Skip to main content
Top
Published in: BMC Infectious Diseases 1/2012

Open Access 01-12-2012 | Research article

CD4 lymphocyte dynamics in Tanzanian pulmonary tuberculosis patients with and without hiv co-infection

Authors: Aase B Andersen, Nyagosya S Range, John Changalucha, George PrayGod, Jeremiah Kidola, Daniel Faurholt-Jepsen, Henrik Krarup, Harleen MS Grewal, Henrik Friis

Published in: BMC Infectious Diseases | Issue 1/2012

Login to get access

Abstract

Background

The interaction of HIV and tuberculosis (TB) on CD4 levels over time is complex and has been divergently reported.

Methods

CD4 counts were assessed from time of diagnosis till the end of TB treatment in a cohort of pulmonary TB patients with and without HIV co-infection and compared with cross-sectional data on age- and sex-matched non-TB controls from the same area.

Results

Of 1,605 study participants, 1,250 were PTB patients and 355 were non-TB controls. At baseline, HIV was associated with 246 (95% CI: 203; 279) cells per μL lower CD4 counts. All PTB patients had 100 cells per μL lower CD4 counts than the healthy controls. The CD4 levels were largely unchanged during a five-month of TB treatment. HIV infected patients not receiving ART at any time and those already on ART at baseline had no increase in CD4 counts after 5 months of TB treatment, whereas those prescribed ART between baseline and 2 months, and between 2 and 5 months increased by 69 (22;117) and 110 (52; 168) CD4 cells per μL after 5 months.

Conclusions

The increase in circulating CD4 levels observed in PTB in patients is acquired after 2 months of treatment irrespective of HIV status. Initiation of ART is the strongest factor correlated with CD4 increase during TB treatment.

Trial registration number

Clinical trials.gov: NCT00311298
Appendix
Available only for authorised users
Literature
1.
go back to reference The Antiretroviral Therapy Cohort Collaboration: Life expectancy of individuals on combination antiretroviral therapy in high-income countries: a collaborative analysis of 14 cohort studies. Lancet. 2008, 372: 293-299.CrossRefPubMedCentral The Antiretroviral Therapy Cohort Collaboration: Life expectancy of individuals on combination antiretroviral therapy in high-income countries: a collaborative analysis of 14 cohort studies. Lancet. 2008, 372: 293-299.CrossRefPubMedCentral
2.
go back to reference Begtrup K, Melbye M, Biggar RJ, Goedert JJ, Knudsen K, Andersen PK: Progression to acquired immunodeficiency syndrome is influenced by CD4 T-lymphocyte count and time since seroconversion. Am J Epidemiol. 1997, 145: 629-635.CrossRefPubMed Begtrup K, Melbye M, Biggar RJ, Goedert JJ, Knudsen K, Andersen PK: Progression to acquired immunodeficiency syndrome is influenced by CD4 T-lymphocyte count and time since seroconversion. Am J Epidemiol. 1997, 145: 629-635.CrossRefPubMed
3.
go back to reference World Health Organization: Antiretroviral Therapy for HIV Infection in Adults and Adolescents. 2010 revision. Geneva World Health Organization: Antiretroviral Therapy for HIV Infection in Adults and Adolescents. 2010 revision. Geneva
4.
go back to reference Ellner JJ: Immunoregulation in TB: observations and implications. Clin Transl Sci. 2010, 3: 23-28. 10.1111/j.1752-8062.2010.00180.x.CrossRefPubMed Ellner JJ: Immunoregulation in TB: observations and implications. Clin Transl Sci. 2010, 3: 23-28. 10.1111/j.1752-8062.2010.00180.x.CrossRefPubMed
5.
go back to reference Jones BE, Oo MM, Taikwel EK, Qian D, Kumar A, Maslow ER, et al: CD4 cell counts in human immunodeficiency virus-negative patients with tuberculosis. Clin Infect Dis. 1997, 24: 988-991. 10.1093/clinids/24.5.988.CrossRefPubMed Jones BE, Oo MM, Taikwel EK, Qian D, Kumar A, Maslow ER, et al: CD4 cell counts in human immunodeficiency virus-negative patients with tuberculosis. Clin Infect Dis. 1997, 24: 988-991. 10.1093/clinids/24.5.988.CrossRefPubMed
6.
go back to reference Turett GS, Telzak EE: Normalization of CD4+ T-lymphocyte depletion in patients without HIV infection treated for tuberculosis. Chest. 1994, 105: 1335-1337. 10.1378/chest.105.5.1335.CrossRefPubMed Turett GS, Telzak EE: Normalization of CD4+ T-lymphocyte depletion in patients without HIV infection treated for tuberculosis. Chest. 1994, 105: 1335-1337. 10.1378/chest.105.5.1335.CrossRefPubMed
7.
go back to reference Cingolani A, Cozzi LA, Castagna A, Goletti D, De LA, Scarpellini P, et al: Impaired CD4 T-cell count response to combined antiretroviral therapy in antiretroviral-naive HIV-infected patients presenting with tuberculosis as AIDS-defining condition. Clin Infect Dis. 2012, 54: 853-861. 10.1093/cid/cir900.CrossRefPubMed Cingolani A, Cozzi LA, Castagna A, Goletti D, De LA, Scarpellini P, et al: Impaired CD4 T-cell count response to combined antiretroviral therapy in antiretroviral-naive HIV-infected patients presenting with tuberculosis as AIDS-defining condition. Clin Infect Dis. 2012, 54: 853-861. 10.1093/cid/cir900.CrossRefPubMed
8.
go back to reference Praygod G, Range N, Faurholt-Jepsen D, Jeremiah K, Faurholt-Jepsen M, Aabye MG, et al: Daily multi-micronutrient supplementation during tuberculosis treatment increases weight and grip strength among HIV-uninfected but not HIV-infected patients in Mwanza, Tanzania. J Nutr. 2011, 144: 685-691.CrossRef Praygod G, Range N, Faurholt-Jepsen D, Jeremiah K, Faurholt-Jepsen M, Aabye MG, et al: Daily multi-micronutrient supplementation during tuberculosis treatment increases weight and grip strength among HIV-uninfected but not HIV-infected patients in Mwanza, Tanzania. J Nutr. 2011, 144: 685-691.CrossRef
9.
go back to reference Praygod G, Range N, Faurholt-Jepsen D, Jeremiah K, Faurholt-Jepsen M, Aabye MG, et al: Weight, body composition and handgrip strength among pulmonary tuberculosis patients: a matched cross-sectional study in Mwanza, Tanzania. Trans R Soc Trop Med Hyg. 2011, 105: 140-147. 10.1016/j.trstmh.2010.11.009.CrossRefPubMed Praygod G, Range N, Faurholt-Jepsen D, Jeremiah K, Faurholt-Jepsen M, Aabye MG, et al: Weight, body composition and handgrip strength among pulmonary tuberculosis patients: a matched cross-sectional study in Mwanza, Tanzania. Trans R Soc Trop Med Hyg. 2011, 105: 140-147. 10.1016/j.trstmh.2010.11.009.CrossRefPubMed
10.
go back to reference World Health Organization: Treatment of Tuberculosis: Guidelines for National Programmes. 2003, World Health Organization publications, WHO/CDS/2003.313, Third World Health Organization: Treatment of Tuberculosis: Guidelines for National Programmes. 2003, World Health Organization publications, WHO/CDS/2003.313, Third
11.
go back to reference Ministry of Health and Social Welfare: Manual of the National Tuberculosis and Leprosy Programme in Tanzania. 2006, Fifth Ministry of Health and Social Welfare: Manual of the National Tuberculosis and Leprosy Programme in Tanzania. 2006, Fifth
12.
go back to reference Ministry of Health, United Republic of Tanzania: National Guidelines for the Clinical Management of HIV and AIDS. 2005, Second Ministry of Health, United Republic of Tanzania: National Guidelines for the Clinical Management of HIV and AIDS. 2005, Second
13.
go back to reference Guyot-Revol V, Innes JA, Hackforth S, Hinks T, Lalvani A: Regulatory T cells are expanded in blood and disease sites in patients with tuberculosis. Am J Respir Crit Care Med. 2006, 173: 803-810. 10.1164/rccm.200508-1294OC.CrossRefPubMed Guyot-Revol V, Innes JA, Hackforth S, Hinks T, Lalvani A: Regulatory T cells are expanded in blood and disease sites in patients with tuberculosis. Am J Respir Crit Care Med. 2006, 173: 803-810. 10.1164/rccm.200508-1294OC.CrossRefPubMed
14.
go back to reference Hertoghe T, Wajja A, Ntambi L, Okwera A, Aziz MA, Hirsch C, et al: T cell activation, apoptosis and cytokine dysregulation in the (co)pathogenesis of HIV and pulmonary tuberculosis (TB). Clin Exp Immunol. 2000, 122: 350-357. 10.1046/j.1365-2249.2000.01385.x.CrossRefPubMedPubMedCentral Hertoghe T, Wajja A, Ntambi L, Okwera A, Aziz MA, Hirsch C, et al: T cell activation, apoptosis and cytokine dysregulation in the (co)pathogenesis of HIV and pulmonary tuberculosis (TB). Clin Exp Immunol. 2000, 122: 350-357. 10.1046/j.1365-2249.2000.01385.x.CrossRefPubMedPubMedCentral
15.
go back to reference Hirsch CS, Johnson JL, Okwera A, Kanost RA, Wu M, Peters P, et al: Mechanisms of apoptosis of T-cells in human tuberculosis. J Clin Immunol. 2005, 25: 353-364. 10.1007/s10875-005-4841-4.CrossRefPubMed Hirsch CS, Johnson JL, Okwera A, Kanost RA, Wu M, Peters P, et al: Mechanisms of apoptosis of T-cells in human tuberculosis. J Clin Immunol. 2005, 25: 353-364. 10.1007/s10875-005-4841-4.CrossRefPubMed
16.
go back to reference Blanc FX, Sok T, Laureillard D, Borand L, Rekacewicz C, Nerrienet E, et al: Earlier versus later start of antiretroviral therapy in HIV-infected adults with tuberculosis. N Engl J Med. 2011, 365: 1471-1481. 10.1056/NEJMoa1013911.CrossRefPubMedPubMedCentral Blanc FX, Sok T, Laureillard D, Borand L, Rekacewicz C, Nerrienet E, et al: Earlier versus later start of antiretroviral therapy in HIV-infected adults with tuberculosis. N Engl J Med. 2011, 365: 1471-1481. 10.1056/NEJMoa1013911.CrossRefPubMedPubMedCentral
17.
go back to reference Havlir DV, Kendall MA, Ive P, Kumwenda J, Swindells S, Qasba SS, et al: Timing of antiretroviral therapy for HIV-1 infection and tuberculosis. N Engl J Med. 2011, 365: 1482-1491. 10.1056/NEJMoa1013607.CrossRefPubMedPubMedCentral Havlir DV, Kendall MA, Ive P, Kumwenda J, Swindells S, Qasba SS, et al: Timing of antiretroviral therapy for HIV-1 infection and tuberculosis. N Engl J Med. 2011, 365: 1482-1491. 10.1056/NEJMoa1013607.CrossRefPubMedPubMedCentral
18.
go back to reference Jensen L, Jensen AV, Praygod G, Kidola J, Faurholt-Jepsen D, Changalucha J, et al: Infrequent detection of Pneumocystis jirovecii by PCR in oral wash specimens from TB patients with or without HIV and healthy contacts in Tanzania. BMC Infect Dis. 2010, 10: 140-10.1186/1471-2334-10-140.CrossRefPubMedPubMedCentral Jensen L, Jensen AV, Praygod G, Kidola J, Faurholt-Jepsen D, Changalucha J, et al: Infrequent detection of Pneumocystis jirovecii by PCR in oral wash specimens from TB patients with or without HIV and healthy contacts in Tanzania. BMC Infect Dis. 2010, 10: 140-10.1186/1471-2334-10-140.CrossRefPubMedPubMedCentral
19.
go back to reference Martin DJ, Sim JG, Sole GJ, Rymer L, Shalekoff S, van Niekerk AB, et al: CD4+ lymphocyte count in African patients co-infected with HIV and tuberculosis. J Acquir Immune Defic Syndr Hum Retrovirol. 1995, 8: 386-391.CrossRefPubMed Martin DJ, Sim JG, Sole GJ, Rymer L, Shalekoff S, van Niekerk AB, et al: CD4+ lymphocyte count in African patients co-infected with HIV and tuberculosis. J Acquir Immune Defic Syndr Hum Retrovirol. 1995, 8: 386-391.CrossRefPubMed
20.
go back to reference Kony SJ, Hane AA, Larouze B, Samb A, Cissoko S, Sow PS, SIDAK Research Group, et al: Tuberculosis-associated severe CD4+ T-lymphocytopenia in HIV-seronegative patients from Dakar. J Infect. 2000, 41: 167-171.CrossRefPubMed Kony SJ, Hane AA, Larouze B, Samb A, Cissoko S, Sow PS, SIDAK Research Group, et al: Tuberculosis-associated severe CD4+ T-lymphocytopenia in HIV-seronegative patients from Dakar. J Infect. 2000, 41: 167-171.CrossRefPubMed
21.
go back to reference Morris L, Martin DJ, Bredell H, Nyoka SN, Sacks L, Pendle S, et al: Human immunodeficiency virus-1 RNA levels and CD4 lymphocyte counts, during treatment for active tuberculosis, in South African patients. J Infect Dis. 2003, 187: 1967-1971. 10.1086/375346.CrossRefPubMed Morris L, Martin DJ, Bredell H, Nyoka SN, Sacks L, Pendle S, et al: Human immunodeficiency virus-1 RNA levels and CD4 lymphocyte counts, during treatment for active tuberculosis, in South African patients. J Infect Dis. 2003, 187: 1967-1971. 10.1086/375346.CrossRefPubMed
22.
go back to reference Mahan CS, Walusimbi M, Johnson DF, Lancioni C, Charlebois E, Baseke J, et al: Tuberculosis treatment in HIV infected Ugandans with CD4 counts > 350 cells/mm reduces immune activation with no effect on HIV load or CD4 count. PLoS One. 2010, 5: e9138-10.1371/journal.pone.0009138.CrossRefPubMedPubMedCentral Mahan CS, Walusimbi M, Johnson DF, Lancioni C, Charlebois E, Baseke J, et al: Tuberculosis treatment in HIV infected Ugandans with CD4 counts > 350 cells/mm reduces immune activation with no effect on HIV load or CD4 count. PLoS One. 2010, 5: e9138-10.1371/journal.pone.0009138.CrossRefPubMedPubMedCentral
Metadata
Title
CD4 lymphocyte dynamics in Tanzanian pulmonary tuberculosis patients with and without hiv co-infection
Authors
Aase B Andersen
Nyagosya S Range
John Changalucha
George PrayGod
Jeremiah Kidola
Daniel Faurholt-Jepsen
Henrik Krarup
Harleen MS Grewal
Henrik Friis
Publication date
01-12-2012
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2012
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/1471-2334-12-66

Other articles of this Issue 1/2012

BMC Infectious Diseases 1/2012 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.