible electroporation. IEEE Trans Biomed Eng. 2006, 53 (7): 1409-1415. 10.1109/TBME.2006.873745.CrossRefPubMed Edd JF, Horowitz L, Davalos RV, Mir LM, Rubinsky B: In vivo results of a new focal tissue ablation technique: irreversible electroporation. IEEE Trans Biomed Eng. 2006, 53 (7): 1409-1415. 10.1109/TBME.2006.873745.CrossRefPubMed
3.
go back to reference Lee EW, Loh CT, Kee ST: Imaging guided percutaneous irreversible electroporation: ultrasound and immunohistological correlation. Technol Cancer Res Treat. 2007, 6 (4): 287-294.CrossRefPubMed Lee EW, Loh CT, Kee ST: Imaging guided percutaneous irreversible electroporation: ultrasound and immunohistological correlation. Technol Cancer Res Treat. 2007, 6 (4): 287-294.CrossRefPubMed
4.
go back to reference Rubinsky B, Onik G, Mikus P: Irreversible electroporation: a new ablation modality–clinical implications. Technol Cancer Res Treat. 2007, 6 (1): 37-48.CrossRefPubMed Rubinsky B, Onik G, Mikus P: Irreversible electroporation: a new ablation modality–clinical implications. Technol Cancer Res Treat. 2007, 6 (1): 37-48.CrossRefPubMed
5.
go back to reference Brace CL: Radiofrequency and microwave ablation of the liver, lung, kidney, and bone: what are the differences?. Curr Probl Diagn Radiol. 2009, 38 (3): 135-143. 10.1067/j.cpradiol.2007.10.001.CrossRefPubMedPubMedCentral Brace CL: Radiofrequency and microwave ablation of the liver, lung, kidney, and bone: what are the differences?. Curr Probl Diagn Radiol. 2009, 38 (3): 135-143. 10.1067/j.cpradiol.2007.10.001.CrossRefPubMedPubMedCentral
6.
go back to reference Charpentier KP: Irreversible electroporation for the ablation of liver tumors: are we there yet?. Arch Surg. 2012, 147 (11): 1053-1061. 10.1001/2013.jamasurg.100.CrossRefPubMed Charpentier KP: Irreversible electroporation for the ablation of liver tumors: are we there yet?. Arch Surg. 2012, 147 (11): 1053-1061. 10.1001/2013.jamasurg.100.CrossRefPubMed
7.
go back to reference Thomson KR, Cheung W, Ellis SJ, Federman D, Kavnoudias H, Loader-Oliver D, Roberts S, Evans P, Ball C, Haydon A: Investigation of the safety of irreversible electroporation in humans. J Vasc Interv Radiol. 2011, 22 (5): 611-621. 10.1016/j.jvir.2010.12.014.CrossRefPubMed Thomson KR, Cheung W, Ellis SJ, Federman D, Kavnoudias H, Loader-Oliver D, Roberts S, Evans P, Ball C, Haydon A: Investigation of the safety of irreversible electroporation in humans. J Vasc Interv Radiol. 2011, 22 (5): 611-621. 10.1016/j.jvir.2010.12.014.CrossRefPubMed
8.
go back to reference Rubinsky B: Irreversible electroporation in medicine. Technol Cancer Res Treat. 2007, 6 (4): 255-260.CrossRefPubMed Rubinsky B: Irreversible electroporation in medicine. Technol Cancer Res Treat. 2007, 6 (4): 255-260.CrossRefPubMed
9.
go back to reference Wendler JJ, Pech M, Blaschke S, Porsch M, Janitzky A, Ulrich M, Dudeck O, Ricke J, Liehr UB: Angiography in the isolated perfused kidney: radiological evaluation of vascular protection in tissue ablation by nonthermal irreversible electroporation. Cardiovasc Intervent Radiol. 2012, 35 (2): 383-390. 10.1007/s00270-011-0187-x.CrossRefPubMed Wendler JJ, Pech M, Blaschke S, Porsch M, Janitzky A, Ulrich M, Dudeck O, Ricke J, Liehr UB: Angiography in the isolated perfused kidney: radiological evaluation of vascular protection in tissue ablation by nonthermal irreversible electroporation. Cardiovasc Intervent Radiol. 2012, 35 (2): 383-390. 10.1007/s00270-011-0187-x.CrossRefPubMed
10.
go back to reference Wang X, Sofocleous CT, Erinjeri JP, Petre EN, Gonen M, Do KG, Brown KT, Covey AM, Brody LA, Alago W, et al: Margin Size is an Independent Predictor of Local Tumor Progression After Ablation of Colon Cancer Liver Metastases. Cardiovasc Intervent Radiol. 2013, 36 (1): 166-175. 10.1007/s00270-012-0377-1.CrossRefPubMed Wang X, Sofocleous CT, Erinjeri JP, Petre EN, Gonen M, Do KG, Brown KT, Covey AM, Brody LA, Alago W, et al: Margin Size is an Independent Predictor of Local Tumor Progression After Ablation of Colon Cancer Liver Metastases. Cardiovasc Intervent Radiol. 2013, 36 (1): 166-175. 10.1007/s00270-012-0377-1.CrossRefPubMed
11.
go back to reference Sommer CM, Sommer SA, Sommer WO, Zelzer S, Wolf MB, Bellemann N, Meinzer HP, Radeleff BA, Stampfl U, Kauczor HU, et al: Optimisation of the coagulation zone for thermal ablation procedures: a theoretical approach with considerations for practical use. Int J Hyperthermia. 2013, 29 (7): 620-628. 10.3109/02656736.2013.828103.CrossRefPubMed Sommer CM, Sommer SA, Sommer WO, Zelzer S, Wolf MB, Bellemann N, Meinzer HP, Radeleff BA, Stampfl U, Kauczor HU, et al: Optimisation of the coagulation zone for thermal ablation procedures: a theoretical approach with considerations for practical use. Int J Hyperthermia. 2013, 29 (7): 620-628. 10.3109/02656736.2013.828103.CrossRefPubMed
12.
go back to reference Adeyanju OO, Al-Angari HM, Sahakian AV: The optimization of needle electrode number and placement for irreversible electroporation of hepatocellular carcinoma. Radiology Oncol. 2012, 46 (2): 126-135.CrossRef Adeyanju OO, Al-Angari HM, Sahakian AV: The optimization of needle electrode number and placement for irreversible electroporation of hepatocellular carcinoma. Radiology Oncol. 2012, 46 (2): 126-135.CrossRef
13.
go back to reference Lee YJ, Lu DS, Osuagwu F, Lassman C: Irreversible electroporation in porcine liver: acute computed tomography appearance of ablation zone with histopathologic correlation. J Comput Assist Tomogr. 2013, 37 (2): 154-158. 10.1097/RCT.0b013e31827dbf9b.CrossRefPubMed Lee YJ, Lu DS, Osuagwu F, Lassman C: Irreversible electroporation in porcine liver: acute computed tomography appearance of ablation zone with histopathologic correlation. J Comput Assist Tomogr. 2013, 37 (2): 154-158. 10.1097/RCT.0b013e31827dbf9b.CrossRefPubMed
14.
go back to reference Lee YJ, Lu DS, Osuagwu F, Lassman C: Irreversible electroporation in porcine liver: short- and long-term effect on the hepatic veins and adjacent tissue by CT with pathological correlation. Invest Radiol. 2012, 47 (11): 671-675. 10.1097/RLI.0b013e318274b0df.CrossRefPubMed Lee YJ, Lu DS, Osuagwu F, Lassman C: Irreversible electroporation in porcine liver: short- and long-term effect on the hepatic veins and adjacent tissue by CT with pathological correlation. Invest Radiol. 2012, 47 (11): 671-675. 10.1097/RLI.0b013e318274b0df.CrossRefPubMed
15.
go back to reference Sommer CM, Kortes N, Zelzer S, Arnegger FU, Stampfl U, Bellemann N, Gehrig T, Nickel F, Kenngott HG, Mogler C, et al: Renal artery embolization combined with radiofrequency ablation in a porcine kidney model: effect of small and narrowly calibrated microparticles as embolization material on coagulation diameter, volume, and shape. Cardiovasc Intervent Radiol. 2011, 34 (1): 156-165. 10.1007/s00270-010-9908-9.CrossRefPubMed Sommer CM, Kortes N, Zelzer S, Arnegger FU, Stampfl U, Bellemann N, Gehrig T, Nickel F, Kenngott HG, Mogler C, et al: Renal artery embolization combined with radiofrequency ablation in a porcine kidney model: effect of small and narrowly calibrated microparticles as embolization material on coagulation diameter, volume, and shape. Cardiovasc Intervent Radiol. 2011, 34 (1): 156-165. 10.1007/s00270-010-9908-9.CrossRefPubMed
16.
go back to reference Laeseke PF, Lee FT, Sampson LA, van der Weide DW, Brace CL: Microwave ablation versus radiofrequency ablation in the kidney: high-power triaxial antennas create larger ablation zones than similarly sized internally cooled electrodes. J Vasc Interv Radiol. 2009, 20 (9): 1224-1229. 10.1016/j.jvir.2009.05.029.CrossRefPubMedPubMedCentral Laeseke PF, Lee FT, Sampson LA, van der Weide DW, Brace CL: Microwave ablation versus radiofrequency ablation in the kidney: high-power triaxial antennas create larger ablation zones than similarly sized internally cooled electrodes. J Vasc Interv Radiol. 2009, 20 (9): 1224-1229. 10.1016/j.jvir.2009.05.029.CrossRefPubMedPubMedCentral
17.
go back to reference Pereira PL, Trubenbach J, Schenk M, Subke J, Kroeber S, Schaefer I, Remy CT, Schmidt D, Brieger J, Claussen CD: Radiofrequency ablation: in vivo comparison of four commercially available devices in pig livers. Radiology. 2004, 232 (2): 482-490. 10.1148/radiol.2322030184.CrossRefPubMed Pereira PL, Trubenbach J, Schenk M, Subke J, Kroeber S, Schaefer I, Remy CT, Schmidt D, Brieger J, Claussen CD: Radiofrequency ablation: in vivo comparison of four commercially available devices in pig livers. Radiology. 2004, 232 (2): 482-490. 10.1148/radiol.2322030184.CrossRefPubMed
18.
go back to reference Mulier S, Ni Y, Frich L, Burdio F, Denys AL, De Wispelaere JF, Dupas B, Habib N, Hoey M, Jansen MC, et al: Experimental and clinical radiofrequency ablation: proposal for standardized description of coagulation size and geometry. Ann Surg Oncol. 2007, 14 (4): 1381-1396. 10.1245/s10434-006-9033-9.CrossRefPubMed Mulier S, Ni Y, Frich L, Burdio F, Denys AL, De Wispelaere JF, Dupas B, Habib N, Hoey M, Jansen MC, et al: Experimental and clinical radiofrequency ablation: proposal for standardized description of coagulation size and geometry. Ann Surg Oncol. 2007, 14 (4): 1381-1396. 10.1245/s10434-006-9033-9.CrossRefPubMed
19.
go back to reference Goldberg SN, Grassi CJ, Cardella JF, Charboneau JW, Dodd GD, Dupuy DE, Gervais DA, Gillams AR, Kane RA, Lee FT, et al: Image-guided tumor ablation: standardization of terminology and reporting criteria. J Vasc Interv Radiol. 2009, 20 (7 Suppl): S377-S390.CrossRefPubMed Goldberg SN, Grassi CJ, Cardella JF, Charboneau JW, Dodd GD, Dupuy DE, Gervais DA, Gillams AR, Kane RA, Lee FT, et al: Image-guided tumor ablation: standardization of terminology and reporting criteria. J Vasc Interv Radiol. 2009, 20 (7 Suppl): S377-S390.CrossRefPubMed
20.
go back to reference Galizia MS, Tore HG, Chalian H, Yaghmai V: Evaluation of hepatocellular carcinoma size using two-dimensional and volumetric analysis: effect on liver transplantation eligibility. Acad Radiol. 2011, 18 (12): 1555-1560. 10.1016/j.acra.2011.08.011.CrossRefPubMed Galizia MS, Tore HG, Chalian H, Yaghmai V: Evaluation of hepatocellular carcinoma size using two-dimensional and volumetric analysis: effect on liver transplantation eligibility. Acad Radiol. 2011, 18 (12): 1555-1560. 10.1016/j.acra.2011.08.011.CrossRefPubMed
21.
go back to reference Rothe JH, Grieser C, Lehmkuhl L, Schnapauff D, Fernandez CP, Maurer MH, Mussler A, Hamm B, Denecke T, Steffen IG: Size determination and response assessment of liver metastases with computed tomography-Comparison of RECIST and volumetric algorithms. Eur J Radiol. 2013, 82 (11): 1831-1839. 10.1016/j.ejrad.2012.05.018.CrossRefPubMed Rothe JH, Grieser C, Lehmkuhl L, Schnapauff D, Fernandez CP, Maurer MH, Mussler A, Hamm B, Denecke T, Steffen IG: Size determination and response assessment of liver metastases with computed tomography-Comparison of RECIST and volumetric algorithms. Eur J Radiol. 2013, 82 (11): 1831-1839. 10.1016/j.ejrad.2012.05.018.CrossRefPubMed
22.
go back to reference Elhawary H, Oguro S, Tuncali K, Morrison PR, Tatli S, Shyn PB, Silverman SG, Hata N: Multimodality non-rigid image registration for planning, targeting and monitoring during CT-guided percutaneous liver tumor cryoablation. Acad Radiol. 2010, 17 (11): 1334-1344. 10.1016/j.acra.2010.06.004.CrossRefPubMedPubMedCentral Elhawary H, Oguro S, Tuncali K, Morrison PR, Tatli S, Shyn PB, Silverman SG, Hata N: Multimodality non-rigid image registration for planning, targeting and monitoring during CT-guided percutaneous liver tumor cryoablation. Acad Radiol. 2010, 17 (11): 1334-1344. 10.1016/j.acra.2010.06.004.CrossRefPubMedPubMedCentral
23.
go back to reference Passera K, Selvaggi S, Scaramuzza D, Garbagnati F, Vergnaghi D, Mainardi L: Radiofrequency ablation of liver tumors: quantitative assessment of tumor coverage through CT image processing. BMC Med Imaging. 2013, 13 (1): 3-10.1186/1471-2342-13-3.CrossRefPubMedPubMedCentral Passera K, Selvaggi S, Scaramuzza D, Garbagnati F, Vergnaghi D, Mainardi L: Radiofrequency ablation of liver tumors: quantitative assessment of tumor coverage through CT image processing. BMC Med Imaging. 2013, 13 (1): 3-10.1186/1471-2342-13-3.CrossRefPubMedPubMedCentral
24.
go back to reference Tateishi R, Shiina S, Akahane M, Sato J, Kondo Y, Masuzaki R, Nakagawa H, Asaoka Y, Goto T, Otomo K, et al: Frequency, risk factors and survival associated with an intrasubsegmental recurrence after radiofrequency ablation for hepatocellular carcinoma. PloS one. 2013, 8 (4): e59040-10.1371/journal.pone.0059040.CrossRefPubMedPubMedCentral Tateishi R, Shiina S, Akahane M, Sato J, Kondo Y, Masuzaki R, Nakagawa H, Asaoka Y, Goto T, Otomo K, et al: Frequency, risk factors and survival associated with an intrasubsegmental recurrence after radiofrequency ablation for hepatocellular carcinoma. PloS one. 2013, 8 (4): e59040-10.1371/journal.pone.0059040.CrossRefPubMedPubMedCentral
Metadata
Title
Specific CT 3D rendering of the treatment zone after Irreversible Electroporation (IRE) in a pig liver model: the “Chebyshev Center Concept” to define the maximum treatable tumor size
Authors
Dominik Vollherbst
Stefan Fritz
Sascha Zelzer
Miguel F Wachter
Maya B Wolf
Ulrike Stampfl
Daniel Gnutzmann
Nadine Bellemann
Anne Schmitz
Jürgen Knapp
Philippe L Pereira
Hans U Kauczor
Jens Werner
Boris A Radeleff
Christof M Sommer
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2014
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/1471-2342-14-2

Other articles of this Issue 1/2014

BMC Medical Imaging 1/2014 Go to the issue